The Role of Haptics in Games
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Motion and Context Sensing Techniques for Pen Computing
Motion and Context Sensing Techniques for Pen Computing Ken Hinckley1, Xiang ‘Anthony’ Chen1,2, and Hrvoje Benko1 * Microsoft Research, Redmond, WA, USA1 and Carnegie Mellon University Dept. of Computer Science2 ABSTRACT We explore techniques for a slender and untethered stylus prototype enhanced with a full suite of inertial sensors (three-axis accelerometer, gyroscope, and magnetometer). We present a taxonomy of enhanced stylus input techniques and consider a number of novel possibilities that combine motion sensors with pen stroke and touchscreen inputs on a pen + touch slate. These Fig. 1 Our wireless prototype has accelerometer, gyro, and inertial sensors enable motion-gesture inputs, as well sensing the magnetometer sensors in a ~19 cm Χ 11.5 mm diameter stylus. context of how the user is holding or using the stylus, even when Our system employs a custom pen augmented with inertial the pen is not in contact with the tablet screen. Our initial results sensors (accelerometer, gyro, and magnetometer, each a 3-axis suggest that sensor-enhanced stylus input offers a potentially rich sensor, for nine total sensing dimensions) as well as a low-power modality to augment interaction with slate computers. radio. Our stylus prototype also thus supports fully untethered Keywords: Stylus, motion sensing, sensors, pen+touch, pen input operation in a slender profile with no protrusions (Fig. 1). This allows us to explore numerous interactive possibilities that were Index Terms: H.5.2 Information Interfaces & Presentation: Input cumbersome in previous systems: our prototype supports direct input on tablet displays, allows pen tilting and other motions far 1 INTRODUCTION from the digitizer, and uses a thin, light, and wireless stylus. -
Feeling Is Believing: Using a Force Feedback Joystick to Teach
Session 3668 Feeling is Believing: Using a Force-Feedback Joystick to Teach Dynamic Systems Christopher Richard, Allison M. Okamura, Mark. R. Cutkosky Center for Design Research, Stanford University Abstract As an innovative approach to teaching the laboratory component of an undergraduate course on dynamic systems, we present the haptic paddle: a low-cost, single-axis, force-feedback joystick. Using the paddle, students not only learned to model and analyze dynamic systems, but by using their sense of touch, they were able to feel the effects of phenomena such as viscous damping, stiffness, and inertia. Feeling the dynamics, in addition to learning the underlying physics, improved students’ understanding and added an element of fun to the course. In this paper, we describe the purpose and design of the haptic paddle, present examples of how the paddle was integrated into laboratory exercises, and show the results of student evaluations. 1. Introduction Engineering educators are continually challenged to provide physical examples in order to make course material more interesting and accessible to students. Laboratory exercises, software simulations, and in-class demonstrations are all helpful in developing students’ ability to connect theoretical principles with physical reality. The literature contains several examples of computer- based dynamic simulations being used for pedagogical purposed 1,4,9. But even with these aids, concepts such as eigenvalues, instability, and time constants can seem mysterious to students encountering them for the first time. Haptic interfaces, which allow a user to feel a virtual environment, are promising tools for helping students obtain an understanding of these physical phenomena. 1.1 The Field of Haptics The word haptic means relating to or based on the sense of touch. -
Reasnow S1 User Manual
User Manual of ReaSnow S1 ReaSnow S1 User Manual V1.4 Jan, 2021 This manual is the intellectual property of ReaSnow. It must only be published in its original form. Using parts or republishing altered parts of this document is prohibited without permission from ReaSnow. http//www.reasnow.com PAGE 1 / 30 User Manual of ReaSnow S1 Table of Contents Chapter 1:Introduction to ReaSnow S1 1.1 Major Features of ReaSnow S1 1.2 Technical Specifications 1.3 Diagram Chapter 2:Quick Guide 2.1 Upgrade Firmware 2.2 Mouse Settings 2.3 Console and game settings 2.4 Wiring 2.5 ReaSnow Manager APP Chapter 3:ReaSnow Manager APP 3.1 Home 3.2 Manager 3.3 Settings 3.4 Add Config 3.5 Edit Config 3.7 Global Settings Chapter 4:Macro 4.1 Macro Manager 4.2 Macro Glossary 4.3 Examples and Explanations Chapter 5:Steering Wheel 5.1 Introduction 5.2 Usage 5.3 Notes Chapter 6:Flight Stick, Arcade Stick, and Other Controllers 6.1 Wiring 6.2 Add a Config Chapter 7:Bluetooth Controllers 7.1 Wiring 7.2 Add a Config 7.3 Pairing Chapter 8:Restoration 8.1 Restore factory defaults http//www.reasnow.com PAGE 2 / 30 User Manual of ReaSnow S1 Chapter 1:Introduction to ReaSnow S1 ReaSnow S1 is a high-end gaming converter created by ReaSnow Team, Professional mouse optimization for FPS games is embedded in it. Accurate and stable aiming can be got easily with your preferred mouse and keyboard. And it's also an all-around converter, most of the consoles in the market are compatible, such as: PS5 S&D/PS4 Pro&Slim/PS4/PS3/ Xbox Series X&S/ Xbox One X&S/Xbox One/XBox 360/ Nintendo Switch. -
Download the User Manual and Keymander PC Software from Package Contents 1
TM Quick Start Guide KeyMander - Keyboard & Mouse Adapter for Game Consoles GE1337P PART NO. Q1257-d This Quick Start Guide is intended to cover basic setup and key functions to get you up and running quickly. For a complete explanation of features and full access to all KeyMander functions, please download the User Manual and KeyMander PC Software from www.IOGEAR.com/product/GE1337P Package Contents 1 1 x GE1337P KeyMander Controller Emulator 2 x USB A to USB Mini B Cables 1 x 3.5mm Data Cable (reserved for future use) 1 x Quick Start Guide 1 x Warranty Card System Requirements Hardware Game Consoles: • PlayStation® 4 • PlayStation® 3 • Xbox® One S • Xbox® One • Xbox® 360 Console Controller: • PlayStation® 4 Controller • PlayStation® 3 Dual Shock 3 Controller (REQUIRED)* • Xbox® 360 Wired Controller (REQUIRED)* • Xbox® One Controller with Micro USB cable (REQUIRED)* • USB keyboard & USB mouse** Computer with available USB 2.0 port OS • Windows Vista®, Windows® 7 and Windows® 8, Windows® 8.1 *Some aftermarket wired controllers do not function correctly with KeyMander. It is strongly recommended to use official PlayStation/Xbox wired controllers. **Compatible with select wireless keyboard/mouse devices. Overview 2 1. Gamepad port 1 2 3 2. Keyboard port 3. Mouse port 4. Turbo/Keyboard Mode LED Gamepad Keyboard Mouse Indicator: a. Lights solid ORANGE when Turbo Mode is ON b. Flashes ORANGE when Keyboard Mode is ON 5. Setting LED indicator: a. Lights solid BLUE when PC port is connected to a computer. b. Flashes (Fast) BLUE when uploading a profile from a computer to the KeyMander. -
2019 Streamlight® Tactical Catalog
CELEBRATING 45 YEARS SOLVING LIGHTING PROBLEMS. INTRODUCING NEW PRODUCTS. ® 90 IT’S WHAT WE DO. PROTAC Since 1973, Streamlight has delivered effective, efficient high-performance lighting solutions. The latest technology delivers unmatched performance, unheard of durability and incredible value. We’ve earned our reputation one customer at a time. And we’re not about to let up now. SIEGE ® X USB 2 GET MORE INFO AT: STREAMLIGHT.COM / 800-523 –7488 / 610-631-0600 TLR-8 ® G RAIL-MOUNTED LIGHT TLR-6 ® NON-LASER TLR-6 ® FOR SIG SAUER P365 PROTAC ® RAIL MOUNT HL-X LASER BANDIT ® PRO USB HEADLAMP TLR-VIR ® II SPECIALTY PRODUCT TL-RACKER ™ FOREND LIGHT 3 STREAMLIGHT TLRs THE WIDEST RANGE OF WEAPON-MOUNTED LIGHTS Streamlight produces a full line of weapon-mounted lights with the features that law enforcement, conceal & carry, and sportsmen need: high-lumen, laser, and IR. Models to fit long guns and full-size and compact pistols. LIGHT ONLY LIGHT ONLY COMPACT & FULL FRAME PISTOLS UNIVERSAL RAIL-MOUNT MODELS TLR-7® TLR-1 HL® TLR-1® TLR-3® WHITE LIGHT ILLUMINATOR WHITE LIGHT ILLUMINATOR TLR-1®s WHITE LIGHT ILLUMINATOR WHITE LIGHT ILLUMINATOR NEW SUB-COMPACT & COMPACT PISTOLS TRIGGER GUARD & TLR-6® NON-LASER TLR-7® TLR-3® RAIL-MOUNT MODELS WHITE LIGHT ILLUMINATOR WHITE LIGHT ILLUMINATOR WHITE LIGHT ILLUMINATOR NEW LONG GUN / AR SHOTGUN FOREND & RAIL-MOUNT MODELS TLR-1 HL® PROTAC® RAIL MOUNT 1 PROTAC® T L R -1 HP L® TL-RACKER™ (Long Gun Kit) PROTAC® RAIL MOUNT 2 RAIL MOUNT HL-X (Long Gun Kit) WHITE LIGHT ILLUMINATOR/FOREND WHITE LIGHT ILLUMINATOR WHITE -
Novint Falcon and Novint/Sandia 3D-Touch Software
2007 R&D 100 Award Entry Form NOVINT 2007 R&D 100 Award Entry Form NOVINT Submitting Organization Tom Anderson Novint Technologies 4109 Bryan Avenue NW Albuquerque, NM 87114, USA 505-463-1469 (phone) 866-298-4420 (fax) [email protected] AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate represen- tation of this product. (Signature)______________________________________ Joint Submitters Nathan L. Golden Sandia National Laboratories P.O. Box 1500 Albuquerque, NM 87185-0114, USA 505-845-9737 (phone) 505-844-8011 (fax) [email protected] Jeff Smith Lunar Design 541 Eighth Street San Francisco, CA 94103, USA 415-252-4388 (phone) 415-252-4389 (fax) [email protected] 2007 R&D 100 Award Entry Form NOVINT Joint Submitters Francois Conti Force Dimension PSE-C, CH-1015 Lausanne, Switzerland 41 21 693-1911 (phone) 41 21 693-1910 (fax) [email protected] Product Name Novint Falcon and Novint/Sandia 3D-Touch Software Brief Product Description The Novint Falcon and its 3D-Touch Software lets consumers, for the first time, use an accurate sense of touch in computing. Product First Marketed or Available for Order The technology was first available for licensing in March 2006. It was first demonstrated at the 2006 Game Developers Conference. Inventor or Principal Developers Tom Anderson, CEO, Novint Technologies Walt Aviles, CTO, Novint Technologies Bill Anderson, Director of Game Development, Novint Technologies Jack Harrod, Hardware Consultant, Novint Technologies Arthurine Breckenridge, Consultant, Novint Technologies Richard Aviles, Programmer, Novint Technologies Jake Jones, Programmer, Novint Technologies Nick Brown, Programmer, Novint Technologies Marc Midura, Programmer, Novint Technologies Daryl Lee, Programmer, Novint Technologies 4109 Bryan Avenue NW Albuquerque, NM 87114, USA 866-298-4420 (phone) 866-298-4420 (fax) [email protected] 2007 R&D 100 Award Entry Form NOVINT Inventor or Principal Developers George Davidson Member of the Technical Staff Sandia National Laboratories P.O. -
English Sharkps3 Manual.Pdf
TM FRAGFX SHARK CLASSIC - WIRELESS CONTROLLER ENGLISH repaIR CONNECTION BETWEEN DONGLE AND MOUSE/CHUCK Should your dongle light up, but not connect to either mouse or chuck or both, the unit HAPPY FRAGGING! needs unpairing and pairing. This process should only have to be done once. Welcome and thank you for purchasing your new FragFX SHARK Classic for the Sony Playstation 3, PC and MAC. 1) unpair the mouse (switch OFF the Chuck): - Switch on the mouse The FragFX SHARK classic is specifically designed for the Sony PlayStation 3, PC / - Press R1, R2, mousewheel, start, G, A at the same time MAC and compatible with most games, however you may find it‘s best suited to shoo- - Switch the mouse off, and on again. The blue LED should now be blinking - The mouse is now unpaired, and ready to be paired again ting, action and sport games. To use your FragFX SHARK classic, you are expected to 2) pair the mouse have a working Sony PlayStation 3 console system. - (Switch on the mouse) - Insert the dongle into the PC or PS3 For more information visit our web site at www.splitfish.com. Please read the entire - Hold the mouse close (~10cm/~4inch) to the dongle, and press either F, R, A or instruction - you get most out of your FragFX SHARK classic. G button - The LED on the mouse should dim out and the green LED on the dongle should light Happy Fragging! - If not, repeat the procedure GET YOUR DONGLE READY 3) unpair the chuck (switch OFF the mouse): Select Platform Switch Position the Dongle - Switch on the chuck PS3 - ‘Gamepad mode’ for function as a game controller - Press F, L1, L2, select, FX, L3(press stick) at the same time - ‘Keyboard Mode’ for chat and browser only - Switch the chuck off, and on again. -
G920 Driving Force Racing Wheel
Logitech® G920 Driving Force Racing Wheel The definitive sim racing wheel for Xbox One™ and PC. • Works with console and PC • Quality construction • Realistic force feedback with anti-backlash helical gearing • Easy-access game controls • Responsive pedal unit Logitech® G920 Driving Force is the definitive sim racing wheel for the latest Xbox One™ and PC titles, featuring realistic dual-motor force feedback and helical gearing for quiet, smooth steering. On-wheel controls and paddle shifters are easy to access so you can make crisp, precise gear transitions. The separate pedal unit gives you natural, responsive control, with a nonlinear brake pedal that mimics the feel of high-performance vehicles. Driving Force is built for comfort and durability with hand-stitched leather and stainless steel components. Built-in clamps and bolt points keeps the wheel mounted securely to a table or racing rig, minimising shifting or wobbling during aggressive manoeuvres. Logitech® G920 Driving Force Racing Wheel Package specification Package contents • Force feedback racing wheel Primary pack Master shipper carton • Pedals • Power supply Part # EU 941-000123 n/a • User documentation Bar code 5099206058996 (EAN-13) 50992060589906 (SCC-14) • 2-year manufacturer’s guarantee and full product support Part # UK 941-000124 n/a Bar code 5099206059009 (EAN-13) 50992060590001 (SCC-14) System requirements Weight 7210.00 g 7,660.00 g • Xbox One™ Games that support Length 43.66 cm 44.80 cm Logitech® force feedback racing Width 30.00 cm 31.40 cm wheel OR Windows® 8, -
KSPC (Keystrokes Per Character) As a Characteristic of Text Entry Techniques
KSPC (Keystrokes per Character) as a Characteristic of Text Entry Techniques I. Scott MacKenzie Dept. of Computer Science York University Toronto, Ontario, Canada M3J 1P3 +1 416 736 2100 WQEGOIR^MI$EGQSVK Abstract. KSPC is the number of keystrokes, on average, to generate each character of text in a given language using a given text entry technique. We systematically describe the calculation of KSPC and provide examples across a variety of text entry techniques. Values for English range from about 10 for methods using only cursor keys and a SELECT key to about 0.5 for word prediction techniques. It is demonstrated that KSPC is useful for a priori analyses, thereby supporting the characterisation and comparison of text entry methods before labour-intensive implementations and evaluations. 1 Introduction An important research area in mobile computing is the development of efficient means of text entry. Interest is fueled by trends such as text messaging on mobile phones, two-way paging, and mobile web and email access. Coincident with this is the continued call in HCI for methods and models to make systems design tractable at the design and analysis stage [5]. This paper addresses these two themes. We propose a measure to characterise text entry techniques. It is calculated a priori, using a language model and a keystroke-level description of the technique. The measure is used to characterise and compare methods at the design stage, thus facilitating analyses prior to labour-intensive implementations and evaluations. 2 Keystrokes per Character (KSPC) KSPC is an acronym for keystrokes per character. It is the number of keystrokes required, on average, to generate a character of text for a given text entry technique in a given language. -
I Love My Iphone... but There Are Certain Things That 'Niggle'me
“I Love My iPhone … But There Are Certain Things That ‘Niggle’ Me” Anna Haywood and Gemma Boguslawski Serco Usability Services, London, United Kingdom [email protected], [email protected] Abstract. Touchscreen technology is gaining sophistication, and the freedom offered by finger-based interaction has heralded a new phase in mobile phone evolution. The list of touchscreen mobiles is ever increasing as the appeal of ‘touch’ moves beyond the realms of the early adopter or fanboy, into the imagi- nation of the general consumer. However, despite this increasing popularity, touchscreen cannot be considered a panacea. It is important to look beyond the promise of a more direct and intuitive interface, towards the day-to-day reality. Based on our independent research, this paper explores aspects of the touch- screen user experience, offering iPhone insights as examples, before presenting key best practice guidelines to help design and evaluate finger-activated touch- screen solutions for small screen devices. 1 Introduction Although ‘touch’ is the latest buzzword, touchscreen technology and devices have been in use for over ten years, from public systems such as self-order and information kiosks, through to personal handheld devices such as PDAs or gaming devices. As the technology gains sophistication and teething problems are worked on, the list is ever increasing. However, it’s only since touchscreen heralded a new phase in mobile phone evolution with the freedom of finger-based interaction, that ‘touch’ has taken hold of the general consumers’ imagination. Mobile phones by their very nature are intended to support communication and, in- creasingly, access to information while on the move. -
Video Game Control Dimensionality Analysis
http://www.diva-portal.org Postprint This is the accepted version of a paper presented at IE2014, 2-3 December 2014, Newcastle, Australia. Citation for the original published paper: Mustaquim, M., Nyström, T. (2014) Video Game Control Dimensionality Analysis. In: Blackmore, K., Nesbitt, K., and Smith, S.P. (ed.), Proceedings of the 2014 Conference on Interactive Entertainment (IE2014) New York: Association for Computing Machinery (ACM) http://dx.doi.org/10.1145/2677758.2677784 N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234183 Video Game Control Dimensionality Analysis Moyen M. Mustaquim Tobias Nyström Uppsala University Uppsala University Uppsala, Sweden Uppsala, Sweden +46 (0) 70 333 51 46 +46 18 471 51 49 [email protected] [email protected] ABSTRACT notice that very few studies have concretely examined the effect In this paper we have studied the video games control of game controllers on game enjoyment [25]. A successfully dimensionality and its effects on the traditional way of designed controller can contribute in identifying different player interpreting difficulty and familiarity in games. This paper experiences by defining various types of games that have been presents the findings in which we have studied the Xbox 360 effortlessly played with a controller because of the controller’s console’s games control dimensionality. Multivariate statistical design [18]. One example is the Microsoft Xbox controller that operations were performed on the collected data from 83 different became a favorite among players when playing “first person- games of Xbox 360. -
Are Virtual Reality Headsets Efficient for Remote Driving?
Are Virtual Reality headsets efficient for remote driving? Bruno Ricaud, Robin Lietar, Cyril Joly To cite this version: Bruno Ricaud, Robin Lietar, Cyril Joly. Are Virtual Reality headsets efficient for remote driving?. Conference on Road Safety & Simulation 2015 (RSS 2015), Oct 2015, Orlando, United States. hal- 01510779 HAL Id: hal-01510779 https://hal.archives-ouvertes.fr/hal-01510779 Submitted on 19 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Are Virtual Reality headsets efficient for remote driving? Bruno RICAUD Robin LIETAR Cyril JOLY 60 Boulevard St-Michel, 60 Boulevard St-Michel, 60 Boulevard St-Michel, 75006 PARIS, FRANCE 75006 PARIS, FRANCE 75006 PARIS, FRANCE [email protected]" [email protected]" [email protected] ABSTRACT This study aims to analyze possible benefits of using Virtual Reality (VR) headset display instead of monitor in remote driving. It compares results of a sample of users driving in a simulated environment using VR headset then monitor display. Virtual reality headsets become a source of inspiration in a lot of domains. But no study considers using the viewing freedom it brings to improve remote driving and avoiding crashes in rough environments.