Tamura Y, Wind-Induced Damage to Buildings and Disaster Risk Reduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR Sitrep 2014‐001 ‐ Updated July 8, 2014, 10:00 CET
Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR sitrep 2014‐001 ‐ updated July 8, 2014, 10:00 CET Summary Report Ongoing typhoon situation The storm had lost strength early Tuesday July 8, going from the equivalent of a Category 5 hurricane to a Category 3 on the Saffir‐Simpson Hurricane Wind Scale, which means devastating damage is expected to occur, with major damage to well‐built framed homes, snapped or uprooted trees and power outages. It is approaching Okinawa, Japan, and is moving northwest towards South Korea and the Philippines, bringing strong winds, flooding rainfall and inundating storm surge. Typhoon Neoguri is a once‐in‐a‐decade storm and Japanese authorities have extended their highest storm alert to Okinawa's main island. The Global Assessment Report (GAR) 2013 ranked Japan as first among countries in the world for both annual and maximum potential losses due to cyclones. It is calculated that Japan loses on average up to $45.9 Billion due to cyclonic winds every year and that it can lose a probable maximum loss of $547 Billion.2 What are the most devastating cyclones to hit Okinawa in recent memory? There have been 12 damaging cyclones to hit Okinawa since 1945. Sustaining winds of 81.6 knots (151 kph), Typhoon “Winnie” caused damages of $5.8 million in August 1997. Typhoon "Bart", which hit Okinawa in October 1999 caused damages of $5.7 million. It sustained winds of 126 knots (233 kph). The most damaging cyclone to hit Japan was Super Typhoon Nida (reaching a peak intensity of 260 kph), which struck Japan in 2004 killing 287 affecting 329,556 people injuring 1,483, and causing damages amounting to $15 Billion. -
Atmospheric Sampling of Supertyphoon Mireille with NASA DC-8 Aircraft on September 27,1991, During PEM-West A
UC Irvine UC Irvine Previously Published Works Title Atmospheric sampling of Supertyphoon Mireille with NASA DC-8 aircraft on September 27,1991, during PEM-West A Permalink https://escholarship.org/uc/item/3c03j813 Journal Journal of Geophysical Research: Atmospheres, 101(D1) ISSN 2169-897X Authors Newell, RE Hu, W Wu, ZX et al. Publication Date 1996 DOI 10.1029/95JD01374 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 101,NO. D1, PAGES 1853-1871,JANUARY 20, 1996 Atmospheric sampling of SupertyphoonMireille with NASA DC-8 aircraft on September 27, 1991, during PEM-West A R. E. Newell,1 W. Hu,1 Z-X. Wu,1 Y. Zhu,1 H. Akimoto,2 B. E. Anderson,3 E. V. Browell,3 G. L. Gregory,3 G. W. Sachse,3 M. C. Shipham,3 A. S.Bachmeier, 4 A.R. Bandy, 5 D.C. Thornton,5 D. R. BlakefiF. S.Rowland, 6 J.D. Bradshaw,7 J. H. Crawford,7 D. D. Davis,7 S. T. Sandholm,7 W. Brockett,8 L. DeGreef,8 D. Lewis,8 D. McCormick,8 E. Monitz,8 J. E. CollinsJr., 9 B. G. Heikes,1ø J. T. Merrill,1ø K. K. Kelly,11 S.C. Liu,• 1 y. Kondo,12 M. Koike,12 C.-M. Liu, 13 F. Sakamaki,TM H. B. Singh,15 J. E. Dibb,16 and R. W. Talbot 16 Abstract. The DC-8 missionof September27, 1991,was designed to sampleair flowing intoTyphoon Mireille in theboundary layer, air in the uppertropospheric eye region, and air emergingfrom the typhoon and ahead of the system,also in the uppertroposphere. -
Annual Progress Report July 1, 2003 – June 30, 2004 Cooperative Institute for Climate Science at Princeton University
Annual Progress Report July 1, 2003 – June 30, 2004 Cooperative Institute for Climate Science at Princeton University CICS Jorge L. Sarmiento, Professor of Geosciences and Director Cooperative Institute for Climate Science Princeton University Forrestal Campus 300 Forrestal Road, Box CN 710 Princeton, New Jersey 08544-0710 Table of Contents Introduction 1 Research Themes Overview 2-4 Structure of the Joint Institute 5-6 Research Highlights Earth System Studies 7-10 Land Dynamics Ocean Dynamics Chemistry-Radiation-Climate Interactions Large-scale Atmospheric Dynamics Clouds and Convection Biogeochemistry 10-13 Ocean Biogeochemistry Land Processes Atmospheric Chemistry Earth System Model Coastal Processes 13 Paleoclimate 13-15 NOAA Funding Table 16 Project Reports 17-155 Publications 156-158 CICS Fellows 159 Personnel Information 160-163 CICS Projects 164-165 Cooperative Institute for Climate Science Princeton University Annual Report of Research Progress under Cooperative Agreement NA17RJ2612 During July 1, 2003 – June 30, 2004 Jorge L. Sarmiento, Director Introduction The Cooperative Institute for Climate Sciences (CICS) was founded in 2003 to foster research collaboration between Princeton University and the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanographic and Atmospheric Administration (NOAA). Its vision is to be a world leader in understanding and predicting climate and the co- evolution of society and the environment – integrating physical, chemical, biological, technological, economical, social, and ethical dimensions, and in educating the next generations to deal with the increasing complexity of these issues. CICS is built upon the strengths of Princeton University in biogeochemistry, physical oceanography, paleoclimate, hydrology, ecosystem ecology, climate change mitigation technology, economics, and policy; and GFDL in modeling the atmosphere, oceans, weather and climate. -
Development of GMDH-Based Storm Surge Forecast Models for Sakaiminato, Tottori, Japan
Journal of Marine Science and Engineering Article Development of GMDH-Based Storm Surge Forecast Models for Sakaiminato, Tottori, Japan Sooyoul Kim 1 , Hajime Mase 2,3,4,5, Nguyen Ba Thuy 6,* , Masahide Takeda 7, Cao Truong Tran 8 and Vu Hai Dang 9 1 Center for Water Cycle Marine Environment and Disaster Management, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan; [email protected] 2 Professor Emeritus, Kyoto University, Kyoto 611-0011, Japan; [email protected] 3 Toa Corporation, Tokyo 163-1031, Japan 4 Hydro Technology Inst., Co., Ltd., Osaka 530-6126, Japan 5 Nikken Kogaku Co., Ltd., Tokyo 160-0023, Japan 6 Vietnam National Hydrometerological Forecasting Center Hanoi, No 8, Phao Dai Lang, Dong Da, Hanoi, Vietnam 7 Research and Development Center, Toa Corporation, Kanagawa 230-0035, Japan; [email protected] 8 Le Quy Don Technical University, 236 Hoang Quoc Viet St, Hanoi, Vietnam; [email protected] 9 Institute of Marine Geology and Geophysics, VAST, 18 Hoang Quoc Viet St, Hanoi, Vietnam; [email protected] * Correspondence: [email protected] Received: 31 July 2020; Accepted: 4 October 2020; Published: 14 October 2020 Abstract: The current study developed storm surge hindcast/forecast models with lead times of 5, 12, and 24 h at the Sakaiminato port, Tottori, Japan, using the group method of data handling (GMDH) algorithm. For training, local meteorological and hydrodynamic data observed in Sakaiminato during Typhoons Maemi (2003), Songda (2004), and Megi (2004) were collected at six stations. In the forecast experiments, the two typhoons, Maemi and Megi, as well as the typhoon Songda, were used for training and testing, respectively. -
Quantification of Typhoon-Induced Phytoplankton Blooms Using
remote sensing Article Quantification of Typhoon-Induced Phytoplankton Blooms Using Satellite Multi-Sensor Data Jiayi Pan 1,2,3,* ID , Lei Huang 2, Adam T. Devlin 2 and Hui Lin 2 1 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China 2 Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China; [email protected] (L.H.); [email protected] (A.T.D.); [email protected] (H.L.) 3 Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China * Correspondence: [email protected]; Tel.: +852-3943-1308 Received: 19 December 2017; Accepted: 16 February 2018; Published: 20 February 2018 Abstract: Using satellite-based multi-sensor observations, this study investigates Chl-a blooms induced by typhoons in the Northwest Pacific (NWP) and the South China Sea (SCS), and quantifies the blooms via wind-induced mixing and Ekman pumping parameters, as well as pre-typhoon mixed-layer depth (MLD). In the NWP, the Chl-a bloom is more correlated with the Ekman pumping than with the other two parameters, with an R2 value of 0.56. In the SCS, the wind-induced mixing and Ekman pumping have comparable correlations with the Chl-a increase, showing R2 values of 0.4~0.6. However, the MLD exhibits a negative correlation with the Chl-a increase. A multi-parameter quantification model of the Chl-a bloom strength achieves better results than the single-parameter regressions, yielding a more significant R2 value of 0.80, and a lower regression rms of 0.18 mg·m−3 in the SCS, and the R2 value in the NWP is also improved compared with the single-parameter regressions. -
Pacific ENSO Update: 2Nd Quarter 2015
2nd Quarter, 2015 Vol. 21, No. 2 ISSUED: May 29h, 2015 Providing Information on Climate Variability in the U.S.-Affiliated Pacific Islands for the Past 20 Years. http://www.prh.noaa.gov/peac CURRENT CONDITIONS The weather and climate of the central and western and travelled westward toward the Philippines. When tropical Pacific through April 2015 was extraordinary, with another typhoon formed in early February, a whole new forecast noteworthy extremes of rainfall, typhoons and oceanic response scenario opened: El Niño might strengthen and persist through to strong atmospheric forcing. The most damaging climatic 2015. The same suite of climate indicators that had predicted El extreme was the occurrence of a super typhoon (Maysak) that Niño in the first few months of 2014 was once again present in swept across Micronesia leaving a trail of destruction from even greater force in early 2015. This includes heavy rainfall in Chuuk State westward through Yap State, with Ulithi the RMI, early season typhoons, westerly wind bursts on the experiencing a devastating direct strike. A selection of equator, and falling sea level. During early March, a major additional weather and climate highlights includes: westerly wind burst occurred that led to the formation of the (1) Republic of Marshals Islands (RMI) -- record- tropical cyclone twins Bavi and Pam (Fig. 3). This westerly setting heavy daily and monthly rainfall on some atolls; wind burst (WWB) and associated tropical cyclone outbreak (2) Western North Pacific -- abundant early season shown in Figure 3 registered as the highest value of the Madden- tropical cyclones (5 in 4 months); Julian Oscillation (MJO) ever recorded (Fig. -
Sigma 1/2008
sigma No 1/2008 Natural catastrophes and man-made disasters in 2007: high losses in Europe 3 Summary 5 Overview of catastrophes in 2007 9 Increasing flood losses 16 Indices for the transfer of insurance risks 20 Tables for reporting year 2007 40 Tables on the major losses 1970–2007 42 Terms and selection criteria Published by: Swiss Reinsurance Company Economic Research & Consulting P.O. Box 8022 Zurich Switzerland Telephone +41 43 285 2551 Fax +41 43 285 4749 E-mail: [email protected] New York Office: 55 East 52nd Street 40th Floor New York, NY 10055 Telephone +1 212 317 5135 Fax +1 212 317 5455 The editorial deadline for this study was 22 January 2008. Hong Kong Office: 18 Harbour Road, Wanchai sigma is available in German (original lan- Central Plaza, 61st Floor guage), English, French, Italian, Spanish, Hong Kong, SAR Chinese and Japanese. Telephone +852 2582 5691 sigma is available on Swiss Re’s website: Fax +852 2511 6603 www.swissre.com/sigma Authors: The internet version may contain slightly Rudolf Enz updated information. Telephone +41 43 285 2239 Translations: Kurt Karl (Chapter on indices) CLS Communication Telephone +41 212 317 5564 Graphic design and production: Jens Mehlhorn (Chapter on floods) Swiss Re Logistics/Media Production Telephone +41 43 285 4304 © 2008 Susanna Schwarz Swiss Reinsurance Company Telephone +41 43 285 5406 All rights reserved. sigma co-editor: The entire content of this sigma edition is Brian Rogers subject to copyright with all rights reserved. Telephone +41 43 285 2733 The information may be used for private or internal purposes, provided that any Managing editor: copyright or other proprietary notices are Thomas Hess, Head of Economic Research not removed. -
Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong
78 BAVI AUG : ,- HAISHEN JANGMI SEP AUG 6 KUJIRA MAYSAK SEP SEP HAGUPIT AUG DOLPHIN SEP /1 CHAN-HOM OCT TD.. MEKKHALA AUG TD.. AUG AUG ATSANI Hong Kong HIGOS NOV AUG DOLPHIN() 2012 SEP : 78 HAISHEN() 2010 NURI ,- /1 BAVI() 2008 SEP JUN JANGMI CHAN-HOM() 2014 NANGKA HIGOS(2007) VONGFONG AUG ()2005 OCT OCT AUG MAY HAGUPIT() 2004 + AUG SINLAKU AUG AUG TD.. JUL MEKKHALA VAMCO ()2006 6 NOV MAYSAK() 2009 AUG * + NANGKA() 2016 AUG TD.. KUJIRA() 2013 SAUDEL SINLAKU() 2003 OCT JUL 45 SEP NOUL OCT JUL GONI() 2019 SEP NURI(2002) ;< OCT JUN MOLAVE * OCT LINFA SAUDEL(2017) OCT 45 LINFA() 2015 OCT GONI OCT ;< NOV MOLAVE(2018) ETAU OCT NOV NOUL(2011) ETAU() 2021 SEP NOV VAMCO() 2022 ATSANI() 2020 NOV OCT KROVANH(2023) DEC KROVANH DEC VONGFONG(2001) MAY 二零二零年 熱帶氣旋 TROPICAL CYCLONES IN 2020 2 二零二一年七月出版 Published July 2021 香港天文台編製 香港九龍彌敦道134A Prepared by: Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong © 版權所有。未經香港天文台台長同意,不得翻印本刊物任何部分內容。 © Copyright reserved. No part of this publication may be reproduced without the permission of the Director of the Hong Kong Observatory. 知識產權公告 Intellectual Property Rights Notice All contents contained in this publication, 本刊物的所有內容,包括但不限於所有 including but not limited to all data, maps, 資料、地圖、文本、圖像、圖畫、圖片、 text, graphics, drawings, diagrams, 照片、影像,以及數據或其他資料的匯編 photographs, videos and compilation of data or other materials (the “Materials”) are (下稱「資料」),均受知識產權保護。資 subject to the intellectual property rights 料的知識產權由香港特別行政區政府 which are either owned by the Government of (下稱「政府」)擁有,或經資料的知識產 the Hong Kong Special Administrative Region (the “Government”) or have been licensed to 權擁有人授予政府,為本刊物預期的所 the Government by the intellectual property 有目的而處理該等資料。任何人如欲使 rights’ owner(s) of the Materials to deal with 用資料用作非商業用途,均須遵守《香港 such Materials for all the purposes contemplated in this publication. -
Downloaded 09/24/21 02:19 PM UTC 1092 MONTHLY WEATHER REVIEW VOLUME 126
APRIL 1998 NOTES AND CORRESPONDENCE 1091 Statistical Analysis of the Characteristics of Severe Typhoons Hitting the Japanese Main Islands TAKESHI FUJII General Education and Research Center, Kyoto Sangyo University, Kyoto, Japan 5 May 1997 and 19 July 1997 ABSTRACT Characteristics of 51 severe typhoons hitting the Japanese main islands with central pressure equal to or less than 980 hPa during the period 1955±94 were analyzed by an objective method using hourly station observation during typhoon passages. Position of a typhoon center, central pressure depth Dp, and radius of the maximum wind rm, were obtained at hourly intervals after landfall on the main islands of Japan. The pressure pro®le of severe typhoons used in this analysis was chosen from formulas presented in previous papers, namely the same as one used by the U.S. Army Corps of Engineers for hurricanes hitting Florida. Coastlines of the main islands were divided into three sections: areas A, B, and C extending from west to east. Statistical analyses of parameters were made for each area. At time of landfall, the maximum value of Dp was 83.2 hPa for area A, 85.2 hPa for area B, and 47.8 hPa for area C. The differences in return period of Dp among areas are considered to be caused by the SST distribution off the Paci®c coast. On average, typhoons making landfall in area C have larger rm and speed, and display a more eastward component of translation than those in the other two areas. The differences of speed and direction among areas and months can be explained to be caused by variation of the synoptic-scale air current at the 500-hPa level. -
No. 2/2003 Natural Catastrophes and Man-Made Disasters in 2002: High Flood Loss Burden
Sigma_2_03_engl_US 06.03.2003 16:29 Uhr Seite UM1 sigma No. 2/2003 Natural catastrophes and man-made disasters in 2002: high flood loss burden 3 Summary 4 Catastrophes in 2002: comparatively low insured losses despite the large burden from floods 9 Floods – a growing challenge for the insurance industry and the state 15 Tables for reporting year 2002 34 Tables on the major losses 1970–2002 36 Appendix: Terms and selection criteria Sigma_2_03_engl_US 06.03.2003 16:29 Uhr Seite UM2 Published by: Swiss Reinsurance Company Economic Research & Consulting P.O. Box CH-8022 Zurich Telephone +41 43 285 2551 Fax +41 43 285 4749 E-mail: [email protected] New York Office: 55 East 52nd Street 40th Floor New York, NY 10055 Telephone +1 212 317 5135 Fax +1 212 317 5455 Hong Kong Office: 18 Harbour Road, Wanchai Central Plaza, 61st floor Hong Kong SAR Telephone +852 25 82 5691 The editorial deadline for this study was Fax +852 25 11 6603 24 January 2003. Authors: sigma is also available in German (original Aurelia Zanetti language), French, Italian, Spanish, Chinese Telephone +41 43 285 2544 and Japanese. Rudolf Enz sigma is available on the Swiss Re website: Telephone +41 43 285 2239 http://www.swissre.com (under “Research & Publications”, Ivo Menzinger (section on floods) “sigma insurance research”) Telephone +49 89 3844 1774 Translation: Swiss Re Group Language Jens Mehlhorn (section on floods) Services Telephone +41 43 285 4304 Graphic design: Swiss Re Media Production Sonja Suter (lists of events) Telephone +41 43 285 5470 © Swiss Re All rights reserved. -
Tropical Cyclones in 1991
ROYAL OBSERVATORY HONG KONG TROPICAL CYCLONES IN 1991 CROWN COPYRIGHT RESERVED Published March 1993 Prepared by Royal Observatory 134A Nathan Road Kowloon Hong Kong Permission to reproduce any part of this publication should be obtained through the Royal Observatory This publication is prepared and disseminated in the interest of promoting the exchange of information. The Government of Hong Kong (including its servants and agents) makes no warranty, statement or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, and in so far as permitted by law, shall not have any legal liability or responsibility (including liability for negligence) for any loss, damage or injury (including death) which may result whether directly or indirectly, from the supply or use of such information. This publication is available from: Government Publications Centre General Post Office Building Ground Floor Connaught Place Hong Kong 551.515.2:551.506.1 (512.317) 3 CONTENTS Page FRONTISPIECE: Tracks of tropical cyclones in the western North Pacific and the South China Sea in 1991 FIGURES 4 TABLES 5 HONG KONG'S TROPICAL CYCLONE WARNING SIGNALS 6 1. INTRODUCTION 7 2. TROPICAL CYCLONE OVERVIEW FOR 1991 11 3. REPORTS ON TROPICAL CYCLONES AFFECTING HONG KONG IN 1991 19 (a) Typhoon Zeke (9106): 9-14 July 20 (b) Typhoon Amy (9107): 16-19 July 24 (c) Severe Tropical Storm Brendan (9108): 20-24 July 28 (d) Typhoon Fred (9111): 13-l8 August 34 (e) Severe Tropical Storm Joel (9116): 3-7 September 40 (f) Typhoon Nat (9120): 16 September-2 October 44 4. -
Natural Catastrophes and Man-Made Disasters in 2016: a Year of Widespread Damages
No 2 /2017 Natural catastrophes and 01 Executive summary 02 Catastrophes in 2016: man-made disasters in 2016: global overview a year of widespread damages 06 Regional overview 13 Floods in the US – an underinsured risk 18 Tables for reporting year 2016 40 Terms and selection criteria Executive summary There were a number of expansive In terms of devastation wreaked, there were a number of large-scale disasters across disaster events in 2016 … the world in 2016, including earthquakes in Japan, Ecuador, Tanzania, Italy and New Zealand. There were also a number of severe floods in the US and across Europe and Asia, and a record high number of weather events in the US. The strongest was Hurricane Matthew, which became the first Category 5 storm to form over the North Atlantic since 2007, and which caused the largest loss of life – more than 700 victims, mostly in Haiti – of a single event in the year. Another expansive, and expensive, disaster was the wildfire that spread through Alberta and Saskatchewan in Canada from May to July. … leading to the highest level of overall In total, in sigma criteria terms, there were 327 disaster events in 2016, of which losses since 2012. 191 were natural catastrophes and 136 were man-made. Globally, approximately 11 000 people lost their lives or went missing in disasters. At USD 175 billion, total economic losses1 from disasters in 2016 were the highest since 2012, and a significant increase from USD 94 billion in 2015. As in the previous four years, Asia was hardest hit. The earthquake that hit Japan’s Kyushu Island inflicted the heaviest economic losses, estimated to be between USD 25 billion and USD 30 billion.