Asteroid Systems: Binaries, Triples, and Pairs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Template for Two-Page Abstracts in Word 97 (PC)
3rd WORKSHOP ON BINARIES IN THE SOLAR SYSTEM Hawaii, the Big Island (USA). June 30 – July 2, 2013 POPULATION OF SMALL ASTEROID SYSTEMS - WE ARE STILL IN A SURVEY PHASE. P. Pravec, P. Scheirich, P. Kušnirák, K. Hornoch, A. Galád, Astronomical Institute AS CR, Fričova 298, 251 65 Ondřejov, Czech Republic, [email protected]. Introduction: Despite major achievements ob- tively. Arlon and (32039) both show two rotational tained during the past 15 years, our knowledge of the lightcurve components with shorter periods (5.15 and population and properties of small binary and multiple 18.2 h for Arlon, and 3.3 or 6.6 and 11.1 h for 32039), asteroid systems is still far from advanced. There is a but Iwamoto shows what appears to be a synchronous numerous indirect evidence that most small asteroid rotation lightcurve - very curious, considering its esti- systems were formed by rotational fission of cohesion- mated tidal synchronization time much longer than the less parent asteroids that were spun up to the critical age of the Solar System. The satellites of all the three frequency presumably by YORP, but details of the systems are large, with D2/D1 between 0.5 and 1. Have process are lacking. Furthermore, as we proceed with the three unusual systems been formed by rotational observations of more and more asteroids, we find new fission like the majority of (closer) systems with typi- significant things that we did not know before. We will cally smaller satellites that we predominantly observe? review a few such observations. How were they moved to their current relatively wide Primaries of asteroid pairs being binary (or ter- orbits? Given their placement in the Hic sunt leones nary) themselves: The case of (3749) Balam was gap of the Porb-D1 space where both the photometric identified by Vokrouhlický [1, and references therein] . -
Comet Hitchhiker
Comet Hitchhiker NIAC Phase I Final Report June 30, 2015 Masahiro Ono, Marco Quadrelli, Gregory Lantoine, Paul Backes, Alejandro Lopez Ortega, H˚avard Grip, Chen-Wan Yen Jet Propulsion Laboratory, California Institute of Technology David Jewitt University of California, Los Angeles Copyright 2015. All rights reserved. Mission Concept - Pre-decisional - for Planning and Discussion Purposes Only. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, and in part at University of California, Los Angeles. Comet Hitchhiker NASA Innovative Advanced Concepts Preface Yes, of course the Hitchhiker’s Guide to the Galaxy was in my mind when I came up with a concept of a tethered spacecraft hitching rides on small bodies, which I named Comet Hitchhiker. Well, this NASA-funded study is not exactly about traveling through the Galaxy; it is rather about exploring our own Solar System, which may sound a bit less exciting than visiting extraterrestrial civilizations, building a hyperspace bypass, or dining in the Restaurant at the End of the Universe. However, for the “primitive ape-descended life forms that have just begun exploring the universe merely a half century or so ago, our Solar System is still full of intellectually inspiring mysteries. So far the majority of manned and unmanned Solar System travelers solely depend on a fire breathing device called rocket, which is known to have terrible fuel efficiency. You might think there is no way other than using the gas-guzzler to accelerate or decelerate in an empty vacuum space. -
Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals. -
Observing Water in Our Solar System
Observing water in our Solar System Colin Snodgrass Ice in our Solar System www.nightsky.ie www.nightsky.ie 250 K 150 K 50 K Equilibrium temperature drops with distance ( d-½ ) Present day snow line is at ~2.7 AU from Sun, in asteroid belt. Ice exists on surfaces in Kuiper Belt. In inner solar system, sublimation drives cometary activity. Kuiper Belt Objects – Haumea Spectroscopy of KBOs, particularly in the NIR, reveals differences in their surface ices. Haumea ‘family’ have spectra that match almost pure water ice. Remains from a collision. We used the VLT+Hawk-I to identify ices on potential family members using photometry. Snodgrass et al 2010, Carry et al (submitted) Further Family Members Ragozzine & Brown (2007, AJ 134, p2160) published a list of further family member candidates selected on dynamical grounds. The orbits in the TN region (and interactions with resonances) make this difficult to do. Need to confirm that they share the same water ice surface to be true family members. However, most are too faint for the NIR spectroscopy that can unambiguously detect water ice. Water Ice Detection We use HAWK-I at the VLT to perform J and CH4 band photometry, using the CH4 band as a narrower H band. We confirm that our measurements of (J-Hs) are sensitive to water ice. We measured this colour for 18 objects. 6 are objects previously claimed as family members - they have strongly negative (J-Hs). 2 other objects are confirmed as family members, 2003 SQ317 and 2005 CB79. The remaining 10 (including non-candidate Eris, observed for comparison) have positive values and we rule out water ice surfaces. -
Absolute Magnitudes of Asteroids and a Revision of Asteroid Albedo Estimates from WISE Thermal Observations ⇑ Petr Pravec A, , Alan W
Icarus 221 (2012) 365–387 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations ⇑ Petr Pravec a, , Alan W. Harris b, Peter Kušnirák a, Adrián Galád a,c, Kamil Hornoch a a Astronomical Institute, Academy of Sciences of the Czech Republic, Fricˇova 1, CZ-25165 Ondrˇejov, Czech Republic b 4603 Orange Knoll Avenue, La Cañada, CA 91011, USA c Modra Observatory, Department of Astronomy, Physics of the Earth, and Meteorology, FMFI UK, Bratislava SK-84248, Slovakia article info abstract Article history: We obtained estimates of the Johnson V absolute magnitudes (H) and slope parameters (G) for 583 main- Received 27 February 2012 belt and near-Earth asteroids observed at Ondrˇejov and Table Mountain Observatory from 1978 to 2011. Revised 27 July 2012 Uncertainties of the absolute magnitudes in our sample are <0.21 mag, with a median value of 0.10 mag. Accepted 28 July 2012 We compared the H data with absolute magnitude values given in the MPCORB, Pisa AstDyS and JPL Hori- Available online 13 August 2012 zons orbit catalogs. We found that while the catalog absolute magnitudes for large asteroids are relatively good on average, showing only little biases smaller than 0.1 mag, there is a systematic offset of the cat- Keywords: alog values for smaller asteroids that becomes prominent in a range of H greater than 10 and is partic- Asteroids ularly big above H 12. The mean (H H) value is negative, i.e., the catalog H values are Photometry catalog À Infrared observations systematically too bright. -
Binary Asteroids in the Near-Earth Synchronous and Asynchronous to the Satellites Population As Well
Asteroid Systems: Binaries, Triples, and Pairs Jean-Luc Margot University of California, Los Angeles Petr Pravec Astronomical Institute of the Czech Republic Academy of Sciences Patrick Taylor Arecibo Observatory Benoˆıt Carry Institut de Mecanique´ Celeste´ et de Calcul des Eph´ em´ erides´ Seth Jacobson Coteˆ d’Azur Observatory In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main belt binaries have been identified. The current observational evidence confirms that small (.20 km) binaries form by rotational fission and establishes that the YORP effect powers the spin-up process. A unifying paradigm based on rotational fission and post-fission dynamics can explain the formation of small binaries, triples, and pairs. Large(&20 km) binaries with small satellites are most likely created during large collisions. 1. INTRODUCTION composition and internal structure of minor plan- ets. Binary systems offer opportunities to mea- 1.1. Motivation sure thermal and mechanical properties, which are generally poorly known. Multiple-asteroid systems are important be- The binary and triple systems within near- cause they represent a sizable fraction of the aster- Earth asteroids (NEAs), main belt asteroids oid population and because they enable investiga- (MBAs), and trans-Neptunian objects (TNOs) ex- tions of a number of properties and processes that hibit a variety of formation mechanisms (Merline are often difficult to probe by other means. The et al. 2002c; Noll et al. -
The Planetary and Lunar Ephemeris DE 421
IPN Progress Report 42-178 • August 15, 2009 The Planetary and Lunar Ephemeris DE 421 William M. Folkner,* James G. Williams,† and Dale H. Boggs† The planetary and lunar ephemeris DE 421 represents updated estimates of the orbits of the Moon and planets. The lunar orbit is known to submeter accuracy through fitting lunar laser ranging data. The orbits of Venus, Earth, and Mars are known to subkilometer accu- racy. Because of perturbations of the orbit of Mars by asteroids, frequent updates are needed to maintain the current accuracy into the future decade. Mercury’s orbit is determined to an accuracy of several kilometers by radar ranging. The orbits of Jupiter and Saturn are determined to accuracies of tens of kilometers as a result of spacecraft tracking and modern ground-based astrometry. The orbits of Uranus, Neptune, and Pluto are not as well deter- mined. Reprocessing of historical observations is expected to lead to improvements in their orbits in the next several years. I. Introduction The planetary and lunar ephemeris DE 421 is a significant advance over earlier ephemeri- des. Compared with DE 418, released in July 2007,1 the DE 421 ephemeris includes addi- tional data, especially range and very long baseline interferometry (VLBI) measurements of Mars spacecraft; range measurements to the European Space Agency’s Venus Express space- craft; and use of current best estimates of planetary masses in the integration process. The lunar orbit is more robust due to an expanded set of lunar geophysical solution parameters, seven additional months of laser ranging data, and complete convergence. -
The British Astronomical Association Handbook 2014
THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2015 2014 October ISSN 0068–130–X CONTENTS CALENDAR 2015 . 2 PREFACE . 3 HIGHLIGHTS FOR 2015 . 4 SKY DIARY . .. 5 VISIBILITY OF PLANETS . 6 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 7-8 ECLIPSES . 9-14 TIME . 15-16 EARTH AND SUN . 17-19 LUNAR LIBRATION . 20 MOON . 21 MOONRISE AND MOONSET . 21-25 SUN’S SELENOGRAPHIC COLONGITUDE . 26 LUNAR OCCULTATIONS . 27-33 GRAZING LUNAR OCCULTATIONS . 34-35 APPEARANCE OF PLANETS . 36 MERCURY . 37-38 VENUS . 39 MARS . 40-41 ASTEROIDS . 42 ASTEROID EPHEMERIDES . 43-47 ASTEROID OCCULTATIONS .. 48-50 NEO CLOSE APPROACHES TO EARTH . 51 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 52-54 JUPITER . 55-59 SATELLITES OF JUPITER . 59-63 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 64-73 SATURN . 74-77 SATELLITES OF SATURN . 78-81 URANUS . 82 NEPTUNE . 83 TRANS–NEPTUNIAN & SCATTERED DISK OBJECTS . 84 DWARF PLANETS . 85-88 COMETS . 89-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (V Bootis) . 103-105 EPHEMERIDES OF DOUBLE STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 PLANETS – EXPLANATION OF TABLES . 110 ELEMENTS OF PLANETARY ORBITS . 111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 111-112 INTERNET RESOURCES . 113-114 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS . 116 ERRATA . 116 Front Cover: The Moon at perigee and apogee – highlighting the clear size difference when the Moon is closest and farthest away from the Earth. Perigee on 2009/11/08 at 23:24UT, distance -
The Minor Planet Bulletin Semi-Major Axis of 2.317 AU, Eccentricity 0.197, Inclination 7.09 (Warner Et Al., 2018)
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 45, NUMBER 3, A.D. 2018 JULY-SEPTEMBER 215. LIGHTCURVE ANALYSIS FOR TWO NEAR-EARTH 320ʺ/min during the close approach. The eclipse was observed, ASTEROIDS ECLIPSED BY EARTH’S SHADOW within minutes of the original prediction. Preliminary rotational and eclipse lightcurves were made available soon after the close Peter Birtwhistle approach (Birtwhistle, 2012; Birtwhistle, 2013; Miles, 2013) but it Great Shefford Observatory should be noted that a possible low amplitude 8.7 h period (Miles, Phlox Cottage, Wantage Road 2013) has been discounted in this analysis. Great Shefford, Berkshire, RG17 7DA United Kingdom Several other near-Earth asteroids are known to have been [email protected] eclipsed by the Earth’s shadow, e.g. 2008 TC3 and 2014 AA (both before impacting Earth), 2012 KT42, and 2016 VA (this paper) (Received 2018 March18) but internet searches have not found any eclipse lightcurves. The asteroid lightcurve database (LCDB; Warner et al., 2009) lists a Photometry was obtained from Great Shefford reference to an unpublished result for 2012 XE54 by Pollock Observatory of near-Earth asteroids 2012 XE54 in 2012 (2013) without lightcurve details, but these have been provided on and 2016 VA in 2016 during close approaches. A request and give the rotation period as 0.02780 ± 0.00002 h, superfast rotation period has been determined for 2012 amplitude 0.33 mag derived from 101 points over a period of 30 XE54 and H-G magnitude system coefficients have been minutes for epoch 2012 Dec 10.2 UT at phase angle 19.5°, estimated for 2016 VA. -
Orbit Determination of Eclipsing Binary Asteroids from Photometry
Orbit determination of eclipsing binary asteroids from photometry Petr Scheirich, Petr Pravec Ondrejov obs., Czech Republic and many observers Orbiting couples: "pas de deux" in the Solar System and the Milky Way Paris, October 10-12, 2011 Lightcurve of ordinary asteroid First binaries resolved from photometry 1994 AW1 (Pravec and Hahn, 1997) First binaries resolved from photometry 1996 FG3 (Pravec et al, 2000) Asynchronous binary Models of binaries derived from photometry • 10 NEA binaries (22 oppositions) • 15 MBA binaries (33 oppositions) Where all the data come from? 2006 Why to do photometry of binaries? Why to do photometry of binaries? • poles distribution • dynamical evolution Lightcurve of binary asteroid Primary Secondary Primary event Secondary event Long-period component extraction L.p. component = mutual events + rotation of secondary (The long period component of) Lightcurve simulation – the direct problem Input parameters: • Heliocentric orbit geometry • Keplerian elements of mutual orbit (circular, eccentric) • Shape and size ratio of components • Scattering law Two-axis ellipsoids or any arbitrary shape approximated by polyhedra with triangular facets The lightcurve of the system is computed using simple ray-traycing code. The inverse problem Fitted parameters: • Keplerian elements of mutual orbit: • a/Ap – semimajor axis • lP – ecl. longitude of orbit’s pole • bP – ecl. latitude of orbit’s pole • Porb – sidereal orbital period • L0 – mean length of secondary at given epoch • e – eccentricity • w – argument of pericenter • Shape and size ratio of components: • flattening of primary Ap /Cp, • elongation of secondary As /Cs, • size ratio of both bodies As / Ap Pre-estimates of initial parameters • Synodic orbital period • Components size ratio Pre-estimates of initial parameters Sidereal orbital period and L0 (argument of mean length of secondary for JD0): Visual identification of contacts: Time-increasing L of contacts should lie on a straight line defined by where n = 2/Psid. -
The Minor Planet Bulletin Lost a Friend on Agreement with That Reported by Ivanova Et Al
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 33, NUMBER 3, A.D. 2006 JULY-SEPTEMBER 49. LIGHTCURVE ANALYSIS FOR 19848 YEUNGCHUCHIU Kwong W. Yeung Desert Eagle Observatory P.O. Box 105 Benson, AZ 85602 [email protected] (Received: 19 Feb) The lightcurve for asteroid 19848 Yeungchuchiu was measured using images taken in November 2005. The lightcurve was found to have a synodic period of 3.450±0.002h and amplitude of 0.70±0.03m. Asteroid 19848 Yeungchuchiu was discovered in 2000 Oct. by the author at Desert Beaver Observatory, AZ, while it was about one degree away from Jupiter. It is named in honor of my father, The amplitude of 0.7 magnitude indicates that the long axis is Yeung Chu Chiu, who is a businessman in Hong Kong. I hoped to about 2 times that of the shorter axis, as seen from the line of sight learn the art of photometry by studying the lightcurve of 19848 as at that particular moment. Since both the maxima and minima my first solo project. have similar “height”, it’s likely that the rotational axis was almost perpendicular to the line of sight. Using a remote 0.46m f/2.8 reflector and Apogee AP9E CCD camera located in New Mexico Skies (MPC code H07), images of Many amateurs may have the misconception that photometry is a the asteroid were obtained on the nights of 2005 Nov. 20 and 21. very difficult science. After this learning exercise I found that, at Exposures were 240 seconds. -
Get the Following Analytical Formula: During Their Approaches to Earth
(This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Icarus 218 (2012) 125–143 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Binary asteroid population. 2. Anisotropic distribution of orbit poles of small, inner main-belt binaries ⇑ P. Pravec a, , P. Scheirich a, D. Vokrouhlicky´ b, A.W. Harris c, P. Kušnirák a, K. Hornoch a, D.P. Pray d, D. Higgins e, A. Galád a,f, J. Világi f, Š. Gajdoš f, L. Kornoš f, J. Oey g, M. Husárik h, W.R. Cooney i, J. Gross i, D. Terrell i,j, R. Durkee k, J. Pollock l, D.E. Reichart m, K. Ivarsen m, J. Haislip m, A. LaCluyze m, Yu. N. Krugly n, N. Gaftonyuk o, R.D. Stephens p, R. Dyvig q, V. Reddy r, V. Chiorny n, O. Vaduvescu s,t, P.