Testing Alternative Theories of Quantum Mechanics with Optomechanics, and Effective Modes for Gaussian Linear Optomechanics

Total Page:16

File Type:pdf, Size:1020Kb

Testing Alternative Theories of Quantum Mechanics with Optomechanics, and Effective Modes for Gaussian Linear Optomechanics Testing alternative theories of Quantum Mechanics with Optomechanics, and effective modes for Gaussian linear Optomechanics Thesis by Bassam Helou In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2019 Defended 12/11/2018 ii © 2019 Bassam Helou ORCID: 0000-0003-2760-7622 All rights reserved iii ACKNOWLEDGEMENTS My time at Caltech wasn’t just an academic journey. I would like to first thank the people who made a lasting impact on my self. Haixing Miao was a great mentor, and his outlook on life continues to inspire me. William H. Hurt welcomed me to his family, re-ignited a love of reading, and shared his worldview with me. Robert Wills cultivated a love of the outdoors. Karthik Seetharam cultivated a love of working out. Zhewei Chen cultivated a love of climbing and other outdoor adventures. Locatelli Rao gave me some tools and understanding of physical therapy. Lee Coleman introduced me to mindfulness meditation. I am also thankful for friends who have me kept me sane over the years: Anandh Swaminathan, Stephan Zheng, Rose Yu, Li Zhiquin, Tejas Deshpande, Zachary Mark, Linhan Shen, Eric Wolff, Min-feng Tu, Nicole Yunger-Halpern, Pavan Bilgi, Evan Miyazano, Ivan Papusha, Jenia Mozgunov, Howard Hui, Daniel Naftalovich, Stephen Perry, Krzysztof Chalupka, Xiaoyu Shi, Becky Schwantes, Jacklyn Phu, Corwin Shiu, Tung Wongwaitayakornkul, Mark Harfouche, Rebecca Herrera, Luis Goncalves, Vipul Singhal, Tobias Bischoff, Chris Rollins, Julius Su, Reed Scharff, Elena Murchikova and Tal Einav. I’d also like to thank the Alpine club for organizing many amazing trips. I’d also like to thank ’the drunkest table’ for staying in touch and organizing many events. Specifically, I’d like to thank Tony Liao, Utkarth Gaur, Mike Wang, Andrew Ng, Velora Chan, the two Jon Ngs, Jimmy Lu, Hecheng Wang, Roshny Francis, Adrienne Wang and Patricia Ko. I am thankful for many stimulating discussions with other researchers that made me feel like I was part of a community. I would like to thank Maaneli Derakhshani, Antoine Tilloy, Huan Yang, Yiqiu Ma, P. C. E. Stamp, Dan Carney, Belinda Pang and Xiang Li. I’d like to thank my family for their unwavering support: Hikmat Helou, Mohamad Helou, Akram Helou, Randa Helou, Rym Helou, Randa Kabbara, Malek Kabbara, Khaled Helou, my grandfather Akram Helou and Houda Helou. I’d like to also thank extended family for their support: Amer Mikkewi, Mo Mikkewi, Kareem Mikkewi, Jihad Mikkewi, Vivian Cunanan, Wilfredo Cunanan, Bernadette Glen, Douglas Murray, Alex Murray, Molly Purnell, Kelley Purnell and Mark Purnell. I’d like to thank the ISP office, JoAnn Boyd, Jennifer Blankenship, Alfrida King and Christy Jenstad for their kindness and amazing administrative support. I’d like to thank CTLO and the Caltech library staff for being supportive of my ideas. iv I’d also like to thank Kerry Vahala for allowing me to experiment with TA ideas. Finally, I’d like to thank Yanbei Chen for his patience, support and the freedom he gave me. His boundless creativity and curiosity is inspirational. I am a much better researcher and problem solver because of him! v ABSTRACT Optomechanics has made great strides in theory and experiments over the past decade, which culminated in the first direct detection of gravitational waves in 2015 by LIGO. This thesis explores how optomechanics can be used to test fundamental physics other than the theory of general relativity. Our emphasis will be on falsifiable theories (ultimately, only experiments can decide whether a theory is correct) that address two outstanding issues in quantum mechanics: the measurement problem, and reconciling quantum mechanics with the theory of general relativity. In partic- ular, we show that the space experiment LISA pathfinder places aggressive bounds on two objective collapse models, which are non-linear stochastic modifications of the Schroedinger equation that can resolve the measurement problem. Moreover, we show that state-of-the-art torsion pendulum experiments can test the Schroedinger- Newton theory, which is the non-relativistic limit of a non-linear theory combining quantum mechanics with a fundamentally classical spacetime. Along the way, we propose how to resolve two major difficulties with determining the predictions of non-linear quantum mechanics in an actual experiment. First, we cannot use the density matrix formalism in non-linear quantum mechanics and so we have to suggest and justify a particular ensemble for the thermal bath. Separating out quantum and classical fluctuations helped us propose a reasonable ensemble. Second, most researchers believe that deterministic non-linear quantum mechanics must violate the no-signaling condition. We show this isn’t necessarily the case because different interpretations of quantum mechanics make different predictions in non-linear quantum mechanics. We propose an interpretation, the causal-conditional prescription, that doesn’t violate causality by noticing that once we fix an initial state, the evolution of a system under many non-linear theories is equivalent to evolution under a linear Hamiltonian with feedback. The mapping allows us to leverage the tools of quantum control, and it tells us that if the non-linear parameters of a non- linear Hamiltonian respond causally (i.e. with an appropriate delay) to measurement results, then the theory can be made causal. We also contribute to the theory of quantum optomechanics. We introduce two new bases that one can view environment modes with. In linear optomechanics a system interacts with an infinite number of bath modes. We show that the interaction can be reduced to one with finite degrees of freedom. Moreover, at any particular time, the system is correlated with only a finite number of bath modes. We show that if we make the assumption that we can measure any commuting environment modes, then this basis allows us to understand the one-shot quantum Cramer-Rao bound in a simple way, and allows us to sweep large parameter regimes and so find promising optomechanics topologies for quantum state preparation tasks that we can then analyze without the assumption of being able to measure any observable of the environment. We also use this basis to show that when we are interested in the conditional dynamics of a test mass, we can only adiabatically eliminate vi a lossy cavity when we measure the optomechanical system at a slow enough rate. Finally, we develop an analytic filter for obtaining the state of a generic optomechanical system that interacts linearly with its environment and is driven by Gaussian states, and where the outgoing light is measured with a non-linear photon-counting measurement. We hope that our work will help researchers explore optomechanics topologies that make use of photon counters. vii PUBLISHED CONTENT AND CONTRIBUTIONS B. Helou, J. Luo, H. Yeh, C. Shao, B. J. J. Slagmolen, D. E. McClelland, and Y. Chen (2017). “Measurable signatures of quantum mechanics in a classical spacetime”. In: PRD 96, 044008. doi: 10.1103/PhysRevD.96.044008. BH participated in the conception of the project, co-wrote the manuscript, co-carried the calculations, carried out the simulations and co-analyzed the results. B. Helou, B J. J. Slagmolen, D. E. McClelland, and Y. Chen (2017). “LISA pathfinder appreciably constrains collapse models”. In: PRD 95, 084054. doi: 10.1103/Phys- RevD.95.084054. BH participated in the conception of the project, co-wrote the manuscript, co-carried the calculations, carried out the simulations and co-analyzed the results. B. Helou, and Y. Chen (2017). “Different interpretations of quantum mechanics make different predictions in non-linear quantum mechanics, and some do not violate the no-signaling condition”. In: arXiv:1709.06639. BH conceived of the project, co-developed the results, and wrote the manuscript viii TABLE OF CONTENTS Acknowledgements............................... iii Abstract..................................... v Published Content and Contributions...................... vii Table of Contents................................viii List of Illustrations ............................... xi List of Tables . xviii Chapter I: Introduction ............................. 1 1.1 Overview................................ 1 1.2 Introduction to collapse models.................... 3 1.3 Alternatives to quantum gravity.................... 5 1.4 Overview of contributions to the theory of optomechanics . 11 Bibliography................................. 17 Chapter II: LISA pathfinder appreciably constrains collapse models . 21 2.1 Introduction .............................. 21 2.2 Constraining the collapse models ................... 23 2.3 Discussion............................... 24 2.4 Acknowledgments........................... 25 Bibliography................................. 27 Chapter III: Measurable signatures of quantum mechanics in a classical space- time ..................................... 29 3.1 Introduction .............................. 29 3.2 Free dynamics of an optomechanical setup under the Schroedinger- Newton theory............................. 31 3.3 Nonlinear quantum optomechanics with classical noise . 39 3.4 Measurements in nonlinear quantum optomechanics......... 50 3.5 Signatures of classical gravity..................... 54 3.6 Feasibility analysis........................... 60 3.7 Conclusions.............................. 69 3.8 Appendix: Conservation of energy in the SN theory......... 72 3.9 Appendix: Derivation of p0 ! ξ and p0 ξ . 74 ˆ¹ º 3.10 Appendix:
Recommended publications
  • Quantum Chance Nicolas Gisin
    Quantum Chance Nicolas Gisin Quantum Chance Nonlocality, Teleportation and Other Quantum Marvels Nicolas Gisin Department of Physics University of Geneva Geneva Switzerland ISBN 978-3-319-05472-8 ISBN 978-3-319-05473-5 (eBook) DOI 10.1007/978-3-319-05473-5 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014944813 Translated by Stephen Lyle L’impensable Hasard. Non-localité, téléportation et autres merveilles quantiques Original French edition published by © ODILE JACOB, Paris, 2012 © Springer International Publishing Switzerland 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, MERCED Open System Dynamics In
    UNIVERSITY OF CALIFORNIA, MERCED Open system dynamics in quantum optomechanics A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics by Dan Hu Committee in charge: Professor Jay E. Sharping, Chair Professor Harish S. Bhat Professor Kevin A. Mitchell Professor Lin Tian, Dissertation Advisor 2014 Copyright Dan Hu, 2014 All rights reserved The dissertation of Dan Hu, titled Open system dynamics in quantum optomechanics, is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair Date Professor Jay E. Sharping Date Professor Harish S. Bhat Date Professor Kevin A. Mitchell Date Professor Lin Tian University of California, Merced 2014 iii This dissertation is dedicated to my family. iv Contents Abstract vii List of Figures ix List of Tables xi 1 Introduction 1 1.1 Cavity Optomechanics . 2 1.2 Optomechanical Phenomena . 4 1.3 Nonlinear Quantum Optomechanical System . 14 2 Linearized Optomechanical Interaction 16 2.1 Blue-detuned Optomechanics . 17 2.2 Optomechanical System With Periodic Driving . 31 3 Nonlinear Optomechanical Effects with Perturbation 42 3.1 Introduction . 43 3.2 Optomechanical System . 44 3.3 Perturbation in the Heisenberg Picture . 45 3.4 Applications of the Perturbation Solutions . 47 3.5 Conclusions . 54 4 Strongly Coupled Optomechanical System 55 4.1 Introduction . 56 4.2 Dressed-state Master Equation . 57 4.3 Analytical Solutions . 61 4.4 Numerical Results . 62 4.5 Conclusions . 70 5 Conclusions and Future Work 71 Appendix A Blue-detuned optomechanical system 73 v A.1 Covariance Matrix under RWA . 73 A.2 Optomechanical Entanglement between Cavity Output Mode and Me- chanical Mode .
    [Show full text]
  • Higher-Order Interactions in Quantum Optomechanics: Revisiting Theoretical Foundations
    Higher-order interactions in quantum optomechanics: Revisiting theoretical foundations Sina Khorasani 1,2 1 School of Electrical Engineering, Sharif University of Technology, Tehran, Iran; [email protected] 2 École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland; [email protected] Abstract: The theory of quantum optomechanics is reconstructed from first principles by finding a Lagrangian from light’s equation of motion and then proceeding to the Hamiltonian. The nonlinear terms, including the quadratic and higher-order interactions, do not vanish under any possible choice of canonical parameters, and lead to coupling of momentum and field. The existence of quadratic mechanical parametric interaction is then demonstrated rigorously, which has been so far assumed phenomenologically in previous studies. Corrections to the quadratic terms are particularly significant when the mechanical frequency is of the same order or larger than the electromagnetic frequency. Further discussions on the squeezing as well as relativistic corrections are presented. Keywords: Optomechanics, Quantum Physics, Nonlinear Interactions 1. Introduction The general field of quantum optomechanics is based on the standard optomechanical Hamiltonian, which is expressed as the simple product of photon number 푛̂ and the position 푥̂ operators, having the form ℍOM = ℏ푔0푛̂푥̂ [1-4] with 푔0 being the single-photon coupling rate. This is mostly referred to a classical paper by Law [5], where the non-relativistic Hamiltonian is obtained through Lagrangian dynamics of the system. This basic interaction is behind numerous exciting theoretical and experimental studies, which demonstrate a wide range of applications. The optomechanical interaction ℍOM is inherently nonlinear by its nature, which is quite analogous to the third-order Kerr optical effect in nonlinear optics [6,7].
    [Show full text]
  • Mathematical Languages Shape Our Understanding of Time in Physics Physics Is Formulated in Terms of Timeless, Axiomatic Mathematics
    comment Corrected: Publisher Correction Mathematical languages shape our understanding of time in physics Physics is formulated in terms of timeless, axiomatic mathematics. A formulation on the basis of intuitionist mathematics, built on time-evolving processes, would ofer a perspective that is closer to our experience of physical reality. Nicolas Gisin n 1922 Albert Einstein, the physicist, met in Paris Henri Bergson, the philosopher. IThe two giants debated publicly about time and Einstein concluded with his famous statement: “There is no such thing as the time of the philosopher”. Around the same time, and equally dramatically, mathematicians were debating how to describe the continuum (Fig. 1). The famous German mathematician David Hilbert was promoting formalized mathematics, in which every real number with its infinite series of digits is a completed individual object. On the other side the Dutch mathematician, Luitzen Egbertus Jan Brouwer, was defending the view that each point on the line should be represented as a never-ending process that develops in time, a view known as intuitionistic mathematics (Box 1). Although Brouwer was backed-up by a few well-known figures, like Hermann Weyl 1 and Kurt Gödel2, Hilbert and his supporters clearly won that second debate. Hence, time was expulsed from mathematics and mathematical objects Fig. 1 | Debating mathematicians. David Hilbert (left), supporter of axiomatic mathematics. L. E. J. came to be seen as existing in some Brouwer (right), proposer of intuitionist mathematics. Credit: Left: INTERFOTO / Alamy Stock Photo; idealized Platonistic world. right: reprinted with permission from ref. 18, Springer These two debates had a huge impact on physics.
    [Show full text]
  • Cavity Optomechanics and Optical Frequency Comb Generation with Silica Whispering-Gallery-Mode Microresonators
    Cavity Optomechanics and Optical Frequency Comb Generation with Silica Whispering-Gallery-Mode Microresonators Albert Schließer Dissertation an der Fakult¨at f¨ur Physik der Ludwig–Maximilians–Universit¨at M¨unchen vorgelegt von Albert Schließer aus M¨unchen Erstgutachter: Prof. Dr. Theodor W. H¨ansch Zweitgutachter: Prof. Dr. J¨org P. Kotthaus Tag der m¨undlichen Pr¨ufung: 21. Oktober 2009 Meinen Eltern gewidmet. ii Danke An dieser Stelle m¨ochte ich mich bei allen bedanken, deren Unterst¨utzung maßgeblich f¨ur das Gelingen dieser Arbeit war. Prof. Theodor H¨ansch danke ich f¨urdie Betreuung der Arbeit und die Aufnahme in seiner Gruppe zu Beginn meiner Promotion. Seine Neugier und Originalit¨at, die die Atmosph¨are in der gesamten Abteilung pr¨agen, sind eine Quelle der Motivation und Inspiration. In dieser Abteilung war auch die Independent Junior Research Group “Laboratory of Photonics” von Prof. Tobias Kippenberg eingebettet. Als erster Doktorand in dieser Gruppe danke ich Tobias f¨ur die Gelegenheit, an der Mikroresonator-Forschung am MPQ von Anfang an mitzuwirken. Ich bin ihm auch zu Dank verpflichtet f¨urdie tollen Rahmenbedingungen, die er mit beispiellosem Elan und Organisationstalent innerhalb k¨urzester Zeit schuf — und die mit Independent wohl wesentlich treffender beschrieben sind denn mit Junior.Ausdenungez¨ahlteDiskussionenphysikalischerFragestel- lungen und Ideen aller Art, und seiner sportliche Herangehensweise an die Herausforderungen des Forschungsalltags habe ich einiges gelernt. Ich m¨ochte auch Prof. J¨org Kotthaus danken, f¨urdie M¨oglichkeit der Probenherstellung im Reinraum seiner Gruppe, und sein Interesse am Fort- gang dieser Arbeit. Ich freue mich, dass er sich schließlich auch dazu bereit erkl¨art hat, das Zweitgutachten zu ¨ubernehmen.
    [Show full text]
  • Cavity Optomechanics in the Quantum Regime by Thierry Claude Marc Botter
    Cavity Optomechanics in the Quantum Regime by Thierry Claude Marc Botter A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Dan M. Stamper-Kurn, Chair Professor Holger M¨uller Professor Ming Wu Spring 2013 Cavity Optomechanics in the Quantum Regime Copyright 2013 by Thierry Claude Marc Botter 1 Abstract Cavity Optomechanics in the Quantum Regime by Thierry Claude Marc Botter Doctor of Philosophy in Physics University of California, Berkeley Professor Dan M. Stamper-Kurn, Chair An exciting scientific goal, common to many fields of research, is the development of ever-larger physical systems operating in the quantum regime. Relevant to this dissertation is the objective of preparing and observing a mechanical object in its motional quantum ground state. In order to sense the object's zero-point motion, the probe itself must have quantum-limited sensitivity. Cavity optomechanics, the inter- actions between light and a mechanical object inside an optical cavity, provides an elegant means to achieve the quantum regime. In this dissertation, I provide context to the successful cavity-based optical detection of the quantum-ground-state motion of atoms-based mechanical elements; mechanical elements, consisting of the collec- tive center-of-mass (CM) motion of ultracold atomic ensembles and prepared inside a high-finesse Fabry-P´erotcavity, were dispersively probed with an average intracavity photon number as small as 0.1. I first show that cavity optomechanics emerges from the theory of cavity quantum electrodynamics when one takes into account the CM motion of one or many atoms within the cavity, and provide a simple theoretical framework to model optomechanical interactions.
    [Show full text]
  • High-Frequency Cavity Optomechanics Using Bulk Acoustic Phonons
    SCIENCE ADVANCES | RESEARCH ARTICLE APPLIED PHYSICS Copyright © 2019 The Authors, some High-frequency cavity optomechanics using bulk rights reserved; exclusive licensee acoustic phonons American Association for the Advancement 1 2 1 1 1 of Science. No claim to Prashanta Kharel *, Glen I. Harris , Eric A. Kittlaus , William H. Renninger , Nils T. Otterstrom , original U.S. Government 2 1 Jack G. E. Harris , Peter T. Rakich * Works. Distributed under a Creative To date, microscale and nanoscale optomechanical systems have enabled many proof-of-principle quantum Commons Attribution operations through access to high-frequency (gigahertz) phonon modes that are readily cooled to their thermal NonCommercial ground state. However, minuscule amounts of absorbed light produce excessive heating that can jeopardize License 4.0 (CC BY-NC). robust ground-state operation within these microstructures. In contrast, we demonstrate an alternative strategy for accessing high-frequency (13 GHz) phonons within macroscopic systems (centimeter scale) using phase- matched Brillouin interactions between two distinct optical cavity modes. Counterintuitively, we show that these macroscopic systems, with motional masses that are 1 million to 100 million times larger than those of microscale counterparts, offer a complementary path toward robust ground-state operation. We perform both optomechan- ically induced amplification/transparency measurements and demonstrate parametric instability of bulk phonon modes. This is an important step toward using these beam splitter and two-mode squeezing interactions within Downloaded from bulk acoustic systems for applications ranging from quantum memories and microwave-to-optical conversion to high-power laser oscillators. INTRODUCTION as the basis for phonon counting (17, 26), generation of nonclassical The coherent control of mechanical objects (1–4) can enable applica- mechanical states (18), and efficient transduction of information be- tions ranging from sensitive metrology (5) to quantum information tween optical and phononic domains (27).
    [Show full text]
  • Cavity Optomechanics: a Playground for Quantum Physics
    Cavity optomechanics: a playground for quantum physics David Vitali School of Science and Technology, Physics Division, University of Camerino, Italy, THE GROUP: COLLABORATION with M. Asjad, M. Abdi, M. Bawaj, Sh. Barzanjeh, C. Biancofiore, G.J. Milburn, G. Di Giuseppe, M.S. Kim, M. Karuza, G.S. Agarwal R. Natali, P. Tombesi 1 Cavity Optomechanics, Innsbruck, Nov 04 2013 Outline of the talk 1. Introduction to cavity optomechanics: the membrane- in-the-middle (MIM) setup as paradigmatic example 2. Proposal for generating nonclassical mechanical states in a quadratic MIM setup 3. Controlling the output light with cavity optomechanics: i) optomechanically induced transparency (OMIT); ii) ponderomotive squeezing 4. Proposal for a quantum optomechanical interface between microwave and optical signals 2 INTRODUCTION Micro- and nano-(opto)-electro-mechanical devices, i.e., MEMS, MOEMS and NEMS are extensively used for various technological applications : • high-sensitive sensors (accelerometers, atomic force microscopes, mass sensors….) • actuators (in printers, electronic devices…) • These devices operate in the classical regime for both the electromagnetic field and the motional degree of freedom However very recently cavity optomechanics has emerged as a new field with two elements of originality: 1. the opportunities offered by entering the quantum regime for these devices 2. The crucial role played by an optical (electromagnetic) cavity 3 Why entering the quantum regime for opto- and electro-mechanical systems ? 1. quantum-limited sensing, i.e., working at the sensitivity limits imposed by Heisenberg uncertainty principle VIRGO (Pisa) Nano-scale: Single-spin MRFM Macro-scale: gravitational wave D. Rugar group, IBM Almaden interferometers (VIRGO, LIGO) Detection of extremely weak forces and tiny displacements 4 2.
    [Show full text]
  • A Quantum Heat Machine from Fast Optomechanics
    A Quantum Heat Machine from Fast Optomechanics James S. Bennetta,1, Lars S. Madsena, Halina Rubinsztein-Dunlopa, and Warwick P. Bowena aAustralian Research Council Centre of Excellence for Engineered Quantum Systems (EQuS), School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia This manuscript was compiled on June 8, 2020 We consider a thermodynamic machine in which the working fluid is refrigerator, and heat pump modes of operation. The working a quantized harmonic oscillator that is controlled on timescales that fluid (oscillator) can be quantum squeezed during portions of are much faster than the oscillator period. We find that operation the thermal cycle. The oscillator can also be transiently cooled in this ‘fast’ regime allows access to a range of quantum thermody- to below the cold bath temperature, unlike standard techniques namical behaviors that are otherwise inaccessible, including heat en- for cooling an oscillator (19, 20). Interestingly, these behaviors gine and refrigeration modes of operation, quantum squeezing, and all hinge on the sub-mechanical-period (‘fast’) dynamics of vis- transient cooling to temperatures below that of the cold bath. The cous damping. While applicable to oscillator-based quantum machine involves rapid periodic squeezing operations and could po- machines quite generally, our machine might—for example—be tentially be constructed using pulsed optomechanical interactions. experimentally implemented using a quantum electromechani- The prediction of rich behavior in the fast regime opens up new pos- cal oscillator coupled to a pulsed electromagnetic field. Within sibilities for quantum optomechanical machines and quantum ther- this context, we provide one possible protocol to implement modynamics.
    [Show full text]
  • Table of Contents
    Table of Contents Schedule-at-a-Glance . 2 FiO + LS Chairs’ Welcome Letters . 3 General Information . 5 Conference Materials Access to Technical Digest Papers . 7 FiO + LS Conference App . 7 Plenary Session/Visionary Speakers . 8 Science & Industry Showcase Theater Programming . 12 Networking Area Programming . 12 Participating Companies . 14 OSA Member Zone . 15 Special Events . 16 Awards, Honors and Special Recognitions FiO + LS Awards Ceremony & Reception . 19 OSA Awards and Honors . 19 2019 APS/Division of Laser Science Awards and Honors . 21 2019 OSA Foundation Fellowship, Scholarships and Special Recognitions . 21 2019 OSA Awards and Medals . 22 OSA Foundation FiO Grants, Prizes and Scholarships . 23 OSA Senior Members . 24 FiO + LS Committees . 27 Explanation of Session Codes . 28 FiO + LS Agenda of Sessions . 29 FiO + LS Abstracts . 34 Key to Authors and Presiders . 94 Program updates and changes may be found on the Conference Program Update Sheet distributed in the attendee registration bags, and check the Conference App for regular updates . OSA and APS/DLS thank the following sponsors for their generous support of this meeting: FiO + LS 2019 • 15–19 September 2019 1 Conference Schedule-at-a-Glance Note: Dates and times are subject to change. Check the conference app for regular updates. All times reflect EDT. Sunday Monday Tuesday Wednesday Thursday 15 September 16 September 17 September 18 September 19 September GENERAL Registration 07:00–17:00 07:00–17:00 07:30–18:00 07:30–17:30 07:30–11:00 Coffee Breaks 10:00–10:30 10:00–10:30 10:00–10:30 10:00–10:30 10:00–10:30 15:30–16:00 15:30–16:00 13:30–14:00 13:30–14:00 PROGRAMMING Technical Sessions 08:00–18:00 08:00–18:00 08:00–10:00 08:00–10:00 08:00–12:30 15:30–17:00 15:30–18:30 Visionary Speakers 09:15–10:00 09:15–10:00 09:15–10:00 09:15–10:00 LS Symposium on Undergraduate 12:00–18:00 Research Postdeadline Paper Sessions 17:15–18:15 SCIENCE & INDUSTRY SHOWCASE Science & Industry Showcase 10:00–15:30 10:00–15:30 See page 12 for complete schedule of programs .
    [Show full text]
  • Quantum Entanglement and Networking with Spin-Optomechanics
    University College London Doctoral Thesis Quantum Entanglement and Networking with Spin-Optomechanics Author: Supervisor: Victor Montenegro-Tobar Prof. Sougato Bose A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Atomic, Molecular, Optical and Positron Physics Group Department of Physics and Astronomy September 2015 Declaration of Authorship I, Victor Montenegro-Tobar, declare that this thesis titled, 'Quantum Entan- glement and Networking with Spin-Optomechanics' and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: i List of Publications • Victor Montenegro, Alessandro Ferraro, and Sougato Bose, \Nonlinearity- induced entanglement stability in a qubit-oscillator system", Physical Review A 90, 013829 (2014). • Victor Montenegro, Alessandro Ferraro, and Sougato Bose, \Entanglement distillation in optomechanics via unsharp measurements", arXiv:1503.04462 (2015). • Victor Montenegro and Sougato Bose, \Mechanical Qubit-Light Entanglers in Nonlinear Optomechanics", in preparation.
    [Show full text]
  • 1 Quantum Optomechanics
    1 Quantum optomechanics Florian Marquardt University of Erlangen-Nuremberg, Institute of Theoretical Physics, Staudtstr. 7, 91058 Erlangen, Germany; and Max Planck Institute for the Science of Light, Günther- Scharowsky-Straÿe 1/Bau 24, 91058 Erlangen, Germany 1.1 Introduction These lectures are a basic introduction to what is now known as (cavity) optome- chanics, a eld at the intersection of nanophysics and quantum optics which has de- veloped over the past few years. This eld deals with the interaction between light and micro- or nanomechanical motion. A typical setup may involve a laser-driven optical cavity with a vibrating end-mirror, but many dierent setups exist by now, even in superconducting microwave circuits (see Konrad Lehnert's lectures) and cold atom experiments. The eld has developed rapidly during the past few years, starting with demonstrations of laser-cooling and sensitive displacement detection. For short reviews with many relevant references, see (Kippenberg and Vahala, 2008; Marquardt and Girvin, 2009; Favero and Karrai, 2009; Genes, Mari, Vitali and Tombesi, 2009). In the present lecture notes, I have only picked a few illustrative references, but the dis- cussion is hopefully more didactic and also covers some very recent material not found in those reviews. I will emphasize the quantum aspects of optomechanical systems, which are now becoming important. Related lectures are those by Konrad Lehnert (specic implementation in superconducting circuits, direct classical calculation) and Aashish Clerk (quantum limits to measurement), as well as Jack Harris. Right now (2011), the rst experiments have reported laser-cooling down to near the quantum ground state of a nanomechanical resonator.
    [Show full text]