Energy and Power

Total Page:16

File Type:pdf, Size:1020Kb

Energy and Power September 19, 2003 17:5 WSPC/Energy Studies (2nd Edition) bk02-013 CHAPTER 1 ENERGY AND POWER Energy is the capacity or capability to do work. All materials possess energy, because they can all be utilised in some form of energy conversion process. For example, most substances will burn or vaporise, and the consequent heat energy can be harnessed within mechanical energy systems that create motion against some form of mechanical resistance. Energy can take several forms, as classified in Table 1.1. Mass or matter is a form of highly concentrated energy. Some forms of matter can be utilised in nuclear energy applications, as discussed in Chapter 8. Table 1.1. Forms of energy. biofuels (e.g. wood) mass chemical mechanical { kinetic electrical mechanical { potential gravitational nuclear heat (thermal) radiation magnetic sound 1.1. Energy Conversion The many applications of the use of energy usually involve transformations between different forms of energy | a process known as energy conversion. Any conversion between different energy forms is imperfect in that some of the energy has to be used to facilitate the conversion process. The converted energy output is lower than the energy input and this feature is usually described as the conversion efficiency. Figure 1.1 illustrates the large range of variation of energy conversion efficiencies, from very large electricity generators (mechanical to electrical converters) which can operate continuously at about 99% efficiency to the incandescent electric lamp (electrical to radiant converter) which is only a few percent efficient [1]. Some well-known energy conversion processes involve two successive stages. An example 1 September 19, 2003 17:5 WSPC/Energy Studies (2nd Edition) bk02-013 2 Energy Studies Fig. 1.1. Efficiencies of energy converters (based on [1]). September 19, 2003 17:5 WSPC/Energy Studies (2nd Edition) bk02-013 Energy and Power 3 is the motor car engine in which chemical energy in the form of oil or petrol (gaso- line) is converted to heat and then to rotational energy. 1.2. Mechanical Energy The widely used Laws of Motion for bodies of constant mass were developed by the English scientist Isaac Newton in the 17th century. It is now known that in extreme cases Newton's Laws are insufficient | for very small masses quantum mechanics must be employed; with very high speeds, Einstein's theory of special relativity becomes relevant; with very large masses, the concepts of space and time are modified by the theory of general relativity. Nevertheless, for general conduct of life on earth using realistic sizes and time spans, the work of Newton remains valid. 1.2.1. Linear motion When a constant force F is applied to an object and causes it to move through a distance x in the direction of the force, then the work done W is equal to the energy expended: W = F x (1.1) In (1.1), if the force is in newtons (N) and the distance in metres (m), the work or energy W has the unit of joules (J) or newton-metres (Nm). If a body of mass m moves in a straight line with a linear velocity v which is the time rate of change of its position, dx v = for small changes of x dt (1.2) x v = for large changes of x t If a body of mass m moving in a straight line is subjected to changes of velocity, the rate of change of the velocity with time is known as the acceleration a: dv d dx d2x a = = = (1.3) dt dt dt dt2 In S.I. units, mostly used in this book, the velocity is measured in metres/sec (m/s) and the acceleration in metres/sec/sec or metres/sec2 (m/s2). When a force F is applied to a body of constant mass m and causes the linear velocity v to change, the resulting acceleration can be shown experimentally to be proportional to the applied force: dv d2x dv F = ma = m = m = mv (1.4) dt dt2 dx September 19, 2003 17:5 WSPC/Energy Studies (2nd Edition) bk02-013 4 Energy Studies Equation (1.4) is sometimes referred to as Newton's Second Law of Motion. Mass m may be combined with velocity v to define an important physical prop- erty known as the momentum: dx Linear Momentum = mv = m (1.5) dt Comparison of (1.4) and (1.5) shows that Force = time rate of change of linear momentum dv d (1.6) F = m = (mv) dt dt Equation (1.6) shows that momentum has the dimension of force time or mass × velocity. × A mass m possesses energy of two kinds, known as potential energy, associated with its position, and kinetic energy, associated with its motion. The gravitational potential energy of a body of mass m, at height h above a datum plane, is given by WPE = mgh (1.7) where g is the gravitational acceleration constant, of value g = 9:81 m/s2. If the mass m is in kilogrammes and height h is in metres, the potential energy WPE is in joules. While a mass m is in linear motion at a constant velocity v, the kinetic energy WKE associated with the motion is 1 W = mv2 (1.8) KE 2 It can be seen from (1.8) that the derivative of kinetic energy WKE with respect to velocity gives the momentum dW KE = mv (1.9) dv Both kinetic energy and momentum, like mass, satisfy important conservation rules. In this book the most relevant rule is the Principle of Conservation of Energy, which states that \in any physical system the total energy remains constant | energy may be converted to a different form, it may be wasted, but it cannot be destroyed". When a mass m in linear motion is acted upon by a force F , then, in moving between two locations: work done on change of kinetic distance force = or against the = energy between (1.10) × moved mass the two locations September 19, 2003 17:5 WSPC/Energy Studies (2nd Edition) bk02-013 Energy and Power 5 Example 1.1 A mass m initially rests on a ledge at height h metres above ground level, which is the datum plane. Define the conditions of velocity, kinetic energy and potential energy (i) initially, (ii) as the mass falls to ground, (ii) finally after the mass comes to rest. (i) With the mass at rest, its initial velocity vi is zero and therefore so are its initial momentum and kinetic energy. Its total energy is then the potential energy given by (1.7), illustrated in Fig. 1.2. (ii) As the mass falls to the ground it possesses an instantaneous velocity v0, initially zero and increasing uniformly due to gravitational acceleration. Its final velocity becomes zero on impact with the ground. At any arbitrary height h0 during the fall, the mass possesses both potential energy mgh0 and 1 02 kinetic energy 2 mv , which sum to the initial energy mgh. After striking the ground the final velocity vf is zero, the momentum of the motion is transferred to the ground and the kinetic energy is converted to local heat and sound due to impact. Since the ground level is the datum plane, the potential energy after impact is also zero here. m m h v9 h9 m ground (datum!plane) (a) (b) (c) 9 WPE = mgh WPE = mgh WPE = 0 92 WKE = 0 WKE = mv WKE = 0 9 vi = 0 v = v vf = 0 Fig. 1.2. Mass falling freely under gravity. September 19, 2003 17:5 WSPC/Energy Studies (2nd Edition) bk02-013 6 Energy Studies 1.2.2. Rotational motion Most energy conversion processes involving mechanical energy incorporate rota- tional devices. For example, electromechanical energy converters use rotors that have the form of solid cylinders, Fig. 1.3(a). Petrol engines and diesel engines usu- ally incorporate flywheels, Fig. 1.3(b). The rotor of a water or gas turbine also has the nature of a non-uniform flywheel. To illustrate some of the principles of rotational motion, the example used is that of a concentrated mass m in circular motion at radius r about a fixed cen- tre point, Fig. 1.4. The motion is characterised by the angular velocity ! in radians/sec (rad/s) and the instantaneous tangential velocity v of the mass in metres/sec (m/s), where v = !r (1.11) A centripetal force acting radially inwards is required to keep the mass moving in a circle and is provided along the tie rod. With rotational motion, the externally applied force F acting tangentially on the mass (through a rigid tie-rod), Fig. 1.4, times the radius r is called the torque T , which acts as a rotation producing force: v T = F r = F (1.12) ! Torque is measured in newton-metres (Nm) and is a very important property of rotating energy converters. The tangential or linear acceleration of the mass m is given, from (1.11), by dv d! a = = r (1.13) dt dt Combining (1.12) and (1.13) leads to T = F r = mar dv = m r dt d! ) T = mr2 = mr2α (1.14) dt In (1.14) the term α is the angular acceleration in rad/s2. The quantity mr2 in (1.14) is known as the polar moment of inertia J and is an important physical property in rotational structures, having the dimension kgm2. J = mr2 = [mass] [radius of gyration]2 (1.15) Expression (1.15) is true directly for the flywheel and cylinder of Fig. 1.3. For more complicated structures with distributed, non-uniform mass, the effective radius of gyration is more complicated but the relationship (1.15) is still valid in principle.
Recommended publications
  • M Motion Intervention Booklet.Pdf (810.7KB)
    Motion Intervention Booklet 1 Random uncertainties have no pattern. They can cause a reading to be higher or lower than the “true value”. Systematic uncertainties have a pattern. They cause readings to be consistently too high or consistently too low. 2 The uncertainty in repeat readings is found from “half the range” and is given to 1 significant figure. Time / s Trial 1 Trial 2 Trial 3 Mean 1.23 1.20 1.28 Mean time = 1.23 + 1.20 + 1.28 = 1.23666666 => 1.24 (original data is to 2dp, so 3 the mean is to 2 dp as well) Range = 1.20 1.28. Uncertainty is ½ × (1.28 – 1.20) = ½ × 0.08 = ± 0.04 s 3 The speed at which a person can walk, run or cycle depends on many factors including: age, terrain, fitness and distance travelled. The speed of a moving object usually changes while it’s moving. Typical values for speeds may be taken as: walking: 1.5 m/s running: 3 m/s cycling: 6 m/s sound in air: 330 m/s 4 Scalar quantities have magnitude only. Speed is a scaler, eg speed = 30 m/s. Vector quantities have magnitude and direction. Velocity is a vector, eg velocity = 30 m/s north. Distance is how far something moves, it doesn’t involve direction. The displacement at a point is how far something is from the start point, in a straight line, including the direction. It doesn’t make any difference how far the object has moved in order to get to that point.
    [Show full text]
  • Energy Literacy Essential Principles and Fundamental Concepts for Energy Education
    Energy Literacy Essential Principles and Fundamental Concepts for Energy Education A Framework for Energy Education for Learners of All Ages About This Guide Energy Literacy: Essential Principles and Intended use of this document as a guide includes, Fundamental Concepts for Energy Education but is not limited to, formal and informal energy presents energy concepts that, if understood and education, standards development, curriculum applied, will help individuals and communities design, assessment development, make informed energy decisions. and educator trainings. Energy is an inherently interdisciplinary topic. Development of this guide began at a workshop Concepts fundamental to understanding energy sponsored by the Department of Energy (DOE) arise in nearly all, if not all, academic disciplines. and the American Association for the Advancement This guide is intended to be used across of Science (AAAS) in the fall of 2010. Multiple disciplines. Both an integrated and systems-based federal agencies, non-governmental organizations, approach to understanding energy are strongly and numerous individuals contributed to the encouraged. development through an extensive review and comment process. Discussion and information Energy Literacy: Essential Principles and gathered at AAAS, WestEd, and DOE-sponsored Fundamental Concepts for Energy Education Energy Literacy workshops in the spring of 2011 identifies seven Essential Principles and a set of contributed substantially to the refinement of Fundamental Concepts to support each principle. the guide. This guide does not seek to identify all areas of energy understanding, but rather to focus on those To download this guide and related documents, that are essential for all citizens. The Fundamental visit www.globalchange.gov. Concepts have been drawn, in part, from existing education standards and benchmarks.
    [Show full text]
  • STARS in HYDROSTATIC EQUILIBRIUM Gravitational Energy
    STARS IN HYDROSTATIC EQUILIBRIUM Gravitational energy and hydrostatic equilibrium We shall consider stars in a hydrostatic equilibrium, but not necessarily in a thermal equilibrium. Let us define some terms: U = kinetic, or in general internal energy density [ erg cm −3], (eql.1a) U u ≡ erg g −1 , (eql.1b) ρ R M 2 Eth ≡ U4πr dr = u dMr = thermal energy of a star, [erg], (eql.1c) Z Z 0 0 M GM dM Ω= − r r = gravitational energy of a star, [erg], (eql.1d) Z r 0 Etot = Eth +Ω = total energy of a star , [erg] . (eql.1e) We shall use the equation of hydrostatic equilibrium dP GM = − r ρ, (eql.2) dr r and the relation between the mass and radius dM r =4πr2ρ, (eql.3) dr to find a relations between thermal and gravitational energy of a star. As we shall be changing variables many times we shall adopt a convention of using ”c” as a symbol of a stellar center and the lower limit of an integral, and ”s” as a symbol of a stellar surface and the upper limit of an integral. We shall be transforming an integral formula (eql.1d) so, as to relate it to (eql.1c) : s s s GM dM GM GM ρ Ω= − r r = − r 4πr2ρdr = − r 4πr3dr = (eql.4) Z r Z r Z r2 c c c s s s dP s 4πr3dr = 4πr3dP =4πr3P − 12πr2P dr = Z dr Z c Z c c c s −3 P 4πr2dr =Ω. Z c Our final result: gravitational energy of a star in a hydrostatic equilibrium is equal to three times the integral of pressure within the star over its entire volume.
    [Show full text]
  • Energy Conservation in a Spring
    Part II: Energy Conservation in a Spring Activity 4 Title: Forces and Energy in a Spring Summary: Students will use the “Masses and Springs” simulation from PhET to investigate the relationship between gravitational potential energy, spring potential energy, and mass. Standard: PS2 (Ext) - 5 Students demonstrate an understanding of energy by… 5aa Identifying, measuring, calculating and analyzing qualitative and quantitative relationships associated with energy transfer or energy transformation. Specific Learning Goals: 1. Understand how to calculate the force constant of a spring using the formula F = -k ∆x 2. Understand that even though energy is transformed during the oscillation of a spring among gravitational potential energy, elastic potential energy, and kinetic energy, the total energy in the system remains constant. 3. Understand how to calculate the gravitational potential energy for a mass which is lifted to a height above a table. 4. Understand how to calculate the elastic potential energy for a spring which has been displaced by a certain distance. Prior Knowledge: 1. The restoring force that a spring exerts on a mass is proportional to the displacement of the spring and the spring constant and is in a direction opposite the displacement: F = -k ∆x 2. Gravitational potential energy is calculated by the formula: PEg = mgΔh 2 3. Elastic potential energy is calculated by the formula: PEs = ½ k ∆x 4. In a mass and spring system at equilibrium, the restoring force is equal to the gravitational force on the suspended mass (Fg = mg) Schedule: 40-50 minutes Materials: “Masses and Springs 2.02 PhET” Engage: Three different masses are suspended from a spring.
    [Show full text]
  • Potential Energy
    Potential Energy • So far: Considered all forces equal, calculate work done by net force only => Change in kinetic energy. – Analogy: Pure Cash Economy • But: Some forces seem to be able to “store” the work for you (when they do negative work) and “give back” the same amount (when they do positive work). – Analogy: Bank Account. You pay money in (ending up with less cash) - the money is stored for you - you can withdraw it again (get cash back) • These forces are called “conservative” (they conserve your work/money for you) Potential Energy - Example • Car moving up ramp: Weight does negative work ΔW(grav) = -mgΔh • Depends only on initial and final position • Can be retrieved as positive work on the way back down • Two ways to describe it: 1) No net work done on car on way up F Pull 2) Pulling force does positive F Normal y work that is stored as gravitational x potential energy ΔU = -ΔW(grav) α F Weight Total Mechanical Energy • Dimension: Same as Work Unit: Nm = J (Joule) Symbol: E = K.E. + U 1) Specify all external *) forces acting on a system 2) Multiply displacement in the direction of the net external force with that force: ΔWext = F Δs cosφ 3) Set equal to change in total energy: m 2 m 2 ΔE = /2vf - /2vi + ΔU = ΔWext ΔU = -Wint *) We consider all non-conservative forces as external, plus all forces that we don’t want to include in the system. Example: Gravitational Potential Energy *) • I. Motion in vertical (y-) direction only: "U = #Wgrav = mg"y • External force: Lift mass m from height y i to height y f (without increasing velocity) => Work gets stored as gravitational potential energy ΔU = mg (yf -yi)= mg Δy ! • Free fall (no external force): Total energy conserved, change in kinetic energy compensated by change in m 2 potential energy ΔK.E.
    [Show full text]
  • How Long Would the Sun Shine? Fuel = Gravitational Energy? Fuel
    How long would the Sun shine? Fuel = Gravitational Energy? • The mass of the Sun is M = 2 x 1030 kg. • The Sun needs fuel to shine. – The amount of the fuel should be related to the amount of – The Sun shines by consuming the fuel -- it generates energy mass. from the fuel. • Gravity can generate energy. • The lifetime of the Sun is determined by – A falling body acquires velocity from gravity. – How fast the Sun consumes the fuel, and – Gravitational energy = (3/5)GM2/R – How much fuel the Sun contains. – The radius of the Sun: R = 700 million m • How fast does the Sun consume the fuel? – Gravitational energy of the Sun = 2.3 x 1041 Joules. – Energy radiated per second is called the “luminosity”, which • How long could the Sun shine on gravitational energy? is in units of watts. – Lifetime = (Amount of Fuel)/(How Fast the Fuel is – The solar luminosity is about 3.8 x 1026 Watts. Consumed) 41 26 • Watts = Joules per second – Lifetime = (2.3 x 10 Joules)/(3.8 x 10 Joules per second) = 0.6 x 1015 seconds. • Compare it with a light bulb! – Therefore, the Sun lasts for 20 million years (Helmholtz in • What is the fuel?? 1854; Kelvin in 1887), if gravity is the fuel. Fuel = Nuclear Energy Burning Hydrogen: p-p chain • Einstein’s Energy Formula: E=Mc2 1 1 2 + – The mass itself can be the source of energy. • H + H -> H + e + !e 2 1 3 • If the Sun could convert all of its mass into energy by • H + H -> He + " E=Mc2… • 3He + 3He -> 4He + 1H + 1H – Mass energy = 1.8 x 1047 Joules.
    [Show full text]
  • Gravitational Potential Energy
    An easy way for numerical calculations • How long does it take for the Sun to go around the galaxy? • The Sun is travelling at v=220 km/s in a mostly circular orbit, of radius r=8 kpc REVISION Use another system of Units: u Assume G=1 Somak Raychaudhury u Unit of distance = 1kpc www.sr.bham.ac.uk/~somak/Y3FEG/ u Unit of velocity= 1 km/s u Then Unit of time becomes 109 yr •Course resources 5 • Website u And Unit of Mass becomes 2.3 × 10 M¤ • Books: nd • Sparke and Gallagher, 2 Edition So the time taken is 2πr/v = 2π × 8 /220 time units • Carroll and Ostlie, 2nd Edition Gravitational potential energy 1 Measuring the mass of a galaxy cluster The Virial theorem 2 T + V = 0 Virial theorem Newton’s shell theorems 2 Potential-density pairs Potential-density pairs Effective potential Bertrand’s theorem 3 Spiral arms To establish the existence of SMBHs are caused by density waves • Stellar kinematics in the core of the galaxy that sweep • Optical spectra: the width of the spectral line from around the broad emission lines Galaxy. • X-ray spectra: The iron Kα line is seen is clearly seen in some AGN spectra • The bolometric luminosities of the central regions of The Winding some galaxies is much larger than the Eddington Paradox (dilemma) luminosity is that if galaxies • Variability in X-rays: Causality demands that the rotated like this, the spiral structure scale of variability corresponds to an upper limit to would be quickly the light-travel time erased.
    [Show full text]
  • Gravitational Potential and Energy of Homogeneous Rectangular
    View metadata, citationGravitational and similar papers potential at core.ac.uk and energy of homogeneous rectangular parallelepipedbrought to you by CORE provided by CERN Document Server Zakir F. Seidov, P.I. Skvirsky Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel Gravitational potential and gravitational energy are presented in analytical form for homogeneous right parallelepiped. PACS numbers: 01.55.+b, 45.20.Dd, 96.35.Fs Keywords: Newtonian mechanics; mass, size, gravitational fields I. INTRODUCTION: BASIC FORMULAE As it is well known, Newtonian gravitational potential, of homogeneous body with constant density ρ,atpoint (X,Y,Z) is defined as triple integral over the body's volume: ZZZ U(X; Y; Z)=Gρ u(X; Y; Z; x; y; z) dxdydz (1) with −1=2 u(X; Y; Z; x; y; z)=[(x − X)2 +(y − Y )2 +(z − Z)2] ;(2) here G stands for Newtonian constant of gravitation. In spite of almost 400-year-long attempts since Isaac Newton' times, the integral (1) is known in closed form (not in the series!) in quite a few cases [1]: a) a piece of straight line, b) a sphere, c) an ellipsoid; note that both cases a) and b) may be considered as particular cases of c). As to serial solution, the integral (1) is expressed in terms of the various kinds of series for external points outside the minimal sphere containing the whole body (non-necessary homogeneous), as well as for inner points close to the origin of co-ordinates. However in this note we do not touch the problem of serial solution and are only interested in exact analytical solution of (1).
    [Show full text]
  • Shapebuilder 3 Properties Defined
    ShapeBuilder 3.0 Geometric and Structural Properties Coordinate systems: Global (X,Y), Centroidal (x,y), Principal (1,2) Basic Symbols Units Notes: Definitions Geometric Analysis or Properties Shape Types, Area A, L2 Non-composite Gross (or full) Cross-sectional area of the shape. Also Ag shapes. A = dA ∫ A Depth d L All Total or maximum depth in the y direction from the extreme fiber at the top to the extreme fiber at the bottom. Width b, L All Total or maximum width in the x direction from the extreme fiber at the left to the extreme fiber at Also w the right. 2 Net Area An L Non-composite Net cross-sectional area, after subtracting interior holes. shapes with A = dA − A interior holes ∫ ∑ hole A Holes Perimeter p L All The sum of the external edges of the shape. Useful for calculating the surface area of a member for painting. Center of c.g., (Point) (L,L) All, unless That point where the moment of the area is zero about any axis. This point is measured from the Gravity Also located at the global XY axes. Centroid of (Xc,Yc) global origin. xdA ydA Area ∫ ∫ x = A , y = A c A c A 4 Moments of Ix, Iy, Ixy L All Second moment of the area with respect to the subscripted axis, a measure of the stiffness of the Inertia cross section and its ability to resist bending moments. I = y 2 dA, I = x 2 dA, I = xydA x ∫ y ∫ xy ∫ A A A Principal Axes 1, 2, Θ, Coordinate Any shape The axes orientation at which the maximum and minimum moments of inertia are obtained.
    [Show full text]
  • Polar Moment of Inertia 2 J0  I Z   R Da
    Center of Mass and Centroids :: Guidelines Centroids of Lines, Areas, and Volumes 1.Order of Element Selected for Integration 2.Continuity 3.Discarding Higher Order Terms 4.Choice of Coordinates 5.Centroidal Coordinate of Differential Elements xdL ydL zdL x y z L L L x dA y dA z dA x c y c z c A A A x dV y dV z dV x c y c z c V V V ME101 - Division III Kaustubh Dasgupta 1 Center of Mass and Centroids Theorem of Pappus: Area of Revolution - method for calculating surface area generated by revolving a plane curve about a non-intersecting axis in the plane of the curve Surface Area Area of the ring element: circumference times dL dA = 2πy dL If area is revolved Total area, A 2 ydL through an angle θ<2π θ in radians yL ydL A 2 yL or A y L y is the y-coordinate of the centroid C for the line of length L Generated area is the same as the lateral area of a right circular cylinder of length L and radius y Theorem of Pappus can also be used to determine centroid of plane curves if area created by revolving these figures @ a non-intersecting axis is known ME101 - Division III Kaustubh Dasgupta 2 Center of Mass and Centroids Theorem of Pappus: Volume of Revolution - method for calculating volume generated by revolving an area about a non-intersecting axis in the plane of the area Volume Volume of the ring element: circumference times dA dV = 2πy dA If area is revolved Total Volume, V 2 ydA through an angle θ<2π θ in radians yA ydA V 2 yA or V yA is the y-coordinate of the centroid C of the y revolved area A Generated volume is obtained by multiplying the generating area by the circumference of the circular path described by its centroid.
    [Show full text]
  • Pure Torsion of Shafts: a Special Case
    THEORY OF SIMPLE TORSION- When torque is applied to a uniform circular shaft ,then every section of the shaft is subjected to a state of pure shear (Fig. ), the moment of resistance developed by the shear stresses being everywhere equal to the magnitude, and opposite in sense, to the applied torque. For derivation purpose a simple theory is used to describe the behaviour of shafts subjected to torque . fig. shows hear System Set Up on an Element in the Surface of a Shaft ubjected to Torsion Resisting torque, T Applied torque T $ssumptions (%) The material is homogeneous, i.e. of uniform elastic properties throughout. (&) The material is elastic, following Hooke's law with shear stress proportional to shear strain. (*) The stress does not e+ceed the elastic limit or limit of proportionality. (,) Circular sections remain circular. (.) Cross-sections remain plane. (#his is certainly not the case with the torsion of non-circular sections.) (0) Cross-sections rotate as if rigid, i.e. every diameter rotates through the same angle. BASIC CONCEPTS 1. Torsion = Twisting 2. Rotation about longitudinal axis. 3. The e+ternal moment which causes twisting are known as Torque / twisting moment. 4. When twisting is done by a force (not a moment), then force required for torsion is normal to longitudinal axis having certain eccentricity from centroid. 5. Torque applied in non-circular section will cause 'warping'. Qualitative analysis is not in our syllabus 6. Torsion causes shear stress between circular planes. 7. Plane section remains plane during torsion. It means that if you consider the shaft to be composed to infinite circular discs.
    [Show full text]
  • Shafts: Torsion Loading and Deformation
    Third Edition LECTURE SHAFTS: TORSION LOADING AND DEFORMATION • A. J. Clark School of Engineering •Department of Civil and Environmental Engineering 6 by Dr. Ibrahim A. Assakkaf SPRING 2003 Chapter ENES 220 – Mechanics of Materials 3.1 - 3.5 Department of Civil and Environmental Engineering University of Maryland, College Park LECTURE 6. SHAFTS: TORSION LOADING AND DEFORMATION (3.1 – 3.5) Slide No. 1 Torsion Loading ENES 220 ©Assakkaf Introduction – Members subjected to axial loads were discussed previously. – The procedure for deriving load- deformation relationship for axially loaded members was also illustrated. – This chapter will present a similar treatment of members subjected to torsion by loads that to twist the members about their longitudinal centroidal axes. 1 LECTURE 6. SHAFTS: TORSION LOADING AND DEFORMATION (3.1 – 3.5) Slide No. 2 Torsion Loading ENES 220 ©Assakkaf Torsional Loads on Circular Shafts • Interested in stresses and strains of circular shafts subjected to twisting couples or torques • Turbine exerts torque T on the shaft • Shaft transmits the torque to the generator • Generator creates an equal and opposite torque T’ LECTURE 6. SHAFTS: TORSION LOADING AND DEFORMATION (3.1 – 3.5) Slide No. 3 Torsion Loading ENES 220 ©Assakkaf Net Torque Due to Internal Stresses • Net of the internal shearing stresses is an internal torque, equal and opposite to the applied torque, T = ∫∫ρ dF = ρ(τ dA) • Although the net torque due to the shearing stresses is known, the distribution of the stresses is not • Distribution of shearing stresses is statically indeterminate – must consider shaft deformations • Unlike the normal stress due to axial loads, the distribution of shearing stresses due to torsional loads can not be assumed uniform.
    [Show full text]