Cavity Optomechanics and Optical Frequency Comb Generation with Silica Whispering-Gallery-Mode Microresonators

Total Page:16

File Type:pdf, Size:1020Kb

Cavity Optomechanics and Optical Frequency Comb Generation with Silica Whispering-Gallery-Mode Microresonators Cavity Optomechanics and Optical Frequency Comb Generation with Silica Whispering-Gallery-Mode Microresonators Albert Schließer Dissertation an der Fakult¨at f¨ur Physik der Ludwig–Maximilians–Universit¨at M¨unchen vorgelegt von Albert Schließer aus M¨unchen Erstgutachter: Prof. Dr. Theodor W. H¨ansch Zweitgutachter: Prof. Dr. J¨org P. Kotthaus Tag der m¨undlichen Pr¨ufung: 21. Oktober 2009 Meinen Eltern gewidmet. ii Danke An dieser Stelle m¨ochte ich mich bei allen bedanken, deren Unterst¨utzung maßgeblich f¨ur das Gelingen dieser Arbeit war. Prof. Theodor H¨ansch danke ich f¨urdie Betreuung der Arbeit und die Aufnahme in seiner Gruppe zu Beginn meiner Promotion. Seine Neugier und Originalit¨at, die die Atmosph¨are in der gesamten Abteilung pr¨agen, sind eine Quelle der Motivation und Inspiration. In dieser Abteilung war auch die Independent Junior Research Group “Laboratory of Photonics” von Prof. Tobias Kippenberg eingebettet. Als erster Doktorand in dieser Gruppe danke ich Tobias f¨ur die Gelegenheit, an der Mikroresonator-Forschung am MPQ von Anfang an mitzuwirken. Ich bin ihm auch zu Dank verpflichtet f¨urdie tollen Rahmenbedingungen, die er mit beispiellosem Elan und Organisationstalent innerhalb k¨urzester Zeit schuf — und die mit Independent wohl wesentlich treffender beschrieben sind denn mit Junior.Ausdenungez¨ahlteDiskussionenphysikalischerFragestel- lungen und Ideen aller Art, und seiner sportliche Herangehensweise an die Herausforderungen des Forschungsalltags habe ich einiges gelernt. Ich m¨ochte auch Prof. J¨org Kotthaus danken, f¨urdie M¨oglichkeit der Probenherstellung im Reinraum seiner Gruppe, und sein Interesse am Fort- gang dieser Arbeit. Ich freue mich, dass er sich schließlich auch dazu bereit erkl¨art hat, das Zweitgutachten zu ¨ubernehmen. Anfang 2006 bestand das “Laboratory of Photonics” noch aus zwei leeren Laborr¨aumen. Ich hatte das Gl¨uck, zu dieser Zeit im Frequenzkammla- bor der H¨ansch-Gruppe mitarbeiten zu k¨onnen. Die Zusammenarbeit mit Christoph Gohle und Thomas Udem hat mein Wissen in Sachen Fre- quenzmetrologie und Laserspektroskopie definitiv erweitert und viel Spaß gemacht—im Labor genauso wie in der U-Bahn und im Biergarten (wo es nat¨urlich nicht immer um Physik geht). Und weiter: Ohne die zahlreichen Leihgaben aus dem Frequenzkammla- bor h¨atte das “Laboratory of Photonics” wohl einen schwierigeren Start gehabt am MPQ. Zusammen mit dem tatkr¨aftigen Engagement derMaster- Studenten Aur´elien Kuhn und Rui Ma beim Einkauf und Aufbau der experimentellen Apparaturen konnten wir so schon nach wenigen Monaten die ersten Experimente mit Mikroresonatoren beginnen, und noch im selben Jahr die ersten Ergebnisse ver¨offentlichen. Pascal del’Haye,derindieserZeitzuunsstieß,bewiesdabeiein¨außerst geschicktes H¨andchen beim Herstellen immer besserer Proben. Es hat mich gefreut, dass er, und auch Georg Anetsberger sich nach ihrer Diplomar- beit dazu entschieden haben, bei uns weiterzumachen. Georg war mir nicht nur ein sehr angenehmer B¨urokollege, er leistete auch Schl¨u s s e l b e i t r ¨a g e z u m Verst¨andnis der mechanischen G¨uten. Vielleicht folgt Johannes Hofer,mit dem ich jetzt an den kristallinen Resonatoren arbeite, ja ihrem Beispiel. Mit meinen Mitstreitern Olivier Arcizet und R´emi Rivi`ere habe ich gelernt, was es bedeutet, ein schwieriges Experiment durchzuf¨uhren. Ohne R´emis effiziente Laborarbeit und seinen durch R¨uckschl¨ageallerArtunbeein- druckten Einsatz w¨aren die kryogenen Experimente nicht gelungen. Olivier ist nicht nur ein begabter Experimentalist, sondern brachteausParisauch derart umfangreiches physikalisches Wissen mit, dass die Diskussionen mit ihm immer eine Bereicherung waren. Am Forschungscampus Garching und ganz besonders am MPQ ist eine erstklassige Infrastruktur und eine F¨ulle von Expertenwissen konzentriert, wovon ich vielf¨altig profitieren konnte. Auf der wissenschaftlichen Seite m¨ochte ich mich besonders bei Wilhelm Zwerger, Ignacio Wilson-Rae, Janis Alnis, Thomas Becker und Ronald Holzwarth bedanken. Auf der technischen Seite leisteten unser Elektroniker Helmut Br¨uckner und die Techniker Charly Linner und Wolfgang Simon unsch¨atzbare Hilfe beim Aufbau eines jeden neuen Experiments. Wolfgangs F¨ahigkeiten, die ex- otischsten Probleme in einer eingeschobenen halben Stunde zu l¨osen, grenzen zuweilen an Zauberkunst. Achim Marx sei f¨ur den Zugang zu dem erstk- lassigen Elektronenmikroskop am Walther-Meißner Institutgedankt. Fritz Keilmann danke ich nicht nur f¨urwertvollen Rat und Unterst¨utzung, son- dern auch die Einladung zu den sch¨onen Ausfl¨ugen in die Alpen. Christina Becker, Ingrid Herrmann und Gabi Geschwendtner sei f¨ur ihre Un- terst¨utzung in administrativen Angelegenheiten gedankt.Esisttraurig,dass ich Rosemarie Lechner f¨ur ihre besonders tatkr¨aftige Hilfe nicht mehr pers¨onlich danken kann. Wissenschaftliches Arbeiten erfordert Ausdauer, und oft die F¨ahigkeit, ein Problem aus verschiedenen Richtungen anzugehen. Ohne die anregende Gesellschaft und den Humor meiner Kolleg(inn)en Xiaoqing, Thomas, Max, Katha, Jens, Christoph, Birgitta, Andreas und Ali w¨are das sicher betr¨achtlich schwieriger gewesen. Auf keinen Fall h¨atte ich auch den Ausgleich durch die stets am¨usanten freit¨aglichen Zusammenk¨unfte mit Christian, Matthias, Martin, µ und Simon missen wollen. Von meinen Freunden und meiner Familie habe ich sehr viel Unterst¨utzung erfahren, wann immer es darauf ankam. Daf¨ur bin ich sehr dankbar. iv Zusammenfassung In dieser Arbeit werden nichtlineare optische Effekte in den Fl¨ustergallerie- moden von Glas-Mikroresonatoren untersucht. Insbesonderewerdenopto- mechanische Effekte, und die Erzeugung von Frequenzk¨ammen studiert. Das in einem Resonator gespeicherte optische Feld koppeltuber ¨ seinen Strahlungsdruck an die mechanischen Freiheitsgrade der Resonatorw¨ande. Im Rahmen dieser Arbeit wurden optische Mikroresonatoren entwickelt, in denen das in Fl¨ustergalleriemoden gespeicherte Licht einestarkeoptomecha- nische Kopplung an mechanische Moden mit besonders geringerDissipation und hoher Oszillationsfrequenz (30–120 MHz) aufweist. Wir beobachten und analysieren den Effekt der dynamischen R¨uckwir- kung,beiderderStrahlungsdruckdieBewegungsdynamikdermechanischen Mode modifiziert. Insbesondere demonstrieren wir erstmalig, wie dieser Ef- fekt dazu benutzt werden kann, eine mechanische Mode durch Laserlicht abzuk¨uhlen. Die effektive Temperatur der mechanischen Modewirddabei durch die Messung von Positionsfluktuationen mithilfe optischer Interferome- trie bestimmt. Am Schrotrausch-Limit werden dadurch Ungenauigkeiten von 1 10−18 m/√Hz erreicht, die unterhalb der erwarteten quantenmechanischen · Nullpunktsfluktuationen der mechanischen Mode liegen. Wir demonstrieren die Laserk¨uhlung erstmalig auch im “aufgel¨osten Sei- tenband”-Regime, in dem die Photonenspeicherzeit wesentlich l¨anger ist als eine mechanische Oszillationsperiode, wie es zur Grundzustandsk¨uhlung er- forderlich ist. Heizmechanismen technischer Natur werden durch die Ver- wendung rauscharmer Laser und einer kryogenen Experimentumgebung un- terdr¨uckt. Damit wird die Okkupation der mechanischen Modebisauf n = " # 63 20 Anregungsquanten reduziert. Es konnte auch gezeigt werden, dass die ± interferometrische Positionsmessung eine nahezu ideale quanten-mechanische Messung darstellt, mit einem R¨uckwirkung-Ungenauigkeits-Produkt nahe dem Quantenlimit. Damit sind alle wesentlichen Bedingungenf¨urdieBe- obachtung von Quanteneffekten in mesoskopischen Oszillatoren erf¨ullt. In einer unabh¨angigen Serie von Experimenten wird die Kerr-Nichtlineari- t¨at in Glas-Mikroresonatoren untersucht. Durch Vierwellen-Mischen entsteht eine Kaskade von Seitenb¨andern zu einem Dauerstrichlaser.DieLiniendieses diskreten Spektrums ¨uberspannen mehr als 500 nm. Die relative Abwe- ichung der Linienfrequenzen von einem ¨aquidistanten Kamm-Spektrum wird in Pr¨azisionsmessungen auf 7 10−18 beschr¨ankt. Damit steht eine neuartige, · ultrakompakte Quelle f¨uroptische Frequenzk¨amme mit hohen Repetitions- raten (80 GHz–1 THz) zur Verf¨ugung, mit m¨oglichen Anwendungen in der Astronomie und Telekommunikationstechnologie. vi Abstract In this thesis, I report on the exploration of non-linear optical phenom- ena in silica whispering gallery mode (WGM) microcavities. In particular, optomechanical interactions, and the generation of opticalfrequencycombs due to the Kerr non-linearity of silica are investigated. Radiation pressure couples the optical field stored in a microcavity to mechanical degrees of freedom of its boundary. Our systematic survey of the mechanical modes present in silica WGM microcavities hasenabledengi- neering devices which exhibit strong optomechanical coupling between high- quality, radio-frequency (30–120 MHz) mechanical radial-breathing modes and ultra-high finesse optical WGMs. The finite build-up time of the intracavity field leads to complex dynam- ics in the optomechanical interaction. We observe and analyze the effect of dynamical backaction,inwhichtheradiation-pressureforcemodifiesthe dynamics of the mechanical mode. In particular, we demonstrate for the first time, how this effect can be exploited to optically cool a mechanical mode. Quantum-noise limited optical interferometry is employed for the measurement of mechanical displacement fluctuations, from which the ef- fective temperature of the mode is inferred. An imprecision at the level of 1 10−18 m/√Hz is reached, below the expected quantum mechanical zero- · point position fluctuations of the mechanical mode. For the first time, we demonstrate
Recommended publications
  • UNIVERSITY of CALIFORNIA, MERCED Open System Dynamics In
    UNIVERSITY OF CALIFORNIA, MERCED Open system dynamics in quantum optomechanics A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics by Dan Hu Committee in charge: Professor Jay E. Sharping, Chair Professor Harish S. Bhat Professor Kevin A. Mitchell Professor Lin Tian, Dissertation Advisor 2014 Copyright Dan Hu, 2014 All rights reserved The dissertation of Dan Hu, titled Open system dynamics in quantum optomechanics, is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair Date Professor Jay E. Sharping Date Professor Harish S. Bhat Date Professor Kevin A. Mitchell Date Professor Lin Tian University of California, Merced 2014 iii This dissertation is dedicated to my family. iv Contents Abstract vii List of Figures ix List of Tables xi 1 Introduction 1 1.1 Cavity Optomechanics . 2 1.2 Optomechanical Phenomena . 4 1.3 Nonlinear Quantum Optomechanical System . 14 2 Linearized Optomechanical Interaction 16 2.1 Blue-detuned Optomechanics . 17 2.2 Optomechanical System With Periodic Driving . 31 3 Nonlinear Optomechanical Effects with Perturbation 42 3.1 Introduction . 43 3.2 Optomechanical System . 44 3.3 Perturbation in the Heisenberg Picture . 45 3.4 Applications of the Perturbation Solutions . 47 3.5 Conclusions . 54 4 Strongly Coupled Optomechanical System 55 4.1 Introduction . 56 4.2 Dressed-state Master Equation . 57 4.3 Analytical Solutions . 61 4.4 Numerical Results . 62 4.5 Conclusions . 70 5 Conclusions and Future Work 71 Appendix A Blue-detuned optomechanical system 73 v A.1 Covariance Matrix under RWA . 73 A.2 Optomechanical Entanglement between Cavity Output Mode and Me- chanical Mode .
    [Show full text]
  • Higher-Order Interactions in Quantum Optomechanics: Revisiting Theoretical Foundations
    Higher-order interactions in quantum optomechanics: Revisiting theoretical foundations Sina Khorasani 1,2 1 School of Electrical Engineering, Sharif University of Technology, Tehran, Iran; [email protected] 2 École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland; [email protected] Abstract: The theory of quantum optomechanics is reconstructed from first principles by finding a Lagrangian from light’s equation of motion and then proceeding to the Hamiltonian. The nonlinear terms, including the quadratic and higher-order interactions, do not vanish under any possible choice of canonical parameters, and lead to coupling of momentum and field. The existence of quadratic mechanical parametric interaction is then demonstrated rigorously, which has been so far assumed phenomenologically in previous studies. Corrections to the quadratic terms are particularly significant when the mechanical frequency is of the same order or larger than the electromagnetic frequency. Further discussions on the squeezing as well as relativistic corrections are presented. Keywords: Optomechanics, Quantum Physics, Nonlinear Interactions 1. Introduction The general field of quantum optomechanics is based on the standard optomechanical Hamiltonian, which is expressed as the simple product of photon number 푛̂ and the position 푥̂ operators, having the form ℍOM = ℏ푔0푛̂푥̂ [1-4] with 푔0 being the single-photon coupling rate. This is mostly referred to a classical paper by Law [5], where the non-relativistic Hamiltonian is obtained through Lagrangian dynamics of the system. This basic interaction is behind numerous exciting theoretical and experimental studies, which demonstrate a wide range of applications. The optomechanical interaction ℍOM is inherently nonlinear by its nature, which is quite analogous to the third-order Kerr optical effect in nonlinear optics [6,7].
    [Show full text]
  • Cavity Optomechanics in the Quantum Regime by Thierry Claude Marc Botter
    Cavity Optomechanics in the Quantum Regime by Thierry Claude Marc Botter A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Dan M. Stamper-Kurn, Chair Professor Holger M¨uller Professor Ming Wu Spring 2013 Cavity Optomechanics in the Quantum Regime Copyright 2013 by Thierry Claude Marc Botter 1 Abstract Cavity Optomechanics in the Quantum Regime by Thierry Claude Marc Botter Doctor of Philosophy in Physics University of California, Berkeley Professor Dan M. Stamper-Kurn, Chair An exciting scientific goal, common to many fields of research, is the development of ever-larger physical systems operating in the quantum regime. Relevant to this dissertation is the objective of preparing and observing a mechanical object in its motional quantum ground state. In order to sense the object's zero-point motion, the probe itself must have quantum-limited sensitivity. Cavity optomechanics, the inter- actions between light and a mechanical object inside an optical cavity, provides an elegant means to achieve the quantum regime. In this dissertation, I provide context to the successful cavity-based optical detection of the quantum-ground-state motion of atoms-based mechanical elements; mechanical elements, consisting of the collec- tive center-of-mass (CM) motion of ultracold atomic ensembles and prepared inside a high-finesse Fabry-P´erotcavity, were dispersively probed with an average intracavity photon number as small as 0.1. I first show that cavity optomechanics emerges from the theory of cavity quantum electrodynamics when one takes into account the CM motion of one or many atoms within the cavity, and provide a simple theoretical framework to model optomechanical interactions.
    [Show full text]
  • High-Frequency Cavity Optomechanics Using Bulk Acoustic Phonons
    SCIENCE ADVANCES | RESEARCH ARTICLE APPLIED PHYSICS Copyright © 2019 The Authors, some High-frequency cavity optomechanics using bulk rights reserved; exclusive licensee acoustic phonons American Association for the Advancement 1 2 1 1 1 of Science. No claim to Prashanta Kharel *, Glen I. Harris , Eric A. Kittlaus , William H. Renninger , Nils T. Otterstrom , original U.S. Government 2 1 Jack G. E. Harris , Peter T. Rakich * Works. Distributed under a Creative To date, microscale and nanoscale optomechanical systems have enabled many proof-of-principle quantum Commons Attribution operations through access to high-frequency (gigahertz) phonon modes that are readily cooled to their thermal NonCommercial ground state. However, minuscule amounts of absorbed light produce excessive heating that can jeopardize License 4.0 (CC BY-NC). robust ground-state operation within these microstructures. In contrast, we demonstrate an alternative strategy for accessing high-frequency (13 GHz) phonons within macroscopic systems (centimeter scale) using phase- matched Brillouin interactions between two distinct optical cavity modes. Counterintuitively, we show that these macroscopic systems, with motional masses that are 1 million to 100 million times larger than those of microscale counterparts, offer a complementary path toward robust ground-state operation. We perform both optomechan- ically induced amplification/transparency measurements and demonstrate parametric instability of bulk phonon modes. This is an important step toward using these beam splitter and two-mode squeezing interactions within Downloaded from bulk acoustic systems for applications ranging from quantum memories and microwave-to-optical conversion to high-power laser oscillators. INTRODUCTION as the basis for phonon counting (17, 26), generation of nonclassical The coherent control of mechanical objects (1–4) can enable applica- mechanical states (18), and efficient transduction of information be- tions ranging from sensitive metrology (5) to quantum information tween optical and phononic domains (27).
    [Show full text]
  • Cavity Optomechanics: a Playground for Quantum Physics
    Cavity optomechanics: a playground for quantum physics David Vitali School of Science and Technology, Physics Division, University of Camerino, Italy, THE GROUP: COLLABORATION with M. Asjad, M. Abdi, M. Bawaj, Sh. Barzanjeh, C. Biancofiore, G.J. Milburn, G. Di Giuseppe, M.S. Kim, M. Karuza, G.S. Agarwal R. Natali, P. Tombesi 1 Cavity Optomechanics, Innsbruck, Nov 04 2013 Outline of the talk 1. Introduction to cavity optomechanics: the membrane- in-the-middle (MIM) setup as paradigmatic example 2. Proposal for generating nonclassical mechanical states in a quadratic MIM setup 3. Controlling the output light with cavity optomechanics: i) optomechanically induced transparency (OMIT); ii) ponderomotive squeezing 4. Proposal for a quantum optomechanical interface between microwave and optical signals 2 INTRODUCTION Micro- and nano-(opto)-electro-mechanical devices, i.e., MEMS, MOEMS and NEMS are extensively used for various technological applications : • high-sensitive sensors (accelerometers, atomic force microscopes, mass sensors….) • actuators (in printers, electronic devices…) • These devices operate in the classical regime for both the electromagnetic field and the motional degree of freedom However very recently cavity optomechanics has emerged as a new field with two elements of originality: 1. the opportunities offered by entering the quantum regime for these devices 2. The crucial role played by an optical (electromagnetic) cavity 3 Why entering the quantum regime for opto- and electro-mechanical systems ? 1. quantum-limited sensing, i.e., working at the sensitivity limits imposed by Heisenberg uncertainty principle VIRGO (Pisa) Nano-scale: Single-spin MRFM Macro-scale: gravitational wave D. Rugar group, IBM Almaden interferometers (VIRGO, LIGO) Detection of extremely weak forces and tiny displacements 4 2.
    [Show full text]
  • A Quantum Heat Machine from Fast Optomechanics
    A Quantum Heat Machine from Fast Optomechanics James S. Bennetta,1, Lars S. Madsena, Halina Rubinsztein-Dunlopa, and Warwick P. Bowena aAustralian Research Council Centre of Excellence for Engineered Quantum Systems (EQuS), School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia This manuscript was compiled on June 8, 2020 We consider a thermodynamic machine in which the working fluid is refrigerator, and heat pump modes of operation. The working a quantized harmonic oscillator that is controlled on timescales that fluid (oscillator) can be quantum squeezed during portions of are much faster than the oscillator period. We find that operation the thermal cycle. The oscillator can also be transiently cooled in this ‘fast’ regime allows access to a range of quantum thermody- to below the cold bath temperature, unlike standard techniques namical behaviors that are otherwise inaccessible, including heat en- for cooling an oscillator (19, 20). Interestingly, these behaviors gine and refrigeration modes of operation, quantum squeezing, and all hinge on the sub-mechanical-period (‘fast’) dynamics of vis- transient cooling to temperatures below that of the cold bath. The cous damping. While applicable to oscillator-based quantum machine involves rapid periodic squeezing operations and could po- machines quite generally, our machine might—for example—be tentially be constructed using pulsed optomechanical interactions. experimentally implemented using a quantum electromechani- The prediction of rich behavior in the fast regime opens up new pos- cal oscillator coupled to a pulsed electromagnetic field. Within sibilities for quantum optomechanical machines and quantum ther- this context, we provide one possible protocol to implement modynamics.
    [Show full text]
  • Table of Contents
    Table of Contents Schedule-at-a-Glance . 2 FiO + LS Chairs’ Welcome Letters . 3 General Information . 5 Conference Materials Access to Technical Digest Papers . 7 FiO + LS Conference App . 7 Plenary Session/Visionary Speakers . 8 Science & Industry Showcase Theater Programming . 12 Networking Area Programming . 12 Participating Companies . 14 OSA Member Zone . 15 Special Events . 16 Awards, Honors and Special Recognitions FiO + LS Awards Ceremony & Reception . 19 OSA Awards and Honors . 19 2019 APS/Division of Laser Science Awards and Honors . 21 2019 OSA Foundation Fellowship, Scholarships and Special Recognitions . 21 2019 OSA Awards and Medals . 22 OSA Foundation FiO Grants, Prizes and Scholarships . 23 OSA Senior Members . 24 FiO + LS Committees . 27 Explanation of Session Codes . 28 FiO + LS Agenda of Sessions . 29 FiO + LS Abstracts . 34 Key to Authors and Presiders . 94 Program updates and changes may be found on the Conference Program Update Sheet distributed in the attendee registration bags, and check the Conference App for regular updates . OSA and APS/DLS thank the following sponsors for their generous support of this meeting: FiO + LS 2019 • 15–19 September 2019 1 Conference Schedule-at-a-Glance Note: Dates and times are subject to change. Check the conference app for regular updates. All times reflect EDT. Sunday Monday Tuesday Wednesday Thursday 15 September 16 September 17 September 18 September 19 September GENERAL Registration 07:00–17:00 07:00–17:00 07:30–18:00 07:30–17:30 07:30–11:00 Coffee Breaks 10:00–10:30 10:00–10:30 10:00–10:30 10:00–10:30 10:00–10:30 15:30–16:00 15:30–16:00 13:30–14:00 13:30–14:00 PROGRAMMING Technical Sessions 08:00–18:00 08:00–18:00 08:00–10:00 08:00–10:00 08:00–12:30 15:30–17:00 15:30–18:30 Visionary Speakers 09:15–10:00 09:15–10:00 09:15–10:00 09:15–10:00 LS Symposium on Undergraduate 12:00–18:00 Research Postdeadline Paper Sessions 17:15–18:15 SCIENCE & INDUSTRY SHOWCASE Science & Industry Showcase 10:00–15:30 10:00–15:30 See page 12 for complete schedule of programs .
    [Show full text]
  • Quantum Entanglement and Networking with Spin-Optomechanics
    University College London Doctoral Thesis Quantum Entanglement and Networking with Spin-Optomechanics Author: Supervisor: Victor Montenegro-Tobar Prof. Sougato Bose A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Atomic, Molecular, Optical and Positron Physics Group Department of Physics and Astronomy September 2015 Declaration of Authorship I, Victor Montenegro-Tobar, declare that this thesis titled, 'Quantum Entan- glement and Networking with Spin-Optomechanics' and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: i List of Publications • Victor Montenegro, Alessandro Ferraro, and Sougato Bose, \Nonlinearity- induced entanglement stability in a qubit-oscillator system", Physical Review A 90, 013829 (2014). • Victor Montenegro, Alessandro Ferraro, and Sougato Bose, \Entanglement distillation in optomechanics via unsharp measurements", arXiv:1503.04462 (2015). • Victor Montenegro and Sougato Bose, \Mechanical Qubit-Light Entanglers in Nonlinear Optomechanics", in preparation.
    [Show full text]
  • 1 Quantum Optomechanics
    1 Quantum optomechanics Florian Marquardt University of Erlangen-Nuremberg, Institute of Theoretical Physics, Staudtstr. 7, 91058 Erlangen, Germany; and Max Planck Institute for the Science of Light, Günther- Scharowsky-Straÿe 1/Bau 24, 91058 Erlangen, Germany 1.1 Introduction These lectures are a basic introduction to what is now known as (cavity) optome- chanics, a eld at the intersection of nanophysics and quantum optics which has de- veloped over the past few years. This eld deals with the interaction between light and micro- or nanomechanical motion. A typical setup may involve a laser-driven optical cavity with a vibrating end-mirror, but many dierent setups exist by now, even in superconducting microwave circuits (see Konrad Lehnert's lectures) and cold atom experiments. The eld has developed rapidly during the past few years, starting with demonstrations of laser-cooling and sensitive displacement detection. For short reviews with many relevant references, see (Kippenberg and Vahala, 2008; Marquardt and Girvin, 2009; Favero and Karrai, 2009; Genes, Mari, Vitali and Tombesi, 2009). In the present lecture notes, I have only picked a few illustrative references, but the dis- cussion is hopefully more didactic and also covers some very recent material not found in those reviews. I will emphasize the quantum aspects of optomechanical systems, which are now becoming important. Related lectures are those by Konrad Lehnert (specic implementation in superconducting circuits, direct classical calculation) and Aashish Clerk (quantum limits to measurement), as well as Jack Harris. Right now (2011), the rst experiments have reported laser-cooling down to near the quantum ground state of a nanomechanical resonator.
    [Show full text]
  • Slow and Fast Light Enhanced Light Drag in a Moving Microcavity
    Slow and fast light enhanced light drag in a moving microcavity Tian Qin,1 Jianfan Yang,1 Fangxing Zhang,1 Yao Chen,1 Dongyi Shen,2 Wei Liu,2 Lei Chen,2 Yuanlin Zheng,2, 3 Xianfeng Chen,2 and Wenjie Wan1, 2, ∗ 1The State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China 2MOE Key Laboratory for Laser Plasmas and Collaborative Innovation Center of IFSA, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 3Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA (Dated: May 21, 2019) Fizeau experiment, inspiring Einsteins special theory of relativity, reveals a small dragging effect of light inside a moving medium. Dispersion can enhance such light drag according to Lorentzs predication. Here we experimentally demonstrate slow and fast light enhanced light drag in a moving optical microcavity through stimulated Brillouin scattering induced transparency and absorption. The strong dispersion provides an enhancement factor up to ∼ 104 , greatly reducing the system size down to the micrometer range. These results may offer a unique platform for a compact, integrated solution to motion sensing and ultrafast signal processing applications. I. INTRODUCTION (EIT) medium of strong normal dispersion to enhance the dragging effect has been realized both in hot atomic It is well-known that the speed of light in a vacuum vapors [8, 9] as well as cold atoms [10]. However, the rigid is the same regardless of the choice of reference frame, experimental conditions requiring vacuum and precise according Einsteins theory of special relativity [1].
    [Show full text]
  • 1 Quantum Optomechanics
    1 Quantum optomechanics Florian Marquardt University of Erlangen-Nuremberg, Institute of Theoretical Physics, Staudtstr. 7, 91058 Erlangen, Germany; and Max Planck Institute for the Science of Light, G¨unther- Scharowsky-Straße 1/Bau 24, 91058 Erlangen, Germany Lectures delivered at the Les Houches School ”Quantum Machines”, July 2011 These lecture notes will be published by Oxford University Press. 1.1 Introduction These lectures are a basic introduction to what is now known as (cavity) optome- chanics, a field at the intersection of nanophysics and quantum optics which has de- veloped over the past few years. This field deals with the interaction between light and micro- or nanomechanical motion. A typical setup may involve a laser-driven optical cavity with a vibrating end-mirror, but many different setups exist by now, even in superconducting microwave circuits (see Konrad Lehnert’s lectures) and cold atom experiments. The field has developed rapidly during the past few years, starting with demonstrations of laser-cooling and sensitive displacement detection. For short reviews with many relevant references, see (Kippenberg and Vahala, 2008; Marquardt and Girvin, 2009; Favero and Karrai, 2009; Genes, Mari, Vitali and Tombesi, 2009). In the present lecture notes, I have only picked a few illustrative references, but the dis- cussion is hopefully more didactic and also covers some very recent material not found in those reviews. I will emphasize the quantum aspects of optomechanical systems, which are now becoming important. Related lectures are those by Konrad Lehnert (specific implementation in superconducting circuits, direct classical calculation) and Aashish Clerk (quantum limits to measurement), as well as Jack Harris.
    [Show full text]
  • Quantum Thermodynamics and Optomechanics Juliette Monsel
    Quantum thermodynamics and optomechanics Juliette Monsel To cite this version: Juliette Monsel. Quantum thermodynamics and optomechanics. Quantum Physics [quant-ph]. Uni- versité Grenoble Alpes, 2019. English. NNT : 2019GREAY051. tel-02517050 HAL Id: tel-02517050 https://tel.archives-ouvertes.fr/tel-02517050 Submitted on 24 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ! !" #$ %&' ' ( )*"+ ( ! ) ,(*!,+ +!+ -,#'!+ .!, ) ,(*!,'" !( -,')!'" ! /0 ' /102" # $ 3 ! %"& # ' ( )* "+ 3 4 5 % "& # , ) "*- 3 6 7 ' ". '/+ "*- , !! 77 . ". '/+ " $ ii Remerciements J’ai beaucoup apprécié ces trois années de thèses passées à l’institut Néel. En premier lieu, un grand merci à Alexia Auffèves qui m’a proposé ce sujet de thèse passionnant et m’a encadrée. Je remercie également Maxime Richard et Jean-Philippe Poizat pour les discussions que nous avons eu. Mes remerciements vont aussi à Cyril qui était là en thèse avant moi et m’a aidée à bien démarrer ma thèse et à Bogdan qui a été un collègue de bureau agréable. Je remercie aussi les autres doctorants de l’équipe ainsi que ceux se joignant à nous lors du repas de midi. Je souhaite bon courage à Hippolyte, Laurie et Marco pour la suite de leur thèse et à Julian pour la fin de la sienne.
    [Show full text]