Critical Utility Infrastructures: the U.S. Experience

Total Page:16

File Type:pdf, Size:1020Kb

Critical Utility Infrastructures: the U.S. Experience CriticalCritical UtilityUtility Infrastructures:Infrastructures: TheThe U.S.U.S. ExperienceExperience Robert M. Clayton III Commissioner, Missouri Public Service Commission Chairman, NARUC Committee on International Relations EU-US Energy Regulators Roundtable December 5-6, 2007 Athens, Greece OverviewOverview I. WhatWhat isis “Critical“Critical Infrastructure?”Infrastructure?” II. ExamplesExamples ofof CriticalCritical InfrastructureInfrastructure andand disasterdisaster preparationpreparation fromfrom thethe UnitedUnited StatesStates III. CriticalCritical InfrastructureInfrastructure inin thethe 2121st CenturyCentury 2 I.I. WhatWhat IsIs CriticalCritical Infrastructure?Infrastructure? A. ElectricityElectricity B. NaturalNatural GasGas C. TelecommunicationsTelecommunications D. EconomicEconomic FunctionFunction E. PoliticalPolitical GoalsGoals 3 A.A. WhatWhat IsIs Critical?Critical? ElectricityElectricity When there is an outage, the productivity losses to commercial and industrial customers can be tremendous, ranging from thousands to millions of dollars for a single event. The cost to manufacturing facilities can be even higher. More and more commercial and industrial customers are purchasing or renting generators to provide backup power in case their electric service is interrupted. Today, even voltage dips that last less than 100 milliseconds can have the same effect on industrial process as an outage that lasts several minutes or more. ⇒ High Quality electricity deliverydelivery is a critical need, and the infrastructure needed to delivdeliverer highhigh qualityquality electricityelectricity is critical. 4 B.B. WhatWhat isis Critical?Critical? NaturalNatural GasGas Space Heating: The vast majority of US citizens depend on natural gas for space heating. Industrial Process: Many industrial processes depend on natural gas a fuel for steam and in some cases for products. Electricity Production: Natural gas provides both intermediate and peaking sources of electricity for the US power grid. ⇒ NaturalNatural GasGas isis aa criticalcritical inputinput andand thethe pipelinespipelines andand locallocal deliverydelivery systemssystems areare criticalcritical infrastructure.infrastructure. 5 C.C. WhatWhat IsIs Critical?Critical? TelecommunicationsTelecommunications Communications are essential for our economy Businesses cannot function without data/information accessed through telecommunications Security systems depend on telecommunications to provide quick response when security is breached. Utilities are interconnected and rely on each other; analysis is incomplete without reference to all public services. TelecommunicationsTelecommunications andand thethe associatedassociated investmentsinvestments areare aa criticalcritical componentcomponent ofof thethe USUS infrastructure.infrastructure. 6 D.D. EconomicEconomic conditionsconditions oror advancesadvances inin technologytechnology cancan changechange whatwhat meetsmeets thethe definitiondefinition ofof criticalcritical infrastructureinfrastructure CommunicationsCommunications networksnetworks areare criticallycritically importantimportant toto thethe functionfunction andand monitoringmonitoring ofof utilityutility servicesservices EconomicEconomic ConditionsConditions maymay mandatemandate aa certaincertain levellevel ofof reliabilityreliability notnot expectedexpected before,before, therefore,therefore, identifyingidentifying newnew criticalcritical infrastructureinfrastructure 7 E.E. DefinitionDefinition ofof “Critical“Critical Infrastructure”Infrastructure” cancan evolveevolve dependingdepending onon politicalpolitical trendstrends andand policypolicy decisions.decisions. SomeSome nationsnations havehave takentaken thethe reductionreduction ofof energyenergy dependencedependence onon importsimports asas aa goal.goal. Redundancy,Redundancy, alternativealternative suppliessupplies oror generalgeneral increasesincreases inin securitysecurity SomeSome nationsnations havehave takentaken thethe reductionreduction ofof environmentalenvironmental pollutionpollution asas aa goal.goal. RenewableRenewable PortfolioPortfolio StandardsStandards 8 II.II. RecentRecent USUS ExperienceExperience withwith CriticalCritical Infrastructure:Infrastructure: DisasterDisaster planningplanning andand recoveryrecovery A. ProtectionProtection andand QuickQuick RecoveryRecovery fromfrom disastersdisasters (man(man--made,made, naturalnatural && accidental)accidental) B. StateState Regulator’sRegulator’s RoleRole C. InterdependenciesInterdependencies andand limitationslimitations 9 NewNew Orleans,Orleans, SeptemberSeptember 20052005 10 11 HurricanesHurricanes KatrinaKatrina andand RitaRita 12 WhatWhat areare thethe Threats?Threats? AllAll HazardsHazards ApproachApproach Sabotage/TerrorismSabotage/Terrorism CivilCivil DisturbanceDisturbance FloodingFlooding NaturalNatural DisastersDisasters InfrastructureInfrastructure FailuresFailures PublicPublic HealthHealth EmergenciesEmergencies 13 UtilityUtility SystemsSystems && ResponseResponse toto Disasters:Disasters: StateState Regulator’sRegulator’s RoleRole • Address interconnections and interdependencies of various utilities and systems • Pre-disaster planning • Identification of critical infrastructure • Requirement to have protections in place for infrastructure • Redundancy • Security • Focus on Reliability and resiliency • Address infrastructure expansions and upgrades • Continuity of Operations 14 Interdependencies?Interdependencies? TheThe functionalfunctional reliancereliance ofof anan essentialessential serviceservice (e.g.,(e.g., networkednetworked utilityutility service)service) onon anotheranother network/systemnetwork/system DDisruption/outageisruption/outage inin oneone area/sectorarea/sector hashas implicationsimplications beyondbeyond thatthat area/sector,area/sector, andand vicevice versversaa What interdependencies exist among your utility systems? How can a domino effect be avoided? 15 RTO Regions 16 … and you might be in more than one What regions do you belong to? How do you communicate: exercises, conference calls, and/or websites? 17 State Role: Review and Approval of Cost Recovery WhoWho pays?pays? HowHow dodo wewe pay?pay? HowHow dodo CommissionsCommissions processprocess CICI informationinformation inin raterate cases?cases? WhatWhat levellevel ofof informationinformation detaildetail isis sufficientsufficient toto determinedetermine aa prudentprudent expenditure?expenditure? HowHow cancan sharedshared informationinformation bebe protected?protected? 18 RegulatoryRegulatory ModelsModels MayMay ChallengeChallenge InfrastructureInfrastructure ProtectionProtection Procedural openness Rulemaking processes Ex parte restrictions Regulatory incentives Regulatory lag Policy consistency Transparency, participation, and accountability may challenge some aspects of critical infrastructure protection needs Each State will need to approach critical infrastructure protection uniquely 19 Other Organizations to Know in Critical Infrastructure Emergencies Governors’ State & Local State Energy Offices Police; National Offices Guard Public Utility Emergency Other States Commissions Managers Utilities & Interdependent Local Systems Federal Lead Government Agencies (DOE, Contacts EPA, DHS) 20 III. Critical Infrastructure in the 21st Century A.A. EPACTEPACT 2005:2005: NationalNational interestinterest ElectricElectric TransmissionTransmission CorridorsCorridors B.B. DOE’sDOE’s ModernModern GridGrid InitiativeInitiative C.C. WindWind IntegrationIntegration intointo USUS GenerationGeneration SupplySupply 21 NationalNational InterestInterest ElectricElectric TransmissionTransmission Corridors:Corridors: FederalFederal RuleRule EPACT 2005 gives FERC the authority to require transmission to be built when it finds that significant transmission constraint or congestion problems exist. Secretary of Energy Samuel W. Bodman said. “The goal is simple – to keep reliable supplies of electric energy flowing to all Americans. By designating these National Corridors, we are encouraging stakeholders in these regions to identify solutions and take prompt action." 22 DOE’sDOE’s RecentRecent FindingsFindings U.S. Department of Energy (DOE) announced (October 2, 2007) the Department’s designation of two National Interest Electric Transmission CorridorsCorridors the Mid-Atlantic Area National Interest Electric Transmission Corridor, andand thethe SouthwestSouthwest AreaArea National Interest Electric Transmission Corridor. These corridors include areas in two of the Nation’s most populous regions with growing electricity congestion problems. The Department based its designations on data and analysis showing that persistent transmission congestion exists in these two areas. 23 B.B. DOE’sDOE’s ModernModern GridGrid InitiativeInitiative America’s global competitiveness and quality of life depend on plentiful, reliable electric power. Every industry is becoming more electric-dependent A blackout cost Sun Microsystems up to $1 M per minute. A recent rolling blackout caused and estimated $75 M in losses in Silicon Valley alone. During a 1 hour loss of power at the Chicago Board of Trade during the summer of 2000, trades worth $20 trillion could not be executed. Today, nearly 10% of electricity is delivered to digital devices that require high quality, digitaldigital gradegrade power.power. 24 FiveFive DrivingDriving TechnologiesTechnologies • IntegratedIntegrated CommunicationsCommunications • SensingSensing andand MeasurementMeasurement
Recommended publications
  • Critical Infrastructures: What Makes an Infrastructure Critical?
    Order Code RL31556 Report for Congress Received through the CRS Web Critical Infrastructures: What Makes an Infrastructure Critical? Updated January 29, 2003 John Moteff, Claudia Copeland, and John Fischer Resources, Science, and Industry Division Congressional Research Service ˜ The Library of Congress Critical Infrastructures: What Makes an Infrastructure Critical? Summary The Bush Administration’s proposal for establishing a Department of Homeland Security includes a function whose responsibilities include the coordination of policies and actions to protect the nation’s critical infrastructure. However, the proposal did not specify criteria for how to determine criticality or which infrastructures should be considered critical. Over the last few years, a number of documents concerned with critical infrastructure protection have offered general definitions for critical infrastructures and have provided short lists of which infrastructures should be included. None of these lists or definitions would be considered definitive. The criteria for determining what might be a critical infrastructure, and which infrastructures thus qualify, have expanded over time. Critical infrastructures were originally considered to be those whose prolonged disruptions could cause significant military and economic dislocation. Critical infrastructures now include national monuments (e.g. Washington Monument), where an attack might cause a large loss of life or adversely affect the nation’s morale. They also include the chemical industry. While there may be some debate about why the chemical industry was not on earlier lists that considered only military and economic security, it seems to be included now primarily because individual chemical plants could be sources of materials that could be used for a weapon of mass destruction, or whose operations could be disrupted in a way that would significantly threaten the safety of surrounding communities.
    [Show full text]
  • Economic Regulation of Utility Infrastructure
    4 Economic Regulation of Utility Infrastructure Janice A. Beecher ublic infrastructure has characteristics of both public and private goods and earns a separate classification as a toll good. Utilities demonstrate a Pvariety of distinct and interrelated technical, economic, and institutional characteristics that relate to market structure and oversight. Except for the water sector, much of the infrastructure providing essential utility services in the United States is privately owned and operated. Private ownership of utility infrastructure necessitates economic regulation to address market failures and prevent abuse of monopoly power, particularly at the distribution level. The United States can uniquely boast more than 100 years of experience in regulation in the public in- terest through a social compact that balances and protects the interests of inves- tors and ratepayers both. Jurisdiction is shared between independent federal and state commissions that apply established principles through a quasi-judicial pro- cess. The commissions continue to rely primarily on the method known as rate base/rate-of-return regulation, by which regulators review the prudence of in- frastructure investment, along with prices, profits, and performance. Regulatory theory and practice have adapted to emerging technologies and evolving market conditions. States—and nation-states—have become the experimental laborato- ries for structuring, restructuring, and regulating infrastructure industries, and alternative methods have been tried, including price-cap and performance regu- lation in the United Kingdom and elsewhere. Aging infrastructure and sizable capital requirements, in the absence of effective competition, argue for a regula- tory role. All forms of regulation, and their implementation, can and should be Review comments from Tim Brennan, Carl Peterson, Ken Costello, David Wagman, and the Lincoln Institute of Land Policy are greatly appreciated.
    [Show full text]
  • Improving Road Infrastructure and Traffic Flows IRU Resolution Adopted by the Council of Direction at Its Meeting in Brussels on 18 May 2000
    Improving road infrastructure and traffic flows IRU Resolution adopted by the Council of Direction at its meeting in Brussels on 18 May 2000 The mobility of people and goods is dependent on the efficient use of existing traffic infrastructure, and the modernisation and expansion of traffic infrastructure to meet the future demand for transport services efficiently and cost-effectively. This applies in particular to roads, since road transport accounts for more than 90% of all passenger transport and more than 80% of all goods transport in most countries in terms of passengers and tonnes carried. Impediments to mobility such as traffic restrictions, road blockades, closures of certain road infrastructure sections, or congestion due to bottlenecks in road infrastructure ignore the fact that • road infrastructure investments are a vital prerequisite for improving road safety, (see annex 1) • revenues from the transport of goods by road (fuel taxes, vehicle ownership taxes, road user charges) more than cover expenditure on road building and maintenance, as do revenues from the transport by bus and coach (see annex 2) • congested traffic leads to a significant increase of fuel consumption by a factor of up to 3, (see annex 3) • on average, only 0.5% of total land surface in most countries is used for road infrastructure, (see annex 4) • the economic benefits of road infrastructure investments are 29 times its investment costs, and thus the highest of all infrastructure sectors, including other transport modes, (see annex 5) • the economic cost of impediments to road transport (congestion, border delays, traffic bans, blockades etc.) amounts to 0.5% of GDP, i.e.
    [Show full text]
  • Environmental Product Declaration in Accordance with ISO 14025 and EN 15804:2012+A1:2013 For
    Environmental Product Declaration In accordance with ISO 14025 and EN 15804:2012+A1:2013 for: Under Ballast Mat, type UBM-H35-C from Programme: The International EPD® System, www.environdec.com Programme operator: EPD International AB EPD registration number: S-P-02061 Publication date: 2021-02-08 Valid until: 2026-02-08 An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com PAGE 1/13 General information Programme information Programme: The International EPD® System EPD International AB Box 210 60 Address: SE-100 31 Stockholm Sweden Website: www.environdec.com E-mail: [email protected] CEN standard EN 15804 serves as the Core Product Category Rules (PCR) Product category rules (PCR): Product Category Rules for construction products and construction services of 2012:01, version 2.33 valid: 2021-12-31 PCR review was conducted by: Technical Committee of the International EPD® System, A full list of members available on www.environdec.com. The review panel may be contacted via [email protected]. Independent third-party verification of the declaration and data, according to ISO 14025:2006: ☐ EPD process certification ☒ EPD verification Third party verifier: Damien Prunel from Bureau Veritas LCIE Approved by: The International EPD® System Procedure for follow-up of data during EPD validity involves third party verifier: ☐ Yes ☒ No The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804.
    [Show full text]
  • Title 61 Public Utility Regulation Chapter 1
    TITLE 61 PUBLIC UTILITY REGULATION CHAPTER 1 PUBLIC UTILITIES LAW -- APPLICATION AND DEFINITIONS 61-101. Title and application. This act shall be known as "The Public Utilities Law" and shall apply to the public utilities and public services herein described and to the commission herein referred to. 61-102. Commission. The term "commission" when used in this act means the Idaho public utilities commission. 61-103. Commissioner. The term "commissioner" when used in this act means one of the members of the commission. 61-104. Corporation. The term "corporation" when used in this act includes a corporation, a company, an association and a joint stock association, but does not include a municipal corporation, or mutual nonprofit or cooperative gas, electrical, water or telephone corporation or any other public utility organized and operated for service at cost and not for profit, whether inside or outside the limits of incorporated cities, towns or villages. 61-105. Person. The term "person" when used in this act includes an individual, a firm and a copartnership. 61-106. Transportation of persons. The term "transportation of persons" when used in this act includes every service in connection with or incidental to the safety, comfort, or convenience of the person transported and the receipt, carriage and delivery of such person and his baggage. 61-107. Transportation of property. The term "transportation of property" when used in this act includes every service in connection with or incidental to the transportation of property, including in particular its receipt, delivery, elevation, transfer, switching, carriage, ventilation, refrigeration, icing, dunnage, storage, and handling, and the transmission of credit by express corporations.
    [Show full text]
  • Road Transport Infrastructure
    © IEA ETSAP - Technology Brief T14 – August 2011 - www.etsap.org Road Transport Infrastructure HIGHLIGHTS TECHNOLOGY STATUS - Road transport infrastructure enables movements of people and goods within and between countries. It is also a sector within the construction industry that has demonstrated significant developments over time and ongoing growth, particularly in the emerging economies. This brief highlights the different impacts of the road transport infrastructure, including those from construction, maintenance and operation (use). The operation (use) phase of a road transport infrastructure has the most significance in terms of environmental and economic impact. While the focus in this phase is usually on the dominant role of tail-pipe GHG emissions from vehicles, the operation of the physical infrastructure should also accounted for. In total, the road transport infrastructure is thought to account for between 8% and 18% of the full life cycle energy requirements and GHG emissions from road transport. PERFORMANCE AND COSTS - Energy consumption, GHG emissions and costs of road transport infrastructure fall broadly into the three phases: (i) construction, (ii) maintenance, and (iii) operation (decommissioning is not included in this brief). The construction and maintenance costs of a road transport infrastructure vary according to location and availability of raw materials (in general, signage and lighting systems are not included in the construction costs). GHG emissions resulting from road construction have been estimated to be between 0.37 and 1.07 ktCO2/km for a 13m wide road – depending on construction methods. Maintenance over the road lifetime (typically 40 years) can also be significant in terms of costs, energy consumption and GHG emissions.
    [Show full text]
  • NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0
    NIST Special Publication 1108 NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0 Office of the National Coordinator for Smart Grid Interoperability NIST Special Publication 1108 NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0 Office of the National Coordinator for Smart Grid Interoperability January 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Director Table of Contents Executive Summary........................................................................................................................ 7 1 Purpose and Scope .................................................................................................................. 13 1.1 Overview and Background............................................................................................. 13 1.2 How This Report Was Produced.................................................................................... 16 1.3 Key Concepts ................................................................................................................. 18 1.3.1 Definitions............................................................................................................... 19 1.3.2 Applications and Requirements: Eight Priority Areas............................................ 20 1.4 Content Overview .......................................................................................................... 21 2 Smart Grid Vision..................................................................................................................
    [Show full text]
  • An Overview of Pucs for State Environment and Energy Officials – May 20, 2010 2 Adopted IRP Requirements
    U.S. Environmental Protection Agency State Climate and Energy Technical Forum Background Document An Overview of PUC s for State Environment and Energy Officials May 20, 2010 Public utility commissions (PUCs) regulate electric, gas, telecommunications, water and waste water utilities. In most states a single agency will regulate these sectors; however, in some states these functions may be split between more than one agency. Commissioners are typically appointed by the governor and generally serve 4 to 6 year terms, although in approximately one quarter of the states commissioners are elected. As a general rule, utility commissions are charged with assuring that utilities provide reasonable, adequate and efficient service to customers at just and reasonable prices. Utility regulation takes many forms, including price regulation, resource planning and acquisition, reliability and quality of service regulation. PUCs typically regulate all investor-owned utilities (IOUs) in their state. Municipal and cooperative utilities are often exempted from PUC regulation or have limited regulation. Focusing on electric utility regulation, this document will explore the responsibilities of PUCs, their decision making processes, how their decisions can affect clean energy1 and air quality. Background Electric Utility Market Structure Throughout most of the 20th century, electric utilities were regulated monopolies, with utility companies owning the generation, transmission and distribution assets for their service territory (this model is referred to
    [Show full text]
  • Infrastructure Failure I. Introduction Two Broad Areas of Concern
    Infrastructure Failure I. Introduction Two broad areas of concern regarding infrastructure failure include: • Episodic failure: temporary loss of power, technology associated with maintenance of the babies may fail, or some other temporary issue may occur. • Catastrophic failure: significant damage to hospital infrastructure or anticipated prolonged outage of critical systems may trigger a decision to perform a hospital evacuation. Preplanning requires recognition of potential threats or hazards and then development of management strategies to locate the resources and support patient needs. • In disasters, departmental leaders need to develop an operational chart to plan for a minimum of 96 hours for staff needs, as well as patient care needs and supplies that may be depleted as supplies are moved with the patients. In the event that supplies or equipment cannot be replenished, staff may need to improvise. It is important that staff become familiar with non-traditional methodologies to assist equipment-dependent emergencies for neonatal patients. • The first task in dealing with infrastructure emergencies is to complete a pre-disaster assessment of critical infrastructure (see Appendix A). A key consideration in deciding whether to issue a pre-event evacuation order is to assess vulnerabilities and determine anticipated impact of the emergency on the hospital and its surrounding community. II. Critical Infrastructure Self-Assessment Worksheet A Pre-Disaster Assessment of Critical Infrastructure Worksheet (Appendix A) is divided into eight sections: municipal water, steam, electricity, natural gas, boilers/chillers, powered life support equipment, information technology, telecommunications, and security. The Worksheet can be used in conjunction with the National Infrastructure Protection Plan (NIPP), which is a management guide for protecting critical infrastructure and key resources.
    [Show full text]
  • Risk Management Guide for Critical Infrastructure Sectors
    Risk Management Guide for Critical Infrastructure Sectors Risk Management Guide for Critical Infrastructure Sectors Page 1 of 37 Version 1.0 Contact: Critical Infrastructure Policy, Public Safety Canada. Risk Management Guide for Critical Infrastructure Sectors Foreword Managing risk is a shared responsibility among all critical infrastructure stakeholders, including governments, industry partners, first responders and non- government organizations. While partnerships and information sharing represent the building blocks of the Canadian approach to enhancing the resiliency of critical infrastructure, these cannot be undertaken in isolation of risk management and the development of plans and exercises to address these risks. Recognizing that the impacts of disruptions can cascade across sectors and jurisdictions, the purpose of this document is to provide practical guidance for implementing a coordinated, all-hazards approach to critical infrastructure risk management. Moving forward with this comprehensive risk management process requires federal departments and agencies to collaborate with their critical infrastructure partners, including industry stakeholders and other levels of government. While this guidance document promotes a common approach to critical infrastructure risk management, owners and operators and each jurisdiction are ultimately responsible for implementing a risk management approach appropriate to their situation. This guide is adapted from the ISO 31000 International Standard: “Risk Management – Principles and guidelines on implementation”, and includes the following sections: 1. Overview, Principles and Process 2. Sector Networks: Communication and consultation 3. Sector Overviews: Part 1 – Sector Operations 4. Sector Overviews: Part 2 – Sector Risk Profile 5. Sector Overviews: Part 3 – Sector Workplan 6. Ongoing improvement and feedback Sections 2 through 6 focus on implementation and contain the following sub- sections: Key Elements : The inputs and expected deliverables.
    [Show full text]
  • Water Sector Cybersecurity Brief for States
    WATER SECTOR CYBERSECURITY BRIEF FOR STATES Introduction Implementing cybersecurity best practices is critical for water and wastewater utilities. Cyber-attacks are a growing threat to critical infrastructure sectors, including water and wastewater systems. Many critical infrastructure facilities have experienced cybersecurity incidents that led to the disruption of a business process or critical operation. Cyber Threats to Water and Wastewater Systems Cyber-attacks on water or wastewater utility business enterprise or process control systems can cause significant harm, such as: • Upset treatment and conveyance processes by opening and closing valves, overriding alarms or disabling pumps or other equipment; • Deface the utility’s website or compromise the email system; • Steal customers’ personal data or credit card information from the utility’s billing system; and • Install malicious programs like ransomware, which can disable business enterprise or process control operations. These attacks can: compromise the ability of water and wastewater utilities to provide clean and safe water to customers, erode customer confidence, and result in financial and legal liabilities. Benefits of a Cybersecurity Program The good news is that cybersecurity best practices can be very effective in eliminating the vulnerabilities that cyber-attacks exploit. Implementing a basic cybersecurity program can: • Ensure the integrity of process control systems; • Protect sensitive utility and customer information; • Reduce legal liabilities if customer or employee personal information is stolen; and • Maintain customer confidence. Challenges for Utilities in Starting a Cybersecurity Program Many water and wastewater utilities, particularly small systems, lack the resources for information technology (IT) and security specialists to assist them with starting a cybersecurity program. Utility personnel may believe that cyber-attacks do not present a risk to their systems or feel that they lack the technical capability to improve their cybersecurity.
    [Show full text]
  • Data for the Public Good
    Data for the public good NATIONAL INFRASTRUCTURE COMMISSION National Infrastructure Commission report | Data for the public good Foreword Advances in technology have always transformed our lives and indeed whole industries such as banking and retail. In the same way, sensors, cloud computing, artificial intelligence and machine learning can transform the way we use and manage our national infrastructure. Government could spend less, whilst delivering benefits to the consumer: lower bills, improved travel times, and reduced disruption from congestion or maintenance work. The more information we have about the nation’s infrastructure, the better we can understand it. Therefore, data is crucial. Data can improve how our infrastructure is built, managed, and eventually decommissioned, and real-time data can inform how our infrastructure is operated on a second-to-second basis. However, collecting data alone will not improve the nation’s infrastructure. The key is to collect high quality data and use it effectively. One path is to set standards for the format of data, enabling high quality data to be easily shared and understood; much that we take for granted today is only possible because of agreed standards, such as bar codes on merchandise which have enabled the automation of checkout systems. Sharing data can catalyse innovation and improve services. Transport for London (TfL) has made information on London’s transport network available to the public, paving the way for the development of apps like Citymapper, which helps people get about the city safely and expediently. But it is important that when information on national infrastructure is shared, this happens with the appropriate security and privacy arrangements.
    [Show full text]