NESPRIN-2G and CELL-MATRIX ADHESIONS INFLUENCE CELL MIGRATION DURING SKIN WOUND HEALING by ALEXANDRA VICTORIA WOYCHEK a Dissert

Total Page:16

File Type:pdf, Size:1020Kb

NESPRIN-2G and CELL-MATRIX ADHESIONS INFLUENCE CELL MIGRATION DURING SKIN WOUND HEALING by ALEXANDRA VICTORIA WOYCHEK a Dissert NESPRIN-2G AND CELL-MATRIX ADHESIONS INFLUENCE CELL MIGRATION DURING SKIN WOUND HEALING By ALEXANDRA VICTORIA WOYCHEK A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY School of Molecular Biosciences MAY 2019 © Copyright by ALEXANDRA VICTORIA WOYCHEK, 2019 All Rights Reserved © Copyright by ALEXANDRA VICTORIA WOYCHEK, 2019 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of ALEXANDRA VICTORIA WOYCHEK find it satisfactory and recommend that it be accepted. Ryan Driskell, Ph.D., Co-Chair Jonathan Jones, Ph.D., Co-Chair Kwanhee Kim, Ph.D. Michael Konkel, Ph.D. Gary Wayman, Ph.D. ii ACKNOWLEDGMENT I would like to thank those who have aided my research projects. My advisor Dr. Jonathan Jones has provided invaluable feedback regarding experimental designs and composition of written documents. Dr. Susan Hopkinson has provided valuable assistance in the design and implementation of molecular biology experiments. iii NESPRIN-2G AND CELL-MATRIX ADHESIONS INFLUENCE CELL MIGRATION DURING SKIN WOUND HEALING Abstract by Alexandra Victoria Woychek, Ph.D. Washington State University May 2019 Co-Chairs: Ryan Driskell and Jonathan Jones Human skin is essential for separating internal organs from environmental, physical, and biological insults. The skin is composed of two layers, the epidermis and dermis, which are composed of primarily keratinocytes and fibroblasts, respectively. The epidermis prevents water loss and invasion of pathogens while the dermis plays a supportive role and gives skin its stretchy property. Damage to either of these layers initiates wound healing in which the cells of the epidermis and dermis migrate into the area to restore skin function. Wound healing in both layers begins with the infiltration of migrating cells into the wound. Cell migration is mediated by a variety of proteins, including the nucleus, actin cytoskeleton, and cell-matrix adhesions. The nucleus/actin cytoskeleton interaction is important in nuclear positioning and proper orientation during cell migration. Cell-matrix adhesions allow cells to adhere to the underlying matrix and to migrate across this matrix during cell migration. Here, we explore two cell-matrix adhesions: focal adhesions (FAs) and hemidesmosomes (HDs). We show that loss of a nuclear protein, nesprin-2G, leads to an abnormal actin cytoskeleton and FA formation in primary mouse fibroblasts. This loss of FA formation leads to inability of the knockout cells to tug on their iv underlying matrix to generate traction forces used during cell migration. Consequently, the loss of nesprin-2G results in decreased cell migration compared to wildtype fibroblasts. However, these results are not replicated in keratinocytes. The formation of these adhesions is crucial, but it is also important to understand how these protein components assemble. To better understand this mechanism, we explored the role of the α6 integrin message in α6β4 integrin localization to HDs. We show that a sequence within the 3’ untranslated region (UTR) of the α6 integrin message is required for localization of α6β4 integrin to HDs in A549 cells. Sequences lacking this 3’UTR allow the formation of α6β4 integrin, but it is not localized to HDs. Taken together, these results imply that adhesion formation is a tightly regulated processes which is imperative for cell attachment and migration. v TABLE OF CONTENTS Page ACKNOWLEDGMENT................................................................................................................ iii ABSTRACT ................................................................................................................................... iv LIST OF TABLES ........................................................................................................................ vii LIST OF FIGURES ..................................................................................................................... viii CHAPTER ONE: INTRODUCTION ..............................................................................................1 CHAPTER TWO: NESPRIN-2G KNOCKOUT KERATINOCYTES DISPLAY NORMAL CELL MIGRATION AND PROTEIN EXPRESSION .................................................................54 CHAPTER THREE: NESPRIN-2G KNOCKOUT FIBROBLASTS EXHIBIT REDUCED MIGRATION, CHANGES IN FOCAL ADHESION COMPOSITION, AND REDUCED ABILITY TO GENERATE TRACTION FORCES ......................................................................72 CHAPTER FOUR: THE α6 INTEGRIN 3’UTR REGULATES LOCALIZATION OF THE α6β4 INTEGRIN HETERODIMER ............................................................................................104 CHAPTER FIVE: CONCLUSIONS AND FUTURE DIRECTIONS ........................................127 vi LIST OF TABLES Page CHAPTER 3 3.1: Primer sets used for genotyping..............................................................................................92 3.2: Primer set used for message presence.....................................................................................92 3.3: Quantification of FA characteristics .......................................................................................92 3.4: Quantification of FA characteristics after MG132 incubation ...............................................93 vii LIST OF FIGURES Page CHAPTER 1 1.1: Skin structure ..........................................................................................................................36 1.2: Full- and partial-thickness wounds in human skin .................................................................37 1.3: Nesprins at the nuclear envelope ............................................................................................38 1.4: Cell-matrix adhesions protein complexes ...............................................................................39 CHAPTER 2 2.1: Confirmation of KO keratinocytes .........................................................................................66 2.2: Cell motility of WT and KO keratinocytes .............................................................................67 2.3: Immunofluorescence staining of WT and KO keratinocytes ..................................................69 2.4: Flow cytometric analyses of integrin surface expression of WT and KO keratinocytes ........71 CHAPTER 3 3.1: Nesprin-2G knockout fibroblasts exhibit abnormal FAs ........................................................94 3.2: Nesprin-2G knockout fibroblasts exhibit reduced FA protein levels and altered FA message levels ..............................................................................................................96 3.3: Nesprin-2G knockout fibroblasts show decreased collective cell migration in a scratch assay and single cell motility .............................................................................................97 3.4: Nesprin-2G knockout fibroblasts generate less traction forces (TFs) than their wildtype counterparts .....................................................................................................................98 S3.1: Verification of nesprin-2G knockout ....................................................................................99 S3.2: MG132 incubation restores FA staining in knockout cells ................................................101 viii S3.3: Nesprin-2G knockout affects nuclear staining and transmembrane actin-associated nuclear (TAN) line formation .....................................................................................................103 CHAPTER 4 4.1: The α6 integrin 3’UTR contains a zipcode which localizes the α6β4 integrin heterodimer to cell-matrix adhesions ..............................................................................................................120 4.2: Overexpression of the α6 integrin 3’UTR impacts α6β4 integrin adhesions in transduced A549 cells ....................................................................................................................................122 4.3: The α6 integrin 3’UTR is responsible for α6β4 integrin heterodimer formation in iHEKs .123 S4.1: α6-GFP protein products interact with β4 integrin and are soluble regardless of whether their mRNAs possess the α6 integrin 3’UTR ..............................................................................125 CHAPTER 5 5.1: Representative REMSA ........................................................................................................136 ix CHAPTER ONE: INTRODUCTION Overview Skin, the outermost layer of the body, maintains a barrier between the body and environment and is thus exposed to physical, environmental, and biological insults. The two skin layers, namely the epidermis and dermis, have different functions to prevent invasion from the environment. The epidermis acts as a barrier to prevent water loss and the infiltration of pathogens, whereas the dermis has a supportive function that gives skin its “stretchy” quality. Damage to either of these layers can disrupt normal functioning. Epithelial cells respond to such damage by infiltrating the wound to re-establish the barrier function of the skin by means of a process that involves both the proliferation and migration of living cells in the surrounding area. Within the dermis, cells secrete factors that are responsible for filling the open wound area. In both skin layers, wound healing is
Recommended publications
  • Kashing up with the Nucleus: Novel Functional Roles of KASH
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/authorsrights Author's personal copy Available online at www.sciencedirect.com ScienceDirect KASHing up with the nucleus: novel functional roles of KASH proteins at the cytoplasmic surface of the nucleus 1 2 GW Gant Luxton and Daniel A Starr Nuclear–cytoskeletal connections are central to fundamental reviewed [8–11]. There are many excellent comprehensive cellular processes, including nuclear positioning and reviews on KASH and SUN proteins [1,3–5]. Here we focus chromosome movements in meiosis. The cytoskeleton is on recent developments on the diverse array of functions coupled to the nucleoskeleton through conserved KASH–SUN that KASH proteins play at the cytoplasmic surface of the bridges, or LINC complexes, that span the nuclear envelope. nucleus (Figure 1). KASH proteins function in transmitting KASH proteins localize to the outer nuclear membrane where mechanical forces from the cytoplasm to the nucleus. they connect the nucleus to the cytoskeleton. New findings During meiosis, KASH proteins transmit forces generated have expanded the functional diversity of KASH proteins, in the cytoplasm that move telomeres inside the nucleus showing that they interact with microtubule motors, actin, [12].
    [Show full text]
  • Perspectives
    FOCUS ON MECHANOTRANSDUCTION PERSPECTIVES network that can promote coordinated OPINION changes in cell, cytoskeletal and nuclear struc- ture in response to mechanical distortion14 Mechanotransduction at a (FIG. 1a). (Herein, the term hard-wired refers to cytoskeletal structures that are stable enough distance: mechanically coupling the as interconnected units to resist mechanical stresses and thereby maintain shape stabil- ity, even though they undergo continuous extracellular matrix with the nucleus dynamic remodelling at the molecular level.) This model takes into account the observa- Ning Wang, Jessica D. Tytell and Donald E. Ingber tion that individual cytoskeletal filaments can bear significant tensile and compressive loads Abstract | Research in cellular mechanotransduction often focuses on how in living cells because their structural integrity extracellular physical forces are converted into chemical signals at the cell surface. is maintained for longer than the turnover However, mechanical forces that are exerted on surface-adhesion receptors, such time of individual protein monomers15–17. as integrins and cadherins, are also channelled along cytoskeletal filaments and Key to the cellular tensegrity model is concentrated at distant sites in the cytoplasm and nucleus. Here, we explore the the idea that overall cell-shape stability and long-distance force transfer are governed by molecular mechanisms by which forces might act at a distance to induce the level of isometric tension, or ‘prestress’, mechanochemical conversion in the nucleus and alter gene activities. in the cytoskeleton that is generated through the establishment of a force balance between Mechanical forces influence the growth and For example, endothelial cells sense fluid opposing structural elements (that is, micro- shape of virtually every tissue and organ in shear through a cell–cell junctional com- tubules, contractile microfilaments and our bodies.
    [Show full text]
  • The Cytolinker Plectin Regulates Nuclear Mechanotransduction in Keratinocytes Filipe V
    © 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 128, 4475-4486 doi:10.1242/jcs.173435 RESEARCH ARTICLE The cytolinker plectin regulates nuclear mechanotransduction in keratinocytes Filipe V. Almeida1,2, Gernot Walko3, James R. McMillan4, John A. McGrath5, Gerhard Wiche6, Asa H. Barber1 and John T. Connelly2,* ABSTRACT A and lamin C (which are encoded by a single gene, LMNA, and The transmission of mechanical forces to the nucleus is important hereafter are referred to as lamin A/C), a structural component of the for intracellular positioning, mitosis and cell motility, yet the nucleus, correlate with bulk tissue mechanics and, at a molecular contribution of specific components of the cytoskeleton to nuclear level, mediate gene expression and stem cell differentiation (Swift mechanotransduction remains unclear. In this study, we examine how et al., 2013). The nucleus also independently adapts to external crosstalk between the cytolinker plectin and F-actin controls keratin forces through phosphorylation of the nuclear membrane protein network organisation and the 3D nuclear morphology of keratinocytes. emerin (Guilluy et al., 2014). Furthermore, chromatin has been Using micro-patterned surfaces to precisely manipulate cell shape, we proposed to undergo rapid conformational changes when an external find that cell adhesion and spreading regulate the size and shape of the mechanical stimulus is applied (Iyer et al., 2012). Thus, the nucleus. Disruption of the keratin cytoskeleton through loss of plectin transmission of forces to the nucleus might be a critical component facilitated greater nuclear deformation, which depended on acto- of cellular mechanotransduction. myosin contractility. Nuclear morphology did not depend on direct The nucleus physically connects to the cytoskeleton through the linkage of the keratin cytoskeleton with the nuclear membrane, rather linker of nucleoskeleton and cytoskeleton (LINC) complex, which loss of plectin reduced keratin filament density around the nucleus.
    [Show full text]
  • Nesprin 4 Is an Outer Nuclear Membrane Protein That Can Induce Kinesin-Mediated Cell Polarization
    Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization Kyle J. Rouxa,1,2, Melissa L. Crispa,1, Qian Liua, Daein Kima, Serguei Kozlovb, Colin L. Stewartc, and Brian Burkea,2 aDepartment of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610; cInstitute of Medical Biology, Immunos, 8A Biomedical Grove, Republic of Singapore 138648; and bCenter for Advanced Preclinical Research and Mouse Cancer Genetics Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702 Edited by Don W. Cleveland, University of California at San Diego, La Jolla, CA, and approved December 19, 2008 (received for review September 2, 2008) Nucleocytoplasmic coupling is mediated by outer nuclear mem- by a short luminal sequence. Localization of ONM KASH brane (ONM) nesprin proteins and inner nuclear membrane Sun proteins depends on tethering by SUN domain proteins of the proteins. Interactions spanning the perinuclear space create ne- INM (18). This tethering, involving interactions spanning the sprin–Sun complexes connecting the cytoskeleton to nuclear com- PNS, was originally suggested based on findings that localization ponents. A search for proteins displaying a conserved C-terminal of Anc-1 depends on an INM protein, Unc-84 (19, 20), a sequence present in nesprins 1–3 identified nesprin 4 (Nesp4), a prototype member of the SUN family. new member of this family. Nesp4 is a kinesin-1-binding protein Three mammalian nesprin genes are known [nesprins 1–3 (7)]. that displays Sun-dependent localization to the ONM. Expression For nesprins 1 and 2, the primary transcripts encode a plethora of Nesp4 is associated with dramatic changes in cellular organiza- of alternatively-spliced isoforms (9).
    [Show full text]
  • Nesprin 4 Is an Outer Nuclear Membrane Protein That Can Induce Kinesin-Mediated Cell Polarization
    Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization Kyle J. Rouxa,1,2, Melissa L. Crispa,1, Qian Liua, Daein Kima, Serguei Kozlovb, Colin L. Stewartc, and Brian Burkea,2 aDepartment of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610; cInstitute of Medical Biology, Immunos, 8A Biomedical Grove, Republic of Singapore 138648; and bCenter for Advanced Preclinical Research and Mouse Cancer Genetics Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702 Edited by Don W. Cleveland, University of California at San Diego, La Jolla, CA, and approved December 19, 2008 (received for review September 2, 2008) Nucleocytoplasmic coupling is mediated by outer nuclear mem- by a short luminal sequence. Localization of ONM KASH brane (ONM) nesprin proteins and inner nuclear membrane Sun proteins depends on tethering by SUN domain proteins of the proteins. Interactions spanning the perinuclear space create ne- INM (18). This tethering, involving interactions spanning the sprin–Sun complexes connecting the cytoskeleton to nuclear com- PNS, was originally suggested based on findings that localization ponents. A search for proteins displaying a conserved C-terminal of Anc-1 depends on an INM protein, Unc-84 (19, 20), a sequence present in nesprins 1–3 identified nesprin 4 (Nesp4), a prototype member of the SUN family. new member of this family. Nesp4 is a kinesin-1-binding protein Three mammalian nesprin genes are known [nesprins 1–3 (7)]. that displays Sun-dependent localization to the ONM. Expression For nesprins 1 and 2, the primary transcripts encode a plethora of Nesp4 is associated with dramatic changes in cellular organiza- of alternatively-spliced isoforms (9).
    [Show full text]
  • Nuclear Mechanotransduction in Skeletal Muscle
    cells Review Nuclear Mechanotransduction in Skeletal Muscle Saline Jabre 1,2, Walid Hleihel 2,3 and Catherine Coirault 1,* 1 Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France; [email protected] 2 Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon; [email protected] 3 Department of Basic Health Sciences, Faculty of Medicine, Holy Spirit University of Kaslik (USEK), Jounieh 446, Lebanon * Correspondence: [email protected] Abstract: Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are main- tained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation, changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for further research in the field.
    [Show full text]
  • Specific Localization of Nesprin-1-Α2, the Short Isoform of Nesprin-1 with a KASH Domain, in Developing, Fetal and Regenerating
    Holt et al. BMC Cell Biology (2016) 17:26 DOI 10.1186/s12860-016-0105-9 RESEARCH ARTICLE Open Access Specific localization of nesprin-1-α2, the short isoform of nesprin-1 with a KASH domain, in developing, fetal and regenerating muscle, using a new monoclonal antibody Ian Holt1,2*, Nguyen Thuy Duong1,3, Qiuping Zhang4, Le Thanh Lam1, Caroline A. Sewry1,5, Kamel Mamchaoui6, Catherine M. Shanahan4 and Glenn E. Morris1,2 Abstract Background: Nesprin-1-giant (1008kD) is a protein of the outer nuclear membrane that links nuclei to the actin cytoskeleton via amino-terminal calponin homology domains. The short nesprin-1 isoform, nesprin-1-α2, is present only in skeletal and cardiac muscle and several pathogenic mutations occur within it, but the functions of this short isoform without calponin homology domains are unclear. The aim of this study was to determine mRNA levels and protein localization of nesprin-1-α2 at different stages of muscle development in order to shed light on its functions. Results: mRNA levels of all known nesprin-1 isoforms with a KASH domain were determined by quantitative PCR. The mRNA for the 111 kD muscle-specific short isoform, nesprin-1-α2, was not detected in pre-differentiation human myoblastsbutwaspresentatsignificantlevelsinmultinucleate myotubes. We developed a monoclonal antibody against the unique amino-terminal sequence of nesprin-1-α2, enabling specific immunolocalization for the first time. Nesprin-1-α2 protein was undetectable in pre-differentiation myoblasts but appeared at the nuclear rim in post-mitotic, multinucleate myotubes and reached its highest levels in fetal muscle. In muscle from a Duchenne muscular dystrophy biopsy, nesprin-1-α2 protein was detected mainly in regenerating fibres expressing neonatal myosin.
    [Show full text]
  • Actin Accumulates Nesprin-2 at the Front of the Nucleus During Confined Cell Migration Patricia M
    bioRxiv preprint doi: https://doi.org/10.1101/713982; this version posted July 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Actin accumulates nesprin-2 at the front of the nucleus during confined cell migration Patricia M. Davidson1, Aude Battistella1, Théophile Déjardin1, Timo Betz2, Julie Plastino1, Bruno Cadot3, Nicolas Borghi4, Cécile Sykes1 1. Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR168, Sorbonne Université, PSL, Paris, France 2. Institute of Cell Biology, ZMBE, Münster, Germany 3. Center for research in Myology, INSERM UMR974, Sorbonne Université, Paris, France 4. Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Paris, France Lead Author : Patricia M. Davidson SUMMARY The mechanisms by which cells exert forces on their nuclei to migrate through openings smaller than the nuclear diameter remain unclear. In microfluidic devices, the hourglass shape of the nucleus and its strain patterns as it translocates through narrow constrictions suggest pulling forces. We use CRISPR/Cas9 to label nesprin-2 giant, a protein that links the cytoskeleton to the interior of the nucleus. We demonstrate that nesprin-2 giant accumulates at the front of the nucleus during nuclear deformation through narrow constrictions, independently of the nuclear lamina. We find that nesprins are more mobile than lamin A/C, and hypothesize that nesprin accumulation at the front is a consequence of forward pulling by the cytoskeleton. Using artificial constructs, we show indeed that the actin-binding domain of nesprin-2 is necessary and sufficient to generate this accumulation, and that microtubules are not involved.
    [Show full text]
  • Nuclear Envelope in Nuclear Positioning and Cell Migration
    Nuclear Envelope in Nuclear Positioning and Cell Migration David Razafsky , Denis Wirtz , and Didier Hodzic Abstract Hauling and anchoring the nucleus within immobile or motile cells, tissues, and/or syncytia represents a major challenge. In the past 15 years, Linkers of the Nucleoskeleton to the Cytoskeleton (LINC complexes) have emerged as evolutionary- conserved molecular devices that span the nuclear envelope and pro- vide interacting interfaces for cytoskeletal networks and molecular motors to the nuclear envelope. Here, we review the molecular composition of LINC complexes and focus on how their genetic alteration in vivo has provided a wealth of informa- tion related to the relevance of nuclear positioning during tissue development and homeostasis with a special emphasis on the central nervous system. As it may be relevant for metastasis in a range of cancers, the involvement of LINC complexes in migration of nonneuronal cells via its interaction with the perinuclear actin cap will also be developed. Keywords LINC complexes • Sun protein • Nesprin • KASH domain • SUN domain • Nuclear lamina • Interkinetic nuclear migration • Neuronal migration • Nuclear anchorage • Actin cap • Skeletal muscle • Retina • Cell motility D. Razafsky • D. Hodzic (*) Department of Ophthalmology and Visual Sciences , Washington University School of Medicine , 660 South Euclid Ave , St. Louis , MO 63110 , USA e-mail: [email protected]; [email protected] D. Wirtz Department of Chemical and Biomolecular Engineering , The Johns Hopkins University , 3400 North Charles St. , Baltimore , MD 21218 , USA e-mail: [email protected] E.C. Schirmer and J.I. de las Heras (eds.), Cancer Biology and the Nuclear Envelope, 471 Advances in Experimental Medicine and Biology 773, DOI 10.1007/978-1-4899-8032-8_21, © Springer Science+Business Media New York 2014 472 D.
    [Show full text]