Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative 2.0

Total Page:16

File Type:pdf, Size:1020Kb

Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative 2.0 The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative 2.0 From Cells to Circuits, Toward Cures 1 TABLE OF CONTENTS Executive Summary Introduction Priority Area 1: Discovering Diversity Priority Area 2: Maps at Multiple Scales Priority Area 3: Brain in Action Priority Area 4: Demonstrating Causality Priority Area 5: Identifying Fundamental Principles Priority Area 6: Human Neuroscience Priority Area 7: From BRAIN to Brain Priority Area 8: Organization of Science: BRAIN 2.0 I. Sharing Data II. Human Capital III. Sharing and Using BRAIN Initiative Technology IV. Public Engagement V. Bringing BRAIN Initiative Advances to Brain Disorders Transformative Projects Concluding Remarks Rosters 2 The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative 2.0 From Cells to Circuits, Toward Cures EXECUTIVE SUMMARY In 2019, we are at the midway point of The Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative. To date, this large-scale investment of resources and time has made significant progress in its quest to understand the brain. Given remarkable progress in technology development, the neuroscience community is poised to apply these new technologies, and accumulated knowledge, to further understand what many perceive to be one of the most complex entities known to humankind: the human brain. We should also be humbled about what studying ourselves reveals – and be prepared to tread carefully when we don’t know what we don’t know about possible consequences of newfound abilities to control the activity of brain cells and circuits. While this is not possible on a wide scale yet, it will be in time, and probably sooner than we think. In April 2013, recognizing the many scientific and ethical issues companion to The BRAIN Initiative®, NIH Director Dr. Francis Collins convened a high-level working group of the NIH Advisory Committee to the Director (ACD), the BRAIN Working Group (WG 1.0) and charged them with reviewing recent advances in neuroscience; articulating short-, medium-, and long-term goals for achieving a scientific and ethical vision of the BRAIN Initiative; and developing a scientific plan for achieving those goals. The BRAIN Initiative WG 1.0 established a strategic roadmap (BRAIN 2025: A Scientific Vision) structured into seven Priority Areas. BRAIN 2025 recognized that the fast pace and unpredictable path of neuroscience research would require that recommendations be re-examined as the BRAIN Initiative progressed. Dr. Collins convened a new working group (WG 2.0) to revisit the 2025 report’s priorities to assess progress to date and to identify new scientific opportunities. Beginning in April 2018, WG 2.0 members reviewed the existing BRAIN Initiative investment and progress and considered potential areas for growth and expansion. In so doing, WG 2.0 sought input from the broader neuroscience community and other BRAIN Initiative stakeholders through multiple modalities: a series of public workshops held between August 2018 and November 2018, three Town Hall events held between April 2018 and April 2019, and two requests for information (RFI). This report presents the findings and analyses of WG 2.0 regarding the NIH BRAIN Initiative investment to date and offers some specific suggestions regarding NIH activities in the BRAIN Initiative. WG 2.0 proposes that the ACD recommend to the NIH Director that the NIH BRAIN Initiative considers the findings, analyses, and suggestions in this report for incorporation into the ongoing research program. Some of our findings and suggestions may extend beyond the NIH mission or may require collaborative efforts with other federal agencies and organizations. In those cases, WG 2.0 proposes that the ACD recommend to the NIH Director that NIH engage with broader stakeholder communities as necessary and appropriate to achieve outcomes consistent with the content of this report. Priority Areas We have structured this report around the seven scientific Priority Areas identified by BRAIN 2025. Each of these constitutes a chapter that provides a brief description of how the Priority Area fits into the goal of understanding circuits; reviews accomplishments to date in context of the BRAIN 2025 short- and long-term goals; identifies gaps and opportunities; and presents revised short- and long-term goals. Next, we frame these scientific directions in a chapter entitled “Priority Area 8. Organization of Science,” that presents a 3 discussion of the overarching topics that affect all areas of science. These include data management and sharing; scientific workforce-related considerations; sharing and using BRAIN Initiative technologies; public engagement strategies; and connecting basic research to disease models under study. We conclude by offering ideas for transformative projects, which all involve complex and multiscale lines of inquiry. A brief accounting of progress and promise for each Priority Area appears below and is articulated in more detail in this report. Programming accomplished in the context of the NIH BRAIN Initiative from 2014 to the present is identified as “BRAIN 1.0,” while “BRAIN 2.0” represents upcoming programming from the present to 2026. NIH should be prepared to evaluate the outcome of these findings and suggestions and review the accomplishments of BRAIN 2.0 in 5 years. Priority Area 1. Discovering Diversity: Identify and provide experimental access to the different brain cell types to determine their roles in health and disease ● Progress in this Priority Area has been faster than anticipated, enabled by advances in high-throughput technologies and analytical methods. New opportunities for BRAIN 2.0 include expanding cell-type profiling and data analysis to integrate measurements of additional phenotypic features of brain cells; generating a protein-based understanding and access to cell types; enabling genetic and non-genetic access to cell types across multiple species; expanding human cell biology; and performing cell-type based models of circuit function. At the completion of the BRAIN Initiative, we expect that current and additional progress in this area will clarify, and perhaps even define, contributions of distinct cell types to circuit function and the physiological and pathological sequelae. Priority Area 2. Maps at Multiple Scales: Generate circuit diagrams that vary in resolution from synapses to the whole brain ● We have seen substantial progress in this Priority Area, reflected by impressive improvements in tissue processing and imaging that are bringing brain regions and circuitry into sharper relief for continued investigation. Opportunities for BRAIN 2.0 include increasing the speed and efficiency of these powerful new tools; expanding analyses to larger brains; increasing mapping of non-neuronal cell types and synapses; integrating structure and function mapping in the same brain; and acquiring and refining data- science advances to facilitate cross-species comparisons. At the completion of the BRAIN Initiative, we expect that continued progress in this area will allow us to understand the structure of the brain and its numerous functions more fully. This multidimensional view will be transformative for developing therapeutic approaches appreciative of this complex organ. Priority Area 3. The Brain in Action: Produce a dynamic picture of the functioning brain by developing and applying improved methods for large‐scale monitoring of neural activity ● We have seen good progress in this Priority Area, driven in part by improvements in hardware and integrated strategies that combine electrophysiology with optical imaging, optogenetics, and pharmacologic modulation. Opportunities for BRAIN 2.0 include expanding the ability to understand neuromodulatory function; tools to study larger (primate) brains; and sophisticated, computational tools to better assess behaviors (especially in natural settings). At the completion of the BRAIN Initiative, we expect that continued advances in this area will provide a clearer understanding of how dynamic activity in and across brain regions drives so many distinct behaviors in animals and in humans. 4 Priority Area 4. Demonstrating Causality: Link brain activity to behavior by developing and applying precise interventional tools that change neural circuit dynamics ● We have seen considerable progress in this Priority Area. All major short- and long-term goals are in the process of being completed. During BRAIN 2.0, we are poised to grasp new research opportunities in single-cell control, nanotechnologies, and machine learning. It may be time to consider applying methods developed in model systems to understanding neuropsychiatric disease states at the circuit level – as well as seeking to understand ancestral principles governing circuit operation shared across phylogeny and evolution. At the completion of the BRAIN Initiative, we envision widespread adoption of integrated neurotechnologies that enable scientists to modulate activity throughout the brain to drive desired and predictable outcomes. We expect that the fundamental understanding obtained as a culmination of the integration of theory, observation, and closed-loop experimentation described herein will allow the design of neurotechnologies that perform these perturbations safely and predictably. Priority Area 5. Identifying Fundamental Principles: Produce conceptual foundations for understanding the biological basis of mental processes through development of new theoretical and
Recommended publications
  • Doctorate in International Family and Community Studies 2 - Doctorate in International Family and Community Studies
    Doctorate in International Family and Community Studies 2 - Doctorate in International Family and Community Studies Doctorate in International Family and Community Studies Modern complex societies increasingly expect leaders to hold advanced degrees in order to bring so- phisticated research-informed analysis to bear on pressing issues in the public, private and civil society sectors. The PhD in International Family and Community Studies is being offered in the Balkans since 2012. By bringing a first-rate American doctoral program directly to the region, we hope to mobilize knowledge so as to increase the regional capacity for addressing important social issues and to do so at a highly competitive price and with minimal risk of “brain drain”. www.clemson.edu - 3 TABLE OF CONTENTS • Welcome Address • Program Overview • Why a Doctoral Program in the Balkans? • Why Choose this Doctoral Program? • Who is offering this Doctoral Degree? • Description of the Program • Curriculum • Course Descriptions • Faculty & Staff • Principal Faculty of IFNL • Adjunct Faculty of IFNL • Staff of IFNL • Admission Criteria • Application for Admission • Degree Requirements and Potential Waiver of Courses for Master’s Degree Students • Cost of Studies • Quality Assurance 4 - Doctorate in International Family and Community Studies WELCOME ADDRESS “Understanding family and community life is an important first step in improving social conditions. Consider continuing your journey with a doctorate in international family and commu- nity studies. Because a doctorate
    [Show full text]
  • Neuroscience and Critique
    NEUROSCIENCE AND CRITIQUE Recent years have seen a rapid growth in neuroscientific research, and an expansion beyond basic research to incorporate elements of the arts, humanities and social sciences. Some have suggested that the neurosciences will bring about major transformations in the understand- ing of our selves, our culture and our society. Ongoing debates within psychology, philoso- phy and literature about the implications of these developments within the neurosciences, and the emerging fields of educational neuroscience, neuroeconomics and neuro-aesthetics also bear witness to a “neurological turn” which is currently taking place. Neuroscience and Critique is a groundbreaking edited collection that reflects on the impact of neuroscience in contemporary social science and the humanities. It is the first book to consider possibilities for a critique of the theories, practices and implications of contemporary neuroscience. Bringing together leading scholars from several disciplines, the contributors draw upon a range of perspectives, including cognitive neuroscience, critical philosophy, psychoanalysis and feminism, and also critically examine several key ideas in contemporary neuroscience, including: • The idea of “neural personhood” • Theories of emotion in affective neuroscience • Empathy, intersubjectivity and the notion of “embodied simulation” • The concept of an “emo-rational” actor within neuroeconomics The volume will stimulate further debate in the emerging field of interdisciplinary studies in neuroscience and will appeal to researchers and advanced students in a number of disciplines, including psychology, philosophy and critical studies. Jan De Vos is a post-doctoral FWO Research Fellow at the Centre for Critical Philosophy at Ghent University, Belgium. His main research area is that of the neurological turn and its implications for ideology critique.
    [Show full text]
  • Conservation and Divergence of Related Neuronal Lineages in The
    RESEARCH ARTICLE Conservation and divergence of related neuronal lineages in the Drosophila central brain Ying-Jou Lee, Ching-Po Yang, Rosa L Miyares, Yu-Fen Huang, Yisheng He, Qingzhong Ren, Hui-Min Chen, Takashi Kawase, Masayoshi Ito, Hideo Otsuna, Ken Sugino, Yoshi Aso, Kei Ito, Tzumin Lee* Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States Abstract Wiring a complex brain requires many neurons with intricate cell specificity, generated by a limited number of neural stem cells. Drosophila central brain lineages are a predetermined series of neurons, born in a specific order. To understand how lineage identity translates to neuron morphology, we mapped 18 Drosophila central brain lineages. While we found large aggregate differences between lineages, we also discovered shared patterns of morphological diversification. Lineage identity plus Notch-mediated sister fate govern primary neuron trajectories, whereas temporal fate diversifies terminal elaborations. Further, morphological neuron types may arise repeatedly, interspersed with other types. Despite the complexity, related lineages produce similar neuron types in comparable temporal patterns. Different stem cells even yield two identical series of dopaminergic neuron types, but with unrelated sister neurons. Together, these phenomena suggest that straightforward rules drive incredible neuronal complexity, and that large changes in morphology can result from relatively simple fating mechanisms. *For correspondence: Introduction [email protected] In order to understand how the genome encodes behavior, we need to study the developmental mechanisms that build and wire complex centers in the brain. The fruit fly is an ideal model system Competing interests: The to research these mechanisms. The Drosophila field has extensive genetic tools.
    [Show full text]
  • Tor Wager Diana L
    Tor Wager Diana L. Taylor Distinguished Professor of Psychological and Brain Sciences Dartmouth College Email: [email protected] https://wagerlab.colorado.edu Last Updated: July, 2019 Executive summary ● Appointments: Faculty since 2004, starting as Assistant Professor at Columbia ​ University. Associate Professor in 2009, moved to University of Colorado, Boulder in 2010; Professor since 2014. 2019-Present: Diana L. Taylor Distinguished Professor of Psychological and Brain Sciences at Dartmouth College. ● Publications: 240 publications with >50,000 total citations (Google Scholar), 11 papers ​ cited over 1000 times. H-index = 79. Journals include Science, Nature, New England Journal of Medicine, Nature Neuroscience, Neuron, Nature Methods, PNAS, Psychological Science, PLoS Biology, Trends in Cognitive Sciences, Nature Reviews Neuroscience, Nature Reviews Neurology, Nature Medicine, Journal of Neuroscience. ● Funding: Currently principal investigator on 3 NIH R01s, and co-investigator on other ​ collaborative grants. Past funding sources include NIH, NSF, Army Research Institute, Templeton Foundation, DoD. P.I. on 4 R01s, 1 R21, 1 RC1, 1 NSF. ● Awards: Awards include NSF Graduate Fellowship, MacLean Award from American ​ Psychosomatic Society, Colorado Faculty Research Award, “Rising Star” from American Psychological Society, Cognitive Neuroscience Society Young Investigator Award, Web of Science “Highly Cited Researcher”, Fellow of American Psychological Society. Two patents on research products. ● Outreach: >300 invited talks at universities/international conferences since 2005. ​ Invited talks in Psychology, Neuroscience, Cognitive Science, Psychiatry, Neurology, Anesthesiology, Radiology, Medical Anthropology, Marketing, and others. Media outreach: Featured in New York Times, The Economist, NPR (Science Friday and Radiolab), CBS Evening News, PBS special on healing, BBC, BBC Horizons, Fox News, 60 Minutes, others.
    [Show full text]
  • Program Final (Sept 17, 2012)
    Program Final (Sept 17, 2012) Where not otherwise indicated, the chair of the session is the final speaker. Session 1 - Thurs 1:30pm - 3pm Session 1 (D) Frontier 202A Disease and Subjectivity M.K. Nixon. Keep Bleeding: Hemorrhagic Sores, Trade, and the Necessity of Leaky Boundaries in Defoe’s Journal of the Plague Year This paper considers the way in which nonhuman contagious disease is crucial in shaping human subjectivity. To this end, this essay probes notions of two boundaries that are both political and personal—the border between the national subject and the international other, and the boundary between the self and all that lies outside of it—in a consideration of Daniel Defoe’s 1722 text, A Journal of the Plague Year. Operating from the notion that the personal is indeed political, this essay asserts that these two borders are largely intertwined, particularly when considering infectious diseases. By way of examining attitudes towards national and personal boundaries, this paper focuses in large part on Defoe’s representation of the eponymous buboes of the bubonic plague, juxtaposing and exploring his depiction of suppurated and calcified bubonic sores as metonymic signifiers of both personal and national boundaries that are transgressed or fortified, respectively. Examination of Defoe’s illustration of bubonic sores shows that Defoe depicted the Great Plague of 1665 in ways that I assert were thoroughly influenced by his conceptualization of international trade—a conceptualization which resisted the nationalistic xenophobia typical of his day and instead embraced a type of individualistic mercantilism. Defoe’s views on economics and trade, then, influenced his understanding of the Great Plague and cycled back to result in a view of man and nation that advocates permeable boundaries even in response to the hugely threatening potential of a complete breakdown of self- and nation-constituting borders.
    [Show full text]
  • Critical Neuroscience
    Choudhury_bindex.indd 391 7/22/2011 4:08:46 AM Critical Neuroscience Choudhury_ffirs.indd i 7/22/2011 4:37:11 AM Choudhury_ffirs.indd ii 7/22/2011 4:37:11 AM Critical Neuroscience A Handbook of the Social and Cultural Contexts of Neuroscience Edited by Suparna Choudhury and Jan Slaby A John Wiley & Sons, Ltd., Publication Choudhury_ffirs.indd iii 7/22/2011 4:37:11 AM This edition first published 2012 © 2012 Blackwell Publishing Ltd Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell’s publishing program has been merged with Wiley’s global Scientific, Technical, and Medical business to form Wiley-Blackwell. Registered Office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 350 Main Street, Malden, MA 02148-5020, USA 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK For details of our global editorial offices, for customer services, and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell. The right of Suparna Choudhury and Jan Slaby to be identified as the authors of the editorial material in this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Philosophy of Social Science
    Philosophy of Social Science Philosophy of Social Science A New Introduction Edited by Nancy Cartwright and Eleonora Montuschi 1 1 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © The several contributors 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2014938929 ISBN 978–0–19–964509–1 (hbk.) ISBN 978–0–19–964510–7 (pbk.) Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • Data Mining in Genomics, Metagenomics and Connectomics
    Csaba Kerepesi DATA MINING IN GENOMICS, METAGENOMICS AND CONNECTOMICS PhD Thesis Supervisor: Dr. Vince Grolmusz Department of Computer Science E¨otv¨osLor´andUniversity, Hungary PhD School of Computer Science E¨otv¨osLor´andUniversity, Hungary Dr. Erzs´ebet Csuhaj-Varj´u PhD Program of Information Systems Dr. Andr´as Bencz´ur Budapest, 2017 Acknowledgements I would like to thank my supervisor Dr. Vince Grolmusz for his tireless support with which he started my scientific career. I am very grateful to the PhD School of Computer Science and the Faculty of Informatics, ELTE for their inexhaustible support. I would like to thank my co-authors for their precious work and I also would like to thank all my colleagues, who helped me anything in my re- searches. Finally, I would like to thank my family for their everlasting support. 2 Contents 1 Introduction 6 2 Data Mining in Genomics and Metagenomics 14 2.1 AmphoraNet: The Webserver Implementation of the AM- PHORA2 Metagenomic Workflow Suite . 14 2.1.1 Introduction . 14 2.1.2 Results and Discussion . 15 2.2 Visual Analysis of the Quantitative Composition of Metage- nomic Communities: the AmphoraVizu Webserver . 17 2.2.1 Introduction . 17 2.2.2 Results and Discussion . 19 2.3 Evaluating the Quantitative Capabilities of Metagenomic Analysis Software . 21 2.3.1 Introduction . 21 2.3.2 Results and discussion . 22 2.3.3 Methods . 25 2.3.4 Availability . 29 2.4 The \Giant Virus Finder" Discovers an Abundance of Giant Viruses in the Antarctic Dry Valleys . 30 2.4.1 Introduction . 30 3 2.4.2 Results and discussion .
    [Show full text]
  • Anthropology Comes Part-Way Home: Community Studies In
    Ann. Rev. Anthropol. 1977. 6:349-78 Copyright @ 1977 by Annual Reviews Inc. All rights reserved ANTHROPOLOGY COMES +9598 PART-WAY HOME: COMMUNITY STUDIES IN EUROPE John W. Cole Department of Anthropology, University of Massachusetts, Amherst, Massachusetts 01003 INTRODUCTION Robert Redfield's research in the Mexican village of Tepoztlan in the late 1920s marks the expansion of field research in social anthropology into complex societies. Certainly in the decades which fo llowed this work there was a proliferation of research among peasants, pastoralists and fishermen, Anthropologists conducted field work not only in Latin America, but in the civilizations of Asia and Africa as well. In this general expansion, a few studies were conducted in Europe in the late 1920s and 1930s, notably by Arensberg in Western Ireland (5, 6), by Chapman in Sicily (30), and by Sanders (97) in the Balkans. But the cultures of contemporary Europe held little interest fo r the profession at large.! As a number of writers have noted, little social anthropological research was carried out in Europe until the 1950s (2, pp. 2-3; 5, pp. 9- 13; 56, p. 743). This was certainly not because of a lack of familiarity with the continent. The by University of British Columbia on 12/11/10. For personal use only. study of historical sources on the ancient civilizations of the Mediterranean and on the Celtic and Germanic "tribes" of antiquity played a prominent role in the Annu. Rev. Anthropol. 1977.6:349-378. Downloaded from www.annualreviews.org fo rmation of nineteenth century anthropological ideas. As John Davis (38, pp.
    [Show full text]
  • Discover the History of Science the History of the Royal Society
    Discover the history of science The history of the Royal Society Founded in 1660, the Royal Society is the Boyle and John Wilkins, the group national academy of science in the UK, soon received royal approval, and from made up of a Fellowship of approximately 1663 it would be known as ‘The Royal 1,600 of the world’s most eminent Society of London for Improving Natural scientists. Throughout our history, we Knowledge’. have played a part in some of the most life-changing discoveries, and remain The early years of the Society saw dedicated to recognising, supporting, revolutionary advancements in the and promoting excellence in science. conduct and communication of science. Hooke’s Micrographia and the first The origins of the Royal Society lie in issue of Philosophical Transactions a group of people who began meeting were published in 1665. Philosophical in the mid-1640s to discuss the new Transactions, which established the philosophy of promoting knowledge of important concepts of scientific priority the natural world through observation and peer review, is now the oldest and experiment, which we now call continuously published science journal science. The very first ‘learned society’ in the world. meeting on 28 November 1660 followed a lecture at Gresham College To find out more, visit: by Christopher Wren. Joined by other royalsociety.org/about-us/history leading polymaths including Robert Image: Illustrations showing microscopic views of seaweed and rosemary from Micrographia,by Robert Hooke, 1665. The Royal Society’s journal of the history of science. Editor: Professor Anna Marie Roos, University of Lincoln, UK.
    [Show full text]
  • Revamping Federal Climate Science Recommendations for the Next President of the United States
    GETTY SHIPING IMAGES/LIU Revamping Federal Climate Science Recommendations for the Next President of the United States By John Podesta, Bidisha Bhattacharyya, and Bianca Majumder December 2020 WWW.AMERICANPROGRESS.ORG Contents 1 Introduction and Summary 4 Recommendations to restore scientific integrity across the government 9 Recommendations for rebuilding the federal climate science workforce 13 Recommendations to coordinate climate science in the White House and across the federal government 19 Recommendations to define interagency climate science research and data priorities 31 Recommendations for prioritizing adaptation and resilience 34 Recommendations to promote international coordination on climate science 40 Conclusion 41 About the authors 41 Acknowledgments 44 Appendix: References and further reading 46 Endnotes Introduction and summary The United States has been the global leader in climate science for decades. Unfortunately, progress has slowed—and in some cases, even moved backward— over the past four years, with the Trump administration dismantling core elements of the federal climate science apparatus. As the country and the planet head toward an increasingly unstable climate, the U.S. government needs to get back to the business of being the preeminent source of trusted applied science that supports climate change mitigation and adaptation decision-making of governments and civilian stakeholders. The science is clear: To avoid the worst impacts of climate change, the United States and the world must take aggressive action to decarbonize all sectors of the global economy, protect the Earth’s natural systems, and limit warming to 1.5 degrees Celsius above preindustrial levels. This means achieving net-zero greenhouse gas emissions globally by no later than 2050 and ensuring an equitable and just transition to a clean energy economy.
    [Show full text]
  • Polygenic Evidence and Overlapped Brain Functional Connectivities For
    Sun et al. Translational Psychiatry (2020) 10:252 https://doi.org/10.1038/s41398-020-00941-z Translational Psychiatry ARTICLE Open Access Polygenic evidence and overlapped brain functional connectivities for the association between chronic pain and sleep disturbance Jie Sun 1,2,3,WeiYan2,Xing-NanZhang2, Xiao Lin2,HuiLi2,Yi-MiaoGong2,Xi-MeiZhu2, Yong-Bo Zheng2, Xiang-Yang Guo3,Yun-DongMa2,Zeng-YiLiu2,LinLiu2,Jia-HongGao4, Michael V. Vitiello 5, Su-Hua Chang 2,6, Xiao-Guang Liu 1,7 and Lin Lu2,6 Abstract Chronic pain and sleep disturbance are highly comorbid disorders, which leads to barriers to treatment and significant healthcare costs. Understanding the underlying genetic and neural mechanisms of the interplay between sleep disturbance and chronic pain is likely to lead to better treatment. In this study, we combined 1206 participants with phenotype data, resting-state functional magnetic resonance imaging (rfMRI) data and genotype data from the Human Connectome Project and two large sample size genome-wide association studies (GWASs) summary data from published studies to identify the genetic and neural bases for the association between pain and sleep disturbance. Pittsburgh sleep quality index (PSQI) score was used for sleep disturbance, pain intensity was measured by Pain Intensity Survey. The result showed chronic pain was significantly correlated with sleep disturbance (r = 0.171, p-value < 0.001). Their genetic correlation was rg = 0.598 using linkage disequilibrium (LD) score regression analysis. Polygenic score (PGS) association analysis showed PGS of chronic pain was significantly associated with sleep and vice versa. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Nine shared functional connectivity (FCs) were identified involving prefrontal cortex, temporal cortex, precentral/ postcentral cortex, anterior cingulate cortex, fusiform gyrus and hippocampus.
    [Show full text]