Bntomojauna ZEITSCHRIFT FÜR ENTOMOLOGIE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Checklist of the Spheciform Wasps (Hymenoptera: Crabronidae & Sphecidae) of British Columbia
Checklist of the Spheciform Wasps (Hymenoptera: Crabronidae & Sphecidae) of British Columbia Chris Ratzlaff Spencer Entomological Collection, Beaty Biodiversity Museum, UBC, Vancouver, BC This checklist is a modified version of: Ratzlaff, C.R. 2015. Checklist of the spheciform wasps (Hymenoptera: Crabronidae & Sphecidae) of British Columbia. Journal of the Entomological Society of British Columbia 112:19-46 (available at http://journal.entsocbc.ca/index.php/journal/article/view/894/951). Photographs for almost all species are online in the Spencer Entomological Collection gallery (http://www.biodiversity.ubc.ca/entomology/). There are nine subfamilies of spheciform wasps in recorded from British Columbia, represented by 64 genera and 280 species. The majority of these are Crabronidae, with 241 species in 55 genera and five subfamilies. Sphecidae is represented by four subfamilies, with 39 species in nine genera. The following descriptions are general summaries for each of the subfamilies and include nesting habits and provisioning information. The Subfamilies of Crabronidae Astatinae !Three genera and 16 species of astatine wasps are found in British Columbia. All species of Astata, Diploplectron, and Dryudella are groundnesting and provision their nests with heteropterans (Bohart and Menke 1976). Males of Astata and Dryudella possess holoptic eyes and are often seen perching on sticks or rocks. Bembicinae Nineteen genera and 47 species of bembicine wasps are found in British Columbia. All species are groundnesting and most prefer habitats with sand or sandy soil, hence the common name of “sand wasps”. Four genera, Bembix, Microbembex, Steniolia and Stictiella, have been recorded nesting in aggregations (Bohart and Horning, Jr. 1971; Bohart and Gillaspy 1985). -
Erstnachweis Der Grabwespe Ammoplanus Kaszabi Tsuneki, 1972 in Deutschland Mit Anmerkungen Zur Gattung Ammoplanus (Hymenoptera
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Ampulex - Zeitschrift für aculeate Hymenopteren Jahr/Year: 2011 Band/Volume: 3 Autor(en)/Author(s): Saure Christoph Artikel/Article: Erstnachweis der Grabwespe Ammoplanus kaszabi Tsuneki, 1972 in Deutschland mit Anmerkungen zur Gattung Ammoplanus (Hymenoptera, Crabronidae) 5-9 ©Ampulex online, Christian Schmid-Egger; download unter http://www.ampulex.de oder www.zobodat.at aMPULEX 1|2011 Saure: Erstnachweis Ammoplanus kaszabi in Deutschland Erstnachweis der Grabwespe Ammoplanus kaszabi Tsuneki, 1972 in Deutschland mit Anmerkungen zur Gattung Ammoplanus (Hymenoptera, Crabronidae) Christoph Saure Büro für tierökologische Studien | Birkbuschstraße 62 | 12167 Berlin | Germany | [email protected] Zusammenfassung Ammoplanus kaszabi Tsuneki, 1972 wurde im Jahr 2007 in Brandenburg (Landkreis Barnim) erstmalig in Deutschland nachgewiesen. Die Fundumstände werden beschrieben und diskutiert. Außerdem wird auf die übrigen in Deutschland vorkommenden Arten der Gattung Ammoplanus eingegangen Summary Christoph Saure: First report of the digger wasp Ammoplanus kaszabi Tsuneki, 1972 in Germany, with remarks on the genus Ammo- planus (Hymenoptera, Crabronidae). The first report of Ammoplanus kaszabi Tsuneki, 1972 in Germany is described and dis-cussed. Furthermore, notes are given on the other species of Ammoplanus occurring in Germany (Hymenoptera, Crabronidae). Einleitung Nachweis, Bestimmung -
Eriogonum Umbellatum Torr
SULPHUR-FLOWER BUCKWHEAT Eriogonum umbellatum Torr. Polygonaceae – Buckwheat family Corey L. Gucker & Nancy L. Shaw | 2019 ORGANIZATION NOMENCLATURE Sulphur-flower buckwheat (Eriogonum Names, subtaxa, chromosome number(s), hybridization. umbellatum) belongs to the Polygonaceae family, Eriogonoideae subfamily, and Oligofonum subgenus (Reveal 2003, 2005). Nomenclature for subtaxa and synonyms follows Reveal (2005). Range, habitat, plant associations, elevation, soils. NRCS Plant Code. ERUM (USDA NRCS 2017). Subtaxa and Synonyms. The sulphur-flower Life form, morphology, distinguishing characteristics, reproduction. buckwheat species “consists of a bewildering assemblage of morphologically differing subgroups, some of which have geographical or ecological correlation” (Welsh et al. 2016). Reveal Growth rate, successional status, disturbance ecology, importance to animals/people. (2005) describes 41 varieties in The Flora of North America (see Appendix 1 for brief descriptions of all varieties; see Appendix 2 for the varieties Current or potential uses in restoration. and their synonyms). Later, however, Reveal (2014, unpublished) described only 21 varieties, suggesting accurate descriptions of the variability in the E. umbellatum complex may require genetic Seed sourcing, wildland seed collection, seed cleaning, storage, analyses. For this review, nomenclature follows the testing and marketing standards. published work of Reveal (2005). Common Names. Sulphur-flower buckwheat, Recommendations/guidelines for producing seed. sulphur flower, umbrella plant, umbrella desert buckwheat (Craighead et al. 1963; Taylor 1992; Reveal 2005). Recommendations/guidelines for producing planting stock. Chromosome Number. Chromosome number is: 2n = 80 (Reveal 2005; Welsh et al. 2016). Recommendations/guidelines, wildland restoration successes/ Hybridization. Most, if not all, sulphur-flower failures. buckwheat varieties hybridize. Where varieties overlap, hybrid swarms and intermediate forms are possible (Hickman 1993; Johnson et al. -
Wasps and Bees in Southern Africa
SANBI Biodiversity Series 24 Wasps and bees in southern Africa by Sarah K. Gess and Friedrich W. Gess Department of Entomology, Albany Museum and Rhodes University, Grahamstown Pretoria 2014 SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 Sep- tember 2004 through the signing into force of the National Environmental Manage- ment: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include respon- sibilities relating to the full diversity of South Africa’s fauna and flora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by, or executed in partnership with SANBI. Technical editing: Alicia Grobler Design & layout: Sandra Turck Cover design: Sandra Turck How to cite this publication: GESS, S.K. & GESS, F.W. 2014. Wasps and bees in southern Africa. SANBI Biodi- versity Series 24. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-73-0 Manuscript submitted 2011 Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved. No part of this book may be reproduced in any form without written per- mission of the copyright owners. The views and opinions expressed do not necessarily reflect those of SANBI. -
Number 337: 1-16 ISSN 1026-051X July 2017 to the KNOWLEDGE of DIGGER WASPS of SUBFAMILY PEMPHREDONINAE (HYMENOPTERA
Number 337: 1-16 ISSN 1026-051X July 2017 https://doi.org/10.25221/fee.337.1 http/urn:lsid:zoobank.org:pub:A11B009D-8BB2-4DB0-976E-A8110CFAFE61 TO THE KNOWLEDGE OF DIGGER WASPS OF SUBFAMILY PEMPHREDONINAE (HYMENOPTERA: CRABRONIDAE) OF RUSSIA M. V. Mokrousov Institute of Biology and Biomedicine at Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia. E-mail: [email protected] Summary. The review of 16 species from five genera is given. Stigmus eurasi- aticus sp. n. and hitherto unknown male of Ammoplanus serratus Tsuneki 1972 are described. Ammoplanus gegen Tsuneki, 1972, Diodontus changaiensis Tsuneki, 1972, D. parvulus (Radoszkowski, 1877), and Psenulus chevrieri (Tournier, 1889) are newly recorded from Russia; the distribution of other species are enlarged or clarified in Russia as in other countries. Entomosericus kaufmani Radoszkowski, 1877 and Ammoplanus transcaspicus Gussakovskij, 1931 are excluded from the list of Russian fauna. Key words: Crabronidae, Pemphredoninae, taxonomy, new species, fauna, new records, Russia. М. В. Мокроусов. К познанию роющих ос подсемейства Pemphredoninae (Hymenoptera: Crabronidae) России // Дальневосточный энтомолог. 2017. N 337. С. 1-16. Резюме. Дан обзор 16 видов из 5 родов подсемейства Pemphredoninae. Описаны Stigmus eurasiaticus sp. n. и ранее неизвестный самец Ammoplanus serratus Tsuneki 1972. Впервые для России указываются Ammoplanus gegen 1 Tsuneki, 1972, Diodontus changaiensis Tsuneki, 1972, D. parvulus (Radoszkowski, 1877) и Psenulus chevrieri (Tournier, 1889), распространение остальных видов расширено или уточнено, как в России, так и в других странах. Entomosericus kaufmani Radoszkowski, 1877 и Ammoplanus transcaspicus Gussakovskij, 1931 исключены из списка видов фауны России. INTRODUCTION Before the completing of the Catalogue of Hymenoptera of Russia the series of the papers with new data on the different wasps of Russian fauna are published (Mokrousov, 2017; Mokrousov, Lelej, 2016; Mokrousov et al., 2016, Lelej et al., 2016a; 2016b; Fateryga, 2017). -
Predation by Insects and Mites
1.2 Predation by insects and mites Maurice W. Sabelis & Paul C.J. van Rijn University of Amsterdam, Section Population Biology, Kruislaan 320, 1098 SM Amsterdam, The Netherlands Predatory arthropods probably play a prominent role in determining the numbers of plant-feeding thrips on plants under natural conditions. Several reviews have been published listing the arthropods observed to feed and reproduce on a diet of thrips. In chronological order the most notable and comprehensive reviews have been presented by Lewis (1973), Ananthakrishnan (1973, 1979, 1984), Ananthakrishnan and Sureshkumar (1985) and Riudavets (1995) (see also general arthropod enemy inventories published by Thompson and Simmonds (1965), Herting and Simmonds (1971) and Fry (1987)). Numerous arthropods, recognised as predators of phytophagous thrips, have proven their capacity to eliminate or suppress thrips populations in greenhouse and field crops of agricultural importance (see chapters 16 and 18 of Lewis, 1997), but a detailed analysis of the relative importance of predators, parasitoids, parasites and pathogens under natural conditions is virtually absent. Such investigations would improve understanding of the mortality factors and selective forces moulding thrips behaviour and life history, and also indicate new directions for biological control of thrips. In particular, such studies may help to elucidate the consequences of introducing different types of biological control agents against different pests and diseases in the same crop, many of which harbour food webs of increasing complexity. There are three major reasons why food web complexity on plants goes beyond one- predator-one-herbivore systems. First, it is the plant that exhibits a bewildering variety of traits that promote or reduce the effectiveness of the predator. -
TIGER-Wasps – a Preliminary Review of the Apoid Wasp Diversity in Thailand (Hymenoptera: Apoidea)
HALLE (SAALE ) 2012 MITT . DTSCH . GES . ALL G . AN G EW . ENT . 18 TIGER-wasps – A preliminary review of the apoid wasp diversity in Thailand (Hymenoptera: Apoidea) Volker Lohrmann, Lukas Kirschey, Stefanie Krause, Meike Schulze & Michael Ohl Museum für Naturkunde Berlin Abstract: Thailand is one of the countries in Southeast Asia with a remarkably rich but fragmentarily known insect diversity. Since its beginning in 2006, the Thailand Inventory Group for Entomological Research, known as the TIGER-group, has collected about 5,400 specimens of apoid wasps. Here we compare the preliminary results of our taxonomic analysis of this large sample with the published species/genus diversity of Thailand. Within the newly collected material, we recorded 57 genera of apoid wasps, with the following 22 genera listed for the first time for Thailand:Ampulicidae: Trirogma; Sphecidae sensu stricto: Chlorion; Crabronidae: Alyssontinae: Astata, Dryudella; Bembicinae: Alysson, Argogorytes, Brachystegus, Gorytes, Harpactus, Synnevrus; Crabroninae: Entomognathus, Lestica, Miscophus, Nitela, Paranysson, Prosopigastra, Solierella; Pemphredoninae: Ammoplanellus, Diodontus, Mimesa, Pemphredon and Psen. Key words: Aculeata, Sphecidae, Crabronidae, Ampulicidae, apoid wasp, digger wasp, Southeast Asia, Oriental region, Thailand, taxonomy, diversity, biogeography. Volker Lohrmann, Lukas Kirschey, Stefanie Krause, Meike Schulze & Michael Ohl, Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Abteilung Forschung, Invalidenstr. 43, D-10115 Berlin; E-Mail: [email protected], [email protected], [email protected], [email protected], [email protected] Introduction Within aculeate Hymenoptera, the ‘apoid’ or ‘sphecid’ wasps (= Apoidea excluding bees) are one of the largest groups of solitary wasps currently comprising 9,666 species in 268 genera (PULAWSKI 2011). -
Parasitoids As Biological Control Agents of Thrips Pests Promotor: Prof
Parasitoids as Biological Control Agents of Thrips Pests Promotor: Prof. dr. J.C. van Lenteren Hoogleraar in de Entomologie, Wageningen Universiteit Promotie Commissie: Prof. dr. L.E.M. Vet, Wageningen Universiteit, Wageningen Dr. B. Aukema, Plantenziektenkundige Dienst, Wageningen Dr. W.J. de Kogel, Plant Research International, Wageningen Prof. dr. H. Eijsackers, Vrije Universiteit, Amsterdam. Parasitoids as Biological Control Agents of Thrips Pests Antoon Loomans Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. Ir. L. Speelman, in het openbaar te verdedigen op maandag 8 september 2003 des namiddags te vier uur in de Aula Loomans, A.J.M. (2003) Parasitoids as Biological Control Agents of Thrips Pests Thesis Wageningen University – with references – with summaries in English, Dutch and Italian Subject headings / Thysanoptera / Frankliniella occidentalis / Hymenoptera / Ceranisus menes / Ceranisus americensis / biological control / ISBN : 90-5808-884-7 to Giorgio Nicoli aan Lois, Romi, Oskar, Viktor & Sofia Contents Chapter 1 Evaluation of hymenopterous parasitoids as biological control agents of 1 thrips pests in protected crops: introduction Chapter 2 Exploration for hymenopterous parasitoids of thrips 45 Chapter 3 Mass-rearing thrips and parasitoids 67 Chapter 4 Host selection by thrips parasitoids: effects of host age, host size and 79 period of exposure on behaviour and development Chapter 5 Host selection by Ceranisus menes and C. americensis: inter- and -
New Record of Carinostigmus Tsuneki (Hymenoptera: Crabronidae: Pemphredoninae) Species in India and Identity of Its Species Using DNA Barcoding
Journal of Biological Control, 33(1): 70-75,2019, DOI: 10.18311/jbc/2019/23007 Volume: 33 No. 1 (March) 2019 Coccinellid beetles from Uttarakhand forests - 1 Spider fauna in maize ecosystem - 27 Research Article New Record of Carinostigmus Tsuneki (Hymenoptera: Crabronidae: Pemphredoninae) species in India and identity of its species using DNA barcoding R. GANDHI GRACY, K. SRINIVASA MURTHY and T. VENKATESAN Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources,Bangalore - 560024, Karnataka, India *Corresponding author E-mail: [email protected]; [email protected] ABSTRACT: Specimens of the aphid hunting wasp Carinostigmus Tsuneki (Hymenoptera: Crabronidae: Pemphredoninae) were collected from South India. Morphological identification revealed three species, and one of them, C. griphus Krombein, is new for India. Identification of the species is supported through COI partial gene-DNA Barcoding. KEY WORDS: Carinostigmus, DNA barcoding, molecular phylogeny, sphecidae (Article chronicle: Received: 07-01-2019; Revised: 15-03-2019; Accepted: 18-03-2019) INTRODUCTION (1984) revised the species of Carinostigmus from Sri Lanka (Ceylon) and provided a key for species identification. He The Aphid hunting wasp genus Carinostigmus described two new species, C. costatus and C. griphus. Tsuneki 1954 belongs to the family Crabronidae, subfamily C. costatus was alsoreported from South India. His Pemphredoninae, tribe Pemphredonini, subtribe Stigmina. descriptions are based on male and female characters; Species in the Stigmina are among the smallest within however, the females of C. congruus and C. griphus are Crabronidae, with the adults of Carinostigmus varying morphologically difficult to distinguish. from 4.0 to 6. 5 mm in length, apart from Ammoplanus and Spilomena of subtribes Ammoplanina and Spilomenina, In this study, the authors reports the occurrence of respectively. -
Sphecos: a Forum for Aculeate Wasp Researchers
SPHECOS Number 4 - January 1981 A Newsletter for Aculeate Wasp Researchers Arnold S. Menke, editor Systematic Entomology Laboratory, USDA c/o u. S. National Museum of Natural History washington DC 20560 Notes from the Editor This issue of Sphecos consists mainly of autobiographies and recent literature. A highlight of the latter is a special section on literature of the vespid subfamily Vespinae compiled and submitted by Robin Edwards (seep. 41). A few errors in issue 3 have been brought to my attention. Dr. Mickel was declared to be a "multillid" expert on page l. More seriously, a few typographical errors crept into Steyskal's errata paper on pages 43-46. The correct spellings are listed below: On page 43: p. 41 - Aneusmenus --- p. 108 - Zaschizon:t:x montana and z. Eluricincta On page 45: p. 940 - ----feminine because Greek mastix --- p. 1335 - AmEl:t:oEone --- On page 46: p. 1957 - Lasioglossum citerior My apologies to Dr. Mickel and George Steyskal. I want to thank Helen Proctor for doing such a fine job of typing the copy for Sphecos 3 and 4. Research News Ra:t:mond Wah is, Zoologie generale et Faunistique, Faculte des Sciences agronomiques, 5800 GEMBLOUX, Belgium; home address: 30 rue des Sept Collines 4930 CHAUDFONTAINE, Belgium (POMPILIDAE of the World), is working on a revision of the South American genus Priochilus and is also preparing an annotated key of the members of the Tribe Auplopodini in Australia (AuElOEUS, Pseudagenia, Fabriogenia, Phanagenia, etc.). He spent two weeks in London (British Museum) this summer studying type specimens and found that Turner misinterpreted all the old species and that his key (1910: 310) has no practical value. -
Scientific Papers
QL 568 .S7 M35 1999 Scientific Papers Natural History Museum The University of Kansas 10 December 1999 Number 14:1-55 Phylogenetic Relationships and Classification of the Major Lineages of Apoidea (Hymenoptera), with Emphasis on the Crabronid Wasps 1 By Gabriel A. R. Melo2 Division of Entomology, Natural History Museum The University of Kansas, Lawrence, Kansas 66045, USA CONTENTS ABSTRACT 2 INTRODUCTION 2 Classification and Phylogenetic Relationships within the Apoidea 2 The Present Study 4 Acknowledgments 4 MATERIAL AND METHODS 4 Selection of Representative Taxa 4 Dissection of Adult Specimens 6 Character Selection and Delimitation 6 Terminology 8 Larval and Behavioral Characters 8 Data Analysis 8 CHARACTERS AND CODES FOR THEIR STATES II RESULTS 23 DISCUSSION 23 Choice of Analytical Method 23 Apoidea and its basal clades 26 Heterogynaidae 34 Ampulicidae 34 'Contribution Number 3234 from the Snow Entomological Division. Natural History Museum, and Department of Entomology, The University of Kansas. -Present address: Departamento de Biologia, FFCLRP.Universidade de Sao Paulo. Av. Bandeirantes 3900.14040-901, Ribeirao Preto, SP, Brazil. ISSN No. 1094-0782 © Natural History Museum, The University of Kansas QL 568 .S7 M3 5 1999 Scientific Papers Natural History Museum The University of Kansas 10 December 1999 Number 14:1-55 Phylogenetic Relationships and Classification of the Major Lineages of Apoidea (Hymenoptera), with Emphasis on the Crabronid Wasps 1 By Gabriel A. R. Melo2 Division of Entomology, Natural History Museum The University -
Phylogenomic Analysis of Apoidea Sheds New Light on the Sister Group of Bees Manuela Sann1,2,3* , Oliver Niehuis2,3, Ralph S
Sann et al. BMC Evolutionary Biology (2018) 18:71 https://doi.org/10.1186/s12862-018-1155-8 RESEARCH ARTICLE Open Access Phylogenomic analysis of Apoidea sheds new light on the sister group of bees Manuela Sann1,2,3* , Oliver Niehuis2,3, Ralph S. Peters4, Christoph Mayer2, Alexey Kozlov5, Lars Podsiadlowski2, Sarah Bank6, Karen Meusemann2,3, Bernhard Misof2, Christoph Bleidorn6,7 and Michael Ohl1* Abstract Background: Apoid wasps and bees (Apoidea) are an ecologically and morphologically diverse group of Hymenoptera, with some species of bees having evolved eusocial societies. Major problems for our understanding of the evolutionary history of Apoidea have been the difficulty to trace the phylogenetic origin and to reliably estimate the geological age of bees. To address these issues, we compiled a comprehensive phylogenomic dataset by simultaneously analyzing target DNA enrichment and transcriptomic sequence data, comprising 195 single-copy protein-coding genes and covering all major lineages of apoid wasps and bee families. Results: Our compiled data matrix comprised 284,607 nucleotide sites that we phylogenetically analyzed by applying a combination of domain- and codon-based partitioning schemes. The inferred results confirm the polyphyletic status of the former family “Crabronidae”, which comprises nine major monophyletic lineages. We found the former subfamily Pemphredoninae to be polyphyletic, comprising three distantly related clades. One of them, Ammoplanina, constituted the sister group of bees in all our analyses. We estimate the origin of bees to be in the Early Cretaceous (ca. 128 million years ago), a time period during which angiosperms rapidly radiated. Finally, our phylogenetic analyses revealed that within the Apoidea, (eu)social societies evolved exclusively in a single clade that comprises pemphredonine and philanthine wasps as well as bees.