The Parasitic 68-Mer Peptide Fhhdm-1 Inhibits Mixed Granulocytic Inflammation and Airway Hyperreactivity in Experimental Asthma

Total Page:16

File Type:pdf, Size:1020Kb

The Parasitic 68-Mer Peptide Fhhdm-1 Inhibits Mixed Granulocytic Inflammation and Airway Hyperreactivity in Experimental Asthma The Parasitic 68-mer Peptide FhHDM-1 inhibits mixed granulocytic inflammation and airway hyperreactivity in experimental asthma Tanaka, A., Allam, V., Simpson, J., Tiberti, N., Shiels, J., To, J., Lund, M., Combes, V., Weldon, S., Taggart, C., Dalton, J., Phipps, S., Sukkar, M., & Donnelly, S. (2018). The Parasitic 68-mer Peptide FhHDM-1 inhibits mixed granulocytic inflammation and airway hyperreactivity in experimental asthma. Journal of Allergy and Clinical Immunology, 141(6), 2316-2319. https://doi.org/10.1016/j.jaci.2018.01.050 Published in: Journal of Allergy and Clinical Immunology Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2018 Elsevier. This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:04. Oct. 2021 Accepted Manuscript The Parasitic 68-mer Peptide FhHDM-1 inhibits mixed granulocytic inflammation and airway hyperreactivity in experimental asthma Akane Tanaka, BSc, Venkata Sita Rama Raju Allam, MS Pharm, Jennifer Simpson, BBiomedSc, Natalia Tiberti, PhD, Jenna Shiels, BSc, Joyce To, BSc, Maria Lund, PhD, Valery Combes, PhD, Sinead Weldon, PhD, Cliff Taggart, PhD, John P. Dalton, PhD, Simon Phipps, PhD, Maria B. Sukkar, PhD, Sheila Donnelly, PhD PII: S0091-6749(18)30330-0 DOI: 10.1016/j.jaci.2018.01.050 Reference: YMAI 13346 To appear in: Journal of Allergy and Clinical Immunology Received Date: 21 April 2017 Revised Date: 30 December 2017 Accepted Date: 22 January 2018 Please cite this article as: Tanaka A, Allam VSRR, Simpson J, Tiberti N, Shiels J, To J, Lund M, Combes V, Weldon S, Taggart C, Dalton JP, Phipps S, Sukkar MB, Donnelly S, The Parasitic 68-mer Peptide FhHDM-1 inhibits mixed granulocytic inflammation and airway hyperreactivity in experimental asthma, Journal of Allergy and Clinical Immunology (2018), doi: 10.1016/j.jaci.2018.01.050. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 The Parasitic 68-mer Peptide FhHDM-1 inhibits mixed granulocytic inflammation and 2 airway hyperreactivity in experimental asthma 3 4 Clinical Implications : 5 Peptides secreted by parasitic worms (helminths) have potential in the treatment of asthma and 6 other respiratory conditions in which eosinophilic and/or neutrophilic inflammation plays a 7 pathological role. 8 9 Capsule Summary 10 A peptide derived from the parasitic worm Fasciola hepatica inhibits eosinophilic and neutrophilic 11 airway inflammation, mucus production and airway hyperreactivity in a murine model of house 12 dust mite induced asthma. 13 14 Key Words: MANUSCRIPT 15 Helminth, Macrophage, House Dust Mite, Lipopolysacc haride, HMGB1, IL-17, Neutrophils, 16 Eosinophils 17 18 Abbreviations: 19 BALF Bronchoalveolar lavage fluid 20 BMDM Bone marrow derived macrophage 21 FhHDM-1 Fasciola hepatica helminth defense molecule 22 LPS LipopolysaccharideACCEPTED 23 IPA Ingenuity Pathway Analysis 24 25 26 ACCEPTED MANUSCRIPT 27 Funding: 28 A Tanaka is supported by an Australian Government Research Training Program Scholarship. 29 VSRR Allam is supported by a University of Technology Sydney Postgraduate Research 30 Scholarship. N Tiberti is supported by the Swiss National Science Foundation (grant n. 31 P300PA_164715). C Taggart and S Weldon are supported by the Medical Research Council. JP 32 Dalton is funded by grants from a European Research Council Advanced Grant (HELIVAC, 33 322725) and is a member of the Horizon 2020-funded Consortium PARAGONE. S Donnelly is 34 funded by the National Health and Medical Research Council Australia (APP1087341). 35 36 Conflicts of Interest: None 37 38 Corresponding Author: 39 A/Prof Sheila Donnelly 40 School of Life Sciences MANUSCRIPT 41 University of Technology, Sydney 42 PO Box 123, 43 Ultimo 2007, NSW, Australia 44 Email: [email protected] 45 Fax: +61 2 9514 8206 46 47 48 ACCEPTED 49 50 51 52 To the Editor, ACCEPTED MANUSCRIPT 53 During infection of their mammalian hosts, parasitic worms (helminths) secrete molecules which 54 modulate the host immune response towards a regulatory phenotype. This ensures the long-term 55 survival of the parasite within its host and also prevents excessive tissue damage mediated by 56 inflammatory immune responses. We reported the identification of a novel immunomodulatory 68- 57 mer peptide secreted by the animal and human parasite Fasciola hepatica , termed F. hepatica 58 helminth defense molecule 1 (FhHDM-1) 1. More recently, we showed that FhHDM-1 ameliorates 59 disease in pre-clinical murine models of type 1 diabetes and multiple sclerosis and therefore 60 represents a new bio-active peptide with potential as a novel anti-inflammatory pharmacological 61 therapeutic 2. 62 63 The mechanism by which FhHDM-1 protects against immune-related inflammatory disorders is yet 64 to be fully elucidated. In studies thus far, we have shown that FhHDM-1 preferentially binds to 65 macrophages over neutrophils and lymphocytes whenMANUSCRIPT administered into the peritoneal cavity of 66 immune competent mice 2. Additionally, the peptide inhibits pro-inflammatory cytokine release in 67 murine and human macrophages in vitro 2, 3 . To pin-point the molecular pathways by which 68 FhHDM-1 exerts its anti-inflammatory effects, we examined global transcriptional changes in 69 murine (Balb/c) bone marrow derived macrophages (BMDMs) treated with a synthetic form of 70 FhHDM-1 for 1 h prior to stimulation with bacterial LPS for either 6 or 24 h. Gene expression was 71 profiled on Agilent microarrays containing probes for 41,346 mouse coding transcripts. This 72 analysis revealed that FhHDM-1 treatment enhanced the expression of 1,363 LPS-regulated genes, 73 and decreased the expressionACCEPTED of 1,491 genes by ≥ 2 fold at 6 h. At 24 h, the expression of 988 LPS- 74 regulated genes was increased and 1,292 genes was decreased by ≥ 2 fold (Fig 1A; Online 75 Repository Table 1). Differentially (-2>fold-change>2, P <0.05 with 5% false discovery rate) 76 expressed genes were analysed using Ingenuity Pathway Analysis (IPA) to identify signalling 77 pathways putatively regulated by FhHDM-1 (Fig 1B). Within the top 20 significantly altered 78 pathways, 16 associated with theA CCEPTEDactivation of MANUSCRIPT pro-inflammatory responses were repressed by 79 FhHDM-1, consistent with its potent anti-inflammatory activity. Notably, IPA analysis predicted 80 that FhHDM-1 inhibits high-mobility group box-1 (HMGB1) signalling and IL-17 mediated allergic 81 inflammation (Fig 1B). The anti-inflammatory effect of the peptide was not specific to Balb/c 82 mice, as BMDMs derived from C57BL6 mice treated with FhHDM-1 showed the same pattern of 83 cytokine suppression in response to LPS (Online Repository Fig E2). 84 85 We have previously shown that HMGB1 is an upstream mediator of the allergic asthmatic response 86 in mice 4, and that neutralisation of this protein protects against allergen-induced eosinophilic and 87 neutrophilic inflammation in experimental asthma 4. IL-17 mediates neutrophilic recruitment to sites 88 of inflammation and is implicated in the neutrophilic asthma phenotype which is relatively resistant 89 to treatment with corticosteroids 5. Accordingly, we hypothesised that FhHDM-1 has therapeutic 90 potential in allergic asthma, and that it would protect against both eosinophilic and neutrophilic 91 responses. MANUSCRIPT 92 93 94 To test our hypothesis, we employed an experimental mouse model of house-dust mite (HDM) 95 induced allergic asthma, as this model elicits a mixed granulocytic inflammatory response 4. 96 C57BL6 mice were sensitized to house dust mite extracts (100 µg) or saline intranasally, and after 2 97 weeks, were challenged daily with house dust mite extracts (5 µg) or saline, respectively, for 4 days 98 (See study design, Fig 2A). Mice received an intravenous injection of FhHDM-1 (5, 10 or 25 µg 99 dose) 30 min prior to each house dust mite exposure during the challenge period only. For 100 comparison, mice ACCEPTEDwere also treated with a homologous helminth defense molecule derived from 101 Schistosoma mansoni (SmHDM-2) or vehicle control (PBS). FhHDM-1, at both the 10 and 25 µg 102 dose significantly attenuated allergen induced eosinophil, neutrophil and lymphocyte numbers in 103 the BALF (Fig 2B). This effect was specific to FhHDM-1, as neither SmHDM-2 nor PBS had any 104 effect on airway inflammation. 105 ACCEPTED MANUSCRIPT 106 Consistent with this anti-inflammatory effect, FhHDM-1 at both the 10 and 25 µg dose significantly 107 attenuated allergen-induced airway hyper-reactivity (Fig 2C, Online Repository Fig E3). FhHDM-1 108 also significantly reduced histological evidence of tissue inflammation and mucus production (Fig 109 2D).
Recommended publications
  • Calpain-5 Gene Expression in the Mouse Eye and Brain
    Schaefer et al. BMC Res Notes (2017) 10:602 DOI 10.1186/s13104-017-2927-8 BMC Research Notes RESEARCH NOTE Open Access Calpain‑5 gene expression in the mouse eye and brain Kellie Schaefer1, MaryAnn Mahajan1, Anuradha Gore1, Stephen H. Tsang3, Alexander G. Bassuk4 and Vinit B. Mahajan1,2* Abstract Objective: Our objective was to characterize CAPN5 gene expression in the mouse central nervous system. Mouse brain and eye sections were probed with two high-afnity RNA oligonucleotide analogs designed to bind CAPN5 RNA and one scramble, control oligonucleotide. Images were captured in brightfeld. Results: CAPN5 RNA probes were validated on mouse breast cancer tumor tissue. In the eye, CAPN5 was expressed in the ganglion cell, inner nuclear and outer nuclear layers of the retina. Signal could not be detected in the ciliary body or the iris because of the high density of melanin. In the brain, CAPN5 was expressed in the granule cell layers of the hippocampus and cerebellum. There was scattered expression in pons. The visual cortex showed faint signal. Most signal in the brain was in a punctate pattern. Keywords: CAPN5, Calpain, In situ hybridization, Retina, Brain, Gene expression Introduction pigmentosa, retinal neovascularization, and proliferative Calpain-5 (CAPN5) is a member of the calpain family of retinopathy. Which ultimately leads to blindness [20]. calcium-activated proteases that target a variety of path- Currently there is no treatment. ways to exert control over numerous processes, includ- An important question to understanding how CAPN5 ing tissue necrosis, cytoskeletal remodeling, cell-cycle leads to disease is identifying which tissues CAPN5 is control, cell migration, myofbril turnover, regulation expressed in and the levels of CAPN5 in those tissues.
    [Show full text]
  • Discovery of Endoplasmic Reticulum Calcium Stabilizers to Rescue ER-Stressed Podocytes in Nephrotic Syndrome
    Discovery of endoplasmic reticulum calcium stabilizers to rescue ER-stressed podocytes in nephrotic syndrome Sun-Ji Parka, Yeawon Kima, Shyh-Ming Yangb, Mark J. Hendersonb, Wei Yangc, Maria Lindahld, Fumihiko Uranoe, and Ying Maggie Chena,1 aDivision of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; bNational Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850; cDepartment of Genetics, Washington University School of Medicine, St. Louis, MO 63110; dInstitute of Biotechnology, University of Helsinki, Helsinki, Finland 00014; and eDivision of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 Edited by Martin R. Pollak, Beth Israel Deaconess Medical Center, Brookline, MA, and approved May 28, 2019 (received for review August 16, 2018) Emerging evidence has established primary nephrotic syndrome activating transcription factor 6 (ATF6), which act as proximal (NS), including focal segmental glomerulosclerosis (FSGS), as a sensors of ER stress. ER stress activates these sensors by inducing primary podocytopathy. Despite the underlying importance of phosphorylation and homodimerization of IRE1α and PERK/ podocyte endoplasmic reticulum (ER) stress in the pathogenesis of eukaryotic initiation factor 2α (eIF2α), as well as relocalization of NS, no treatment currently targets the podocyte ER. In our mono- ATF6 to the Golgi, where it is cleaved by S1P/S2P proteases from genic podocyte ER stress-induced NS/FSGS mouse model, the 90 kDa to the active 50-kDa ATF6 (8), leading to activation of podocyte type 2 ryanodine receptor (RyR2)/calcium release channel their respective downstream transcription factors, spliced XBP1 on the ER was phosphorylated, resulting in ER calcium leak and (XBP1s), ATF4, and p50ATF6 (8–10).
    [Show full text]
  • Towards Therapy for Batten Disease
    Towards therapy for Batten disease Mariana Catanho da Silva Vieira MRC Laboratory for Molecular Cell Biology University College London PhD Supervisor: Dr Sara E Mole A thesis submitted for the degree of Doctor of Philosophy University College London September 2014 Declaration I, Mariana Catanho da Silva Vieira, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract The gene underlying the classic neurodegenerative lysosomal storage disorder (LSD) juvenile neuronal ceroid lipofuscinosis (JNCL) in humans, CLN3, encodes a polytopic membrane spanning protein of unknown function. Several studies using simpler models have been performed in order to further understand this protein and its pathological mechanism. Schizosaccharomyces pombe provides an ideal model organism for the study of CLN3 function, due to its simplicity, genetic tractability and the presence of a single orthologue of CLN3 (Btn1p), which exhibits a functional profile comparable to its human counterpart. In this study, this model was used to explore the effect of different mutations in btn1 as well as phenotypes arising from complete deletion of the gene. Different btn1 mutations have different effects on the protein function, underlining different phenotypes and affecting the levels of expression of Btn1p. So far, there is no cure for JNCL and therefore it is of great importance to identify novel lead compounds that can be developed for disease therapy. To identify these compounds, a drug screen with btn1Δ cells based on their sensitivity to cyclosporine A, was developed. Positive hits from the screen were validated and tested for their ability to rescue other specific phenotypes also associated with the loss of btn1.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Caspase-12 Antibody A
    Revision 1 C 0 2 - t Caspase-12 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 2 0 Web: [email protected] 2 www.cellsignal.com 2 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB M Endogenous 42, 55 Rabbit O08736 12364 Product Usage Information Application Dilution Western Blotting 1:1000 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity Caspase-12 Antibody detects endogenous levels of full-length caspase-12 protein (55 kDa) and its cleaved product (42 kDa). The antibody does not cross-react with other caspases. Species Reactivity: Mouse Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding amino acid 158 of mouse caspase-12. Antibodies are purified by protein A and peptide affinity chromatography. Background Caspase-12 is located in the endoplasmic reticulum (ER). It is responsible for ER stress- induced apoptosis, such as high calcium concentration, low oxygen, and low glucose levels (1,2). One of the mechanisms for caspase-12 activation is related to calpain- mediated cleavage at T132 and K158, both of which are located at the amino-terminal region of caspase-12 (2,3). Caspase-12 also has a putative caspase cleavage site located at the carboxy-terminal region of the protein (3).
    [Show full text]
  • Di-O-Demethylcurcumin Protects SK-N-SH.Pdf
    Neurochemistry International 80 (2015) 110–119 Contents lists available at ScienceDirect Neurochemistry International journal homepage: www.elsevier.com/locate/nci Di-O-demethylcurcumin protects SK-N-SH cells against mitochondrial and endoplasmic reticulum-mediated apoptotic cell death induced by Aβ25-35 Decha Pinkaew a, Chatchawan Changtam b, Chainarong Tocharus c, Sarinthorn Thummayot c, Apichart Suksamrarn d, Jiraporn Tocharus a,* a Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand b Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn 10540, Thailand c Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand d Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand ARTICLE INFO ABSTRACT Article history: Alzheimer’s disease (AD) is a neurodegenerative and progressive disorder. The hallmark of pathological Received 2 July 2014 AD is amyloid plaque which is the accumulation of amyloid β (Aβ) in extracellular neuronal cells and Received in revised form 20 October 2014 neurofibrillary tangles (NFT) in neuronal cells, which lead to neurotoxicity via reactive oxygen species Accepted 21 October 2014 (ROS) generation related apoptosis. Loss of synapses and synaptic damage are the best correlates of cog- Available online 24 October 2014 nitive decline in AD. Neuronal cell death is the main cause of brain dysfunction and cognitive impairment. Aβ activates neuronal death via endoplasmic reticulum (ER) stress and mitochondria apoptosis pathway. Keywords: This study investigated the underlying mechanisms and effects of di-O-demethylcurcumin in prevent- Alzheimer’s disease Amyloid beta ing Aβ-induced apoptosis.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,871,609 B2 Ziff Et Al
    US007871609B2 (12) United States Patent (10) Patent No.: US 7,871,609 B2 Ziff et al. (45) Date of Patent: Jan. 18, 2011 (54) SUPPLEMENTS FOR PAIN MANAGEMENT 2006,0040000 A1 2/2006 Gokaraju et al. 2006/0240037 A1 10/2006 Fey et al. (76) Inventors: Sam Ziff, 1617 E. Robinson St., Apt. 2, 2006, O246.115 A1 11/2006 Rueda et al. Orlando, FL (US) 32803; David Ziff, 1822 Hillcrest Dr., Orlando, FL (US) OTHER PUBLICATIONS 328O3 Jurna I. Schmerz, Analgetische und analgesie-potenzietende Wirkung von B-Vitaminen, Medizinische Fakultat der Universitat (*) Notice: Subject to any disclaimer, the term of this des Saarlandes, Apr. 20, 1998, pp. 136-141, vol. 12, No. 2. patent is extended or adjusted under 35 Gokhale, Leela B., Curative treatment of primary (spasmodic) U.S.C. 154(b) by 369 days. dysmenorrhoea, Indian J. Med. Res., Apr. 1996, pp. 227-231, vol. 103. (21) Appl. No.: 12/038,534 Kandarkar, et al., Subchronic oral heptotoxicity of turmeric in mice—Histopathological and ultrastructural studies, Indian Journal (22) Filed: Feb. 27, 2008 of Experimental Biology, Jul. 1998, pp. 675-679, vol. 36. Bender, David A. Novel functions of vitamin B6, Proceedings of the (65) Prior Publication Data Nutrition Society, 1994, pp. 625-630, vol. 53. Chandra, et al., Regulation of Immune Responses by Vitamin B6, NY US 2008/O213246A1 Sep. 4, 2008 AcadSci, 1990, pp. 404–423, vol. 585. Trakatellis, et al., Pyridoxine deficiency: new approaches in Related U.S. Application Data immunosuppression and chemotherapy, Postgrad Med J. 1997, pp. 617-622, vol. 73. (60) Provisional application No.
    [Show full text]
  • Supplementary Materials
    Supplementary material. S1. Images from automatic imaging reader Cytation™ 1. A, A’, A’’ present the same field of view. Cells migrating from the upper compartment of the inserts are stained with DID (red color), Cell nuclei are stained with DAPI (blue color). A’ and A’’ demonstrate the method of analysis (A’ – nuclei numbering, A’’ – migrating cells numbering), scale bar – 300 µm. ASC BM-MSC Y BM-MSC A mean SEM mean SEM mean SEM CXCL6 2.240 0.727 4.158 0.677 2.149 1.816 CXCL16 4.277 0.248 0.763 0.405 1.130 0.346 CXCL12 -2.855 0.483 -4.528 0.226 -3.616 0.318 SMAD3 -0.511 0.191 -1.522 0.188 -1.332 0.215 TGFB2 3.742 0.533 1.238 0.210 0.990 0.568 COL14A 1.532 0.357 -0.397 0.736 -1.522 0.469 MHX 1.397 0.414 1.145 0.412 0.642 0.613 SCX 2.984 0.301 2.062 0.320 2.031 0.249 RUNX2 3.290 0.359 2.319 0.388 2.546 0.529 PPRAG 1.720 0.303 2.926 0.423 2.912 0.215 Supplementary material S3. The table provides the mean Δct and SEM values for all genes and all groups analyzed in this study (n=8 in each group). Supplementary material S2. The table provides the list of genes which displayed significantly different expression between hASCs and hBM-MSCs A based on microarray nr Exp p-value Exp Fold Change ID Symbol Entrez Gene Name 1 2.84E-05 16.896 16960355 TM4SF1 transmembrane 4 L six family member 1 2 9.10E-09 12.238 16684080 IFI6 interferon alpha inducible protein 6 3 3.93E-08 11.851 16667702 VCAM1 vascular cell adhesion molecule 1 4 1.54E-05 9.944 16840113 CXCL16 C-X-C motif chemokine ligand 16 5 2.01E-06 9.123 16852463 RAB27B RAB27B, member RAS oncogene
    [Show full text]
  • Capn5 Expression in the Healthy and Regenerating Zebrafish Retina
    Retinal Cell Biology Capn5 Expression in the Healthy and Regenerating Zebrafish Retina Cagney E. Coomer and Ann C. Morris Department of Biology, University of Kentucky, Lexington, Kentucky, United States Correspondence: Ann C. Morris, PURPOSE. Autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) is a Department of Biology, University of devastating inherited autoimmune disease of the eye that displays features commonly seen in Kentucky, 215 T.H. Morgan Building, other eye diseases, such as retinitis pigmentosa and diabetic retinopathy. ADNIV is caused by Lexington, KY 40506-0225, USA; a gain-of-function mutation in Calpain-5 (CAPN5), a calcium-dependent cysteine protease. [email protected]. Very little is known about the normal function of CAPN5 in the adult retina, and there are Submitted: March 6, 2018 conflicting results regarding its role during mammalian embryonic development. The Accepted: June 1, 2018 zebrafish (Danio rerio) is an excellent animal model for studying vertebrate development and Citation: Coomer CE, Morris AC. tissue regeneration, and represents a novel model to explore the function of Capn5 in the eye. Capn5 expression in the healthy and METHODS. We characterized the expression of Capn5 in the developing zebrafish central regenerating zebrafish retina. Invest Ophthalmol Vis Sci. 2018;59:3643– nervous system (CNS) and retina, in the adult zebrafish retina, and in response to 3654. https://doi.org/10.1167/ photoreceptor degeneration and regeneration using whole-mount in situ hybridization, FISH, iovs.18-24278 and immunohistochemistry. RESULTS. In zebrafish, capn5 is strongly expressed in the developing embryonic brain, early optic vesicles, and in newly differentiated retinal photoreceptors. We found that expression of capn5 colocalized with cone-specific markers in the adult zebrafish retina.
    [Show full text]
  • Identification of RNA Bound to the TDP-43 Ribonucleoprotein Complex in the Adult Mouse Brain
    Identification of RNA bound to the TDP-43 ribonucleoprotein complex in the adult mouse brain Running Title: Identification of RNA bound to TDP-43 Ramesh K. Narayanan1, Marie Mangelsdorf1, Ajay Panwar1, Tim J. Butler1, Peter G. Noakes1,2, Robyn H. Wallace1,3* 1Queensland Brain Institute, 2School of Biomedical Sciences, 3School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia *Corresponding author: [email protected] Objectives. Cytoplasmic inclusions containing TDP-43 are a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. TDP-43 is an RNA binding protein involved in gene regulation through control of RNA transcription, splicing and transport. However, the function of TDP-43 in the nervous system is largely unknown and its role in the pathogenesis of ALS is unclear. The aim of this study was to identify genes in the central nervous system that are regulated by TDP-43. Methods. RNA-immunoprecipitation with anti-TDP-43 antibody, followed by microarray analysis (RIP- chip), was used to isolate and identify RNA bound to TDP-43 protein from mouse brain. Results. This analysis produced a list of 1,839 potential TDP-43 gene targets, many of which overlap with previous studies and whose functions include RNA processing and synaptic function. Immunohistochemistry demonstrated that the TDP-43 protein could be found at the presynaptic membrane of axon terminals in the neuromuscular junction in mice. Conclusions. The finding that TDP-43 binds to RNA that codes for genes related to synaptic function, together with the localisation of TDP-43 protein at axon terminals, suggest a role for TDP-43 in the transport of synaptic mRNAs into distal processes.
    [Show full text]