Monitoring Harbor Dredging and Sedimentary Changes in Coastal Habitats Ofthe Santa Cruz Bight, California

Total Page:16

File Type:pdf, Size:1020Kb

Monitoring Harbor Dredging and Sedimentary Changes in Coastal Habitats Ofthe Santa Cruz Bight, California Monitoring harbor dredging and sedimentary changes in coastal habitats ofthe Santa Cruz Bight, California A Thesis Presented to the Faculty of Cal State University Monterey Bay Through Moss Landing Marine Laboratories In partial fulfillment of the requirements for the degree Master of Science in Marine Science Prepared by: Steven G. Watt December 2003 ©2003 Steven G. Watt ALL RIGHTS RESERVED Table of Contents LIS(. 0 fF'Igures ........................................................................... 11.. List ofTables .......................................................................... .iii Abstract. .................................................................................. ! 1. Introduction ...............................................................................2 2. Sediment accumulation and transport in northern Monterey Bay ................. 5 3. Local geologic setting ...................................................................9 4. Methods ................................................................................. 14 4.1 Monitoring program ............................................................. .14 4.2 San Lorenzo River ................................................................ l5 4.3 Santa Cruz Harbor ............................................................... 18 4.4 Oceanographic data .............................................................. l8 4.5 Sediment sampling .................................................................21 4.5.1 Beach sample collection ...............................................21 4.5.2 Offihore sample collection ............................................. 24 4.5.3 Sediment sample processing and analysis ............................ 25 4.6 Geophysical surveys ..............................................................27 5. Results .................................................................................... 31 5.1 Sediment input over the monitoring program ................................ .31 5.2 San Lorenzo River ............................................................... .31 5.3 Santa Cruz Harbor ...............................................................35 5.4 Oceanographic conditions and littoral drift ................................... 35 5.5 Sediment sample analyses ....................................................... .40 5.5.1 Beach sediment samples ............................................ .40 5.5.2 Offihore sediment samples ......................................... .47 5.6 Geophysical surveys .............................................................58 6. Discussion .............................................................................. 69 7. Conclusions ............................................................................. 73 Acknowledgements ..................................................................... 75 Literature cited............... .......................................................... 75 Appendix A. Beach sediment sample database tables .............................. 80 Appendix B. Offshore sediment sample database tables .......................... 85 Appendix C. Greene eta!. (1999) Benthic habitat classification ................. 89 S.G. Watt, 2003 1 List of Figures Figure 1. Study area location .................................................3 Figure 2. Littoral cell .......................................................... 8 Figure 3. Wave direction .................................................... .1 0 Figure 4. Study area beaches ........................................... .12-13 Figure 5. Monitoring program flow chart ................................. 15 Figure 6. Oceanographic buoy and river st_ations ......................... 16 Figure 7. Wave model stations ............................................. .19 Figure 8. Sediment sample locations ........................................ 22 Figure 9. Geophysical survey area ..........................................27 Figure 10. Sediment shifts example ......................................... .30 Figure 11. San Lorenzo stream flow ......................................... .33 Figure 12. San Lorenzo River, flood ......................................... 34 Figure 13. San Lorenzo River, low stream flow ........................... .34 Figure 14. Buoy and array wave graphs ..................................... 36 Figure 15. Wave model and Santa Cruz array comparison................ 39 Figure 16. Harbor photo .......................................................39 Figure 17. Lagoon flooded beaches .......................................... .42 Figure 18. Observations at Twin Lakes Beach ............................. .43 Figure 19. Pre-Experiment beach sample mean grain sizes .............. .44 Figure 20. Experiment beach sample mean grain sizes .................... .45 Figure 21. Post-Experiment beach sample mean grain sizes ............. .46 Figure 22. Pre-Experiment offshore sample mean grain sizes ............ 50 Figure 23. Experiment offshore sample mean grain sizes ................. 51 Figure 24. Post-Experiment offshore sample mean grain sizes ........... 52 Figure 25. Pre-Experiment silt and clay percentages .......................53 Figure 26. Experiment silt and clay percentages ........................... .54 Figure 27. Post-Experiment silt and clay percentages ..................... .55 Figure 28. Sediment parameter surface interpolations ..................... .57 Figure 29. Pre-Experiment processed multibeam image .................... 59 Figure 30. Pre-Experiment processed backscatter image ................... 60 Figure 31. Examples of identified benthic habitat types ................... 61 Figure 32. Post-Experiment processed multibeam image ................... 63 Figure 33. Post-Experiment processed backscatter image ................. 64 Figure 34. Pleasure Point fault.. ...............................................66 Figure 35. Blacks Point outcrop and Pt. Santa Cruz channel. ............. 67 Figure 36. Santa Cruz Bight sedimentary environments .................... 71 Plate 1. Seafloor interpretation comparisons .......... back cover envelope S.G. Watt, 2003 ii List of Tables Table l. Sediment sources, sinks, and transport ............................ 6 Table 2. Monitoring period timeline ........................................23 Table 3. Sediment inputs over the monitoring period .................... 32 Table 4. Littoral drift estimates ............................................. 37 Table 5. Beach sediment sample descriptive statistics .................. .41 Table 6. Offshore sediment sample descriptive statistics ............. .48-49 Table 7. Habitat descriptions and area analyses ........................ Plate I Table 8. Sediment shift explanation .......................................Plate 1 Table 9. Sediment erosion and deposition totals ........................Plate 1 S.G. Watt, 2003 iii Abstract In March of2001 a unique case-study was conducted in Santa Cruz California that included an experimental harbor dredging event into the natural framework of a well-studied, dynamic, coastal environment. The Santa Cruz Small Craft Harbor was permitted to dredge a small amount of mixed sand and mud (silt and clay) sediment from the upper harbor into the surf-zone at Twin Lakes Beach. Tlus [me-grained dredging experiment is the first of its kind in California. A challenge to the Environmental Protection Agencies (EPA) "80/20 rule" which states that dredged (non-toxic) sediment released into the surf-zone should contain at least 80% sand. Before this experiment, it was considered too great a risk to release sediment containing more than 20% mud into the surf-zone because it might have damaging affects on the coastal environment. A monitoring program was designed and implemented to determine if sedimentary changes occurred on the beaches and in nearshore benthic habitats of the Santa Cruz Bight during the experimental dredging period. In addition to a comprehensive scientific literature review, a variety of data were collected to monitor the experimental dredging event and natural conditions in the Santa Cruz Bight. Time-series data were collected including San Lorenzo River stream flow, oceanographic swell information, and beach and offshore sediment samples. Sets of pre- and post-dredging geophysical imagery were collected and compared using a new GIS mapping technique that quantified areas of sediment erosion and deposition on the Santa Cruz Bight seafloor. The complete integration and analyses of all the data types collected during the monitoring period leads to the conclusion that the muddy upper harbor sediment released into the surf-zone during the experimental dredging event (including sediment derived from other nearby sources), did not significantly change, alter, or impact the beaches or nearshore marine benthic habitats in the study area. The monitoring program data provides new detailed small­ scale information about the sedimentary environments in the Santa Cruz Bight, creating a strong baseline for comparison to future dredging events and adding to the current base of coastal and shelf processes knowledge in northern Monterey Bay. The implementation of this new methodology has prompted local, state, and federal agencies to reevaluate the "80/20 rule" and consider harbor sediment as a possible source of sand for beach replenishment. S.G. Watt, 2003 1 1. Introduction Harbors act as gateways to marine and coastal environments in California, providing access to economic, recreational,
Recommended publications
  • Downloaded 09/27/21 09:22 PM UTC 1874 JOURNAL of PHYSICAL OCEANOGRAPHY VOLUME 28
    OCTOBER 1998 PETRUNCIO ET AL. 1873 Observations of the Internal Tide in Monterey Canyon EMIL T. P ETRUNCIO,* LESLIE K. ROSENFELD, AND JEFFREY D. PADUAN Department of Oceanography, Naval Postgraduate School, Monterey, California (Manuscript received 19 May 1997, in ®nal form 8 December 1997) ABSTRACT Data from two shipboard experiments in 1994, designed to observe the semidiurnal internal tide in Monterey Canyon, reveal semidiurnal currents of about 20 cm s21, which is an order of magnitude larger than the estimated barotropic tidal currents. The kinetic and potential energy (evidenced by isopycnal displacements of about 50 m) was greatest along paths following the characteristics calculated from linear theory. These energy ray paths are oriented nearly parallel to the canyon ¯oor and may originate from large bathymetric features beyond the mouth of Monterey Bay. Energy propagated shoreward during the April experiment (ITEX1), whereas a standing wave, that is, an internal seiche, was observed in October (ITEX2). The difference is attributed to changes in strati®cation between the two experiments. Higher energy levels were present during ITEX1, which took place near the spring phase of the fortnightly (14.8 days) cycle in sea level, while ITEX2 occurred close to the neap phase. Further evidence of phase-locking between the surface and internal tides comes from monthlong current and temperature records obtained near the canyon head in 1991. The measured ratio of kinetic to potential energy during both ITEX1 and ITEX2 was only half that predicted by linear theory for freely propagating internal waves, probably a result of the constraining effects of topography. Internal tidal energy dissipation rate estimates for ITEX1 range from 1.3 3 1024 to 2.3 3 1023 Wm23, depending on assumptions made about the effect of canyon shape on dissipation.
    [Show full text]
  • Burton 2013 Cultural History of Davidson Seamount
    Cultural History of Davidson Seamount: A Characterization of Mapping, Research, and Fishing Erica J. Burton Monterey Bay National Marine Sanctuary Technical Report August 2013 Cultural History of Davidson Seamount MBNMS Technical Report COVER IMAGES Top left: Davidson Seamount, the first undersea feature to be officially termed a seamount by the U.S. Board on Geographic Names. This feature was surveyed by the C&GS in 1933 and named in honor of the great Coast Survey West Coast pioneer George Davidson, 1825-1911. Latitude should range from 35 to 36 degrees. Image Credit: NOAA Central Library Historical Collection (NOAA Photo Library) and original chart credit: Association of Commissioned Officers (1933). Top right: George Davidson (circa 1883). Credit: NOAA, B.A. Colonna Album (NOAA Photo Library) Bottom: Monterey Bay Aquarium Research Institute’s ROV Tiburon. Credit: T. Trejo for NOAA. SUGGESTED CITATION Burton, E.J. 2013. Cultural History of Davidson Seamount: A Characterization of Mapping, Research, and Fishing. MBNMS Technical Report, 21 p. 2 Cultural History of Davidson Seamount MBNMS Technical Report TABLE OF CONTENTS INTRODUCTION .......................................................................................................................................4 MAPPING ................................................................................................................................................................................ 5 RESEARCH AND MONITORING ................................................................................................................................
    [Show full text]
  • Biologic and Geologic Characteristics of Cold Seeps in Monterey Bay, California
    Deep-Ser Research I, Vol. 43, No. 1 I-12, pp. 1739-1762, 1996 Pergamon Copyright 0 1996 Elsevier Science Ltd Primed in Great Britain. All rights reserved PII: SO967-0637(96)0007~1 0967-0637/96 Sl5.00+0.00 Biologic and geologic characteristics of cold seeps in Monterey Bay, California JAMES P. BARRY,* H. GARY GREENE,*? DANIEL L. ORANGE,* CHARLES H. BAXTER,* BRUCE H. ROBISON,* RANDALL E. KOCHEVAR,* JAMES W. NYBAKKEN,? DONALD L. REEDS and CECILIA M. McHUGHg (Received 12 June 1995; in revisedform 12 March 1996; accepted 26 May 1996) Abstract-Cold seep communities discovered at three previously unknown sites between 600 and 1000 m in Monterey Bay, California, are dominated by chemoautotrophic bacteria (Beggiatoa sp.) and vesicomyid clams (5 sp.). Other seep-associated fauna included galatheid crabs (Munidopsis sp.), vestimentiferan worms (LameNibrachia barhaml?), solemyid clams (Solemya sp.),columbellid snails (Mitrellapermodesta, Amphissa sp.),and pyropeltid limpets (Pyropelta sp.). More than 50 species of regional (i.e. non-seep) benthic fauna were also observed at seeps. Ratios of stable carbon isotopes (S13C) in clam tissues near - 36%0indicate sulfur-oxidizing chemosynthetic production, rather than non-seep food sources, as their principal trophic pathway. The “Mt Crushmore” cold seep site is located in a vertically faulted and fractured region of the Pliocene Purisima Formation along the walls of Monterey Canyon (Y 635 m), where seepage appears to derive from sulfide-rich fluids within the Purisima Formation. The “Clam Field” cold seep site, also in Monterey Canyon (_ 900 m) is located near outcrops in the hydrocarbon-bearing Monterey Formation.
    [Show full text]
  • MBARI Announces Construction of New State-Of-The-Art Research Ship, R/V David Packard
    ! EMBARGOED UNTIL APRIL 20, 2021, 9:00 a.m. PDT/12:00 p.m. EDT MBARI Media Contact: Raúl Nava, [email protected] MBARI announces construction of new state-of-the-art research ship, R/V David Packard MOSS LANDING, California—The Monterey Bay Aquarium Research Institute (MBARI) is embarking on a new chapter in its ocean research with the construction of a state-of- the-art ship. The new research vessel will be named in honor of MBARI’s founder, David Packard. The R/V David Packard will be capable of accommodating diverse expeditions in Monterey Bay and beyond to further the institute’s mission to explore and understand our changing ocean. The R/V David Packard will be 50 meters (164 feet) long and 12.8 meters (42 feet) wide with a draft of 3.7 meters (12 feet). It will support a crew of 12, plus a science crew of 18. MBARI has selected Freire Shipyard in Vigo, Spain, for the construction of the R/V David Packard. “MBARI’s mission to explore and understand the ocean is more important than ever, especially in light of the growing threats of climate change, overfishing, and pollution,” said Chris Scholin, MBARI President and Chief Executive Officer. “This new state-of- the-art research vessel will expand MBARI’s reach and enhance our research, engineering development, and outreach efforts.” For over three decades, MBARI research has revealed the astounding diversity of life deep beneath the surface, and the institute’s technology innovations have provided priceless insights into the ocean’s geological, ecological, and biogeochemical processes.
    [Show full text]
  • Davidson Seamount Management Zone
    Monterey Bay National Marine Sanctuary Davidson Seamount Management Zone Management Plan Living Document June 2013 version 6.0 TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................................................... 1 GOAL ............................................................................................................................................................................ 1 INTRODUCTION ........................................................................................................................................................ 1 CHARACTERISTICS OF SEAMOUNTS AND THE DAVIDSON SEAMOUNT MANAGEMENT ZONE ...................................... 1 NATIONAL SIGNIFICANCE OF DAVIDSON SEAMOUNT ................................................................................................. 3 POTENTIAL THREATS TO THE DAVIDSON SEAMOUNT ................................................................................................ 4 EXPANSION OF THE MBNMS TO INCLUDE DAVIDSON SEAMOUNT MANAGEMENT ZONE ......................................... 5 ACTION PLAN STATUS – STRATEGIES, ACTIVITIES, AND PARTNERS ................................................... 6 STRATEGY DS-1: CONDUCT SITE CHARACTERIZATION ............................................................................................. 6 STRATEGY DS-2: CONDUCT ECOLOGICAL PROCESSES INVESTIGATIONS ................................................................... 9 STRATEGY DS-3: DEVELOP
    [Show full text]
  • Experimental Monitoring of Mixed Sand and Mud Sediment in the Nearshore Area of Santa Cruz, California a Preliminary Assessmen
    MONITORING OF DREDGED UPPER SANTA CRUZ HARBOR MIXED SAND AND MUD SEDIMENT RELEASED INTO THE NEARSHORE AREA OF SANTA CRUZ, CALIFORNIA Report prepared by; Steve G. Watt and H.G. Greene Center for Habitat Studies Moss Landing Marine Laboratories (831) 771-4140 December 19, 2002 Monitoring of dredged upper Santa Cruz Harbor mixed sand and mud sediment released into the nearshore area of Santa Cruz, California Prepared by: Steve Watt and Dr. H.G. Greene Center for Habitat Studies Moss Landing Marine Laboratories 8272 Moss Landing Road Moss Landing, CA 95039 (831) 771-4140 December 19, 2001 Prepared for: the Santa Cruz Harbor Port District 135 Fifth Avenue Santa Cruz, CA 95062 and the California Department of Boating and Waterways Table of Contents List of Figures…………………………………………………………………ii List of Tables…………………………………………………………………iii Executive Summary…………………………………………………………..1 1. Introduction…………………………………………………………………...2 2. Local Geologic and Climatic Setting…………………………………………4 3. Oceanographic Conditions……………………………….……………………7 4. Santa Cruz Littoral Cell……………………………………………………….8 5. Marine Biological Assessment……………………………………………….11 6. Methods………………………………………………………………………12 6.1 Scientific Literature Review……………………………………..………12 6.2 Monitoring Program…………………………………………………….13 6.3 San Lorenzo River……………………………………………………….14 6.4 Santa Cruz Harbor………………………………………………………16 6.5 Oceanographic Data…………………………………………………….17 6.6 Sediment & Water Sampling……………………………………………..19 6.6.1 Onshore Sample Collection……………………………………19 6.6.2 Offshore Sample Collection……………………………..…….23
    [Show full text]
  • Appendix B: Geotechnical Investigations
    September Ranch Subdivision Project Draft REIR Appendix B: Geotechnical Investigations Michael Brandman Associates H:\Client (PN-JN)\2137\21370002\DREIR Dec 2004\21370002_Appendix_Slips.doc GEOLOGIC, SOILS AND DRAINAGE ASSESSMENT SEPTEMBER RANCH CARMEL VALLEY MONTEREY COUNTY, CALIFORNIA For Preparation of a Revised Environmental Impact Report To The County Of Monterey Planning and Inspection Department Prepared For: Michael Brandman Associates 415 Linden Way Pleasanton, California 94556 Attention: Mr. Jason Brandman Project Manager Copyright 2003 Kleinfelder, Inc. All Rights Reserved. This document was prepared for use only by Michael Brandman Associates and members of the project design team only for the purposes stated and within a reasonable time from its issuance. Please read the "Limitations" section of this report. Unauthorized use or copying of this document is strictly prohibited. See “Application for Authorization to Use” located at the end of this document if use or copying is desired by anyone other than those indicated for the project identified above. June 30, 2003 24236 (SJO3R272) mnc June 30, 2003 File: 24236/Geol Mr. Jason Brandman Michael Brandman Associates 415 Linden Way Pleasanton, California 94556 SUBJECT: Geologic, Soils and Drainage Assessment for the September Ranch Project, Carmel Valley, Monterey County, California. Dear Mr. Brandman: Kleinfelder is pleased to submit our geologic, soils and drainage assessment report for the September Ranch project in Monterey County, California. The accompanying report summarizes the results of our field investigation, data collection and review, and geologic interpretation. Recent geologic history recorded in the rocks and sediments in the vicinity of September Ranch is complex and subject to multiple interpretations. Possible deformation and uplift of Holocene deposits, active faulting and a complex fluvial history of the Carmel River add to the complexity of the region.
    [Show full text]
  • The Biogeography and Distribution of Megafauna at Three California Seamounts
    The Biogeography and Distribution of Megafauna at Three California Seamounts A Thesis Presented to The Faculty of Moss Landing Marine Laboratories California State University Monterey Bay In Partial Fulfillment of the Requirements for the Degree Master of Science By Lonny J. Lundsten December 2007 ©2007 Lonny Lundsten All Rights Reserved 2 Approved for Moss Landing Marine Laboratories _________________________________________________ Dr. Jonathon Geller, Moss Landing Marine Laboratories _________________________________________________ Dr. Gregor M. Cailliet, Moss Landing Marine Laboratories _________________________________________________ Dr. James Barry, Monterey Bay Aquarium Research Institute _________________________________________________ Dr. David Clague, Monterey Bay Aquarium Research Institute 3 Table of Contents Abstract........................................................................................................... 5 Introduction..................................................................................................... 6 Methods........................................................................................................ 11 Results.......................................................................................................... 15 Discussion.................................................................................................... 25 Acknowledgements...................................................................................... 33 Literature Cited............................................................................................
    [Show full text]
  • California Seafloor Mapping Program Central Coast Marine Protected Areas Contents Central Coast MPA’S SMCA SMR
    California Seafloor Mapping Program Central Coast Marine Protected Areas Contents Central Coast MPA’s SMCA SMR Año Nuevo SMCA 6-7 Greyhound Rock SMCA Soquel Canyon SMCA 8-9 California Seafloor Mapping Program 4-5 Portugese Ledge SMCA & Central Coast MPA’s Edward F. Ricketts SMCA California MPA network design 26-27 Lovers Point SMR Pacific Grove Marine Gardens SMCA California MPA raw data 28-29 10-11 Asilomar SMR Acknowledgemnts 30-31 Carmel Pinnacles SMR Carmel Bay SMCA Pt. Lobos SMCA/SMR 12-13 Pt. Sur SMCA/SMR 14-15 Big Creek SMCA/SMR 16-17 California Central Coast Marine Protected Areas Piedras Blancas SMCA/SMR 18-19 Cambria SMCA White Rock Cambria SMCA 20-21 Pt. Buchon SMCA/SMR 22-23 Vandenberg SMR 24-25 0 25 km 50 km “…and some rin up hill and down dale, knapping the chucky stanes to pieces wi’ hammers, like sa mony road-makers run daft. They say ‘tis to see how the world was made!” Sir Walter Scott, St.Ronan’s Well, 1824 energy, as well as the basemap for applied and basic 24-25). Following the maps we have highlighted complex mosaic of diverse physical features. This research; the driving force behind the CSMP has some recent advances in science using CSMP data new knowledge is providing the foundation for been California’s Marine Life Protection Act (MLPA) to understand how habitats are used by biological improved understanding and management of the rich and its mandate to create the nation’s first Marine communities (pages 28-31). diversity of marine habitats, species and ecosystems Protected Area (MPA) network.
    [Show full text]
  • Ruiz Capstone03.Pdf
    An understanding of the general geomorphology and processes occurring in the Monterey Bay Submarine Canyon A Capstone Project Presented to the Faculty of Earth Systems Science and Policy In the Center for Science, Technology and Information Resources At California State University, Monterey Bay In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science By Genoveva Ruiz May 2003 ESSP Faculty, Science is the constant task of trying to understand the complexities and patterns of earth's intricate systems. A comprehension of the earth’s natural processes and cycles allows scientists to synchronize anthropogenic activity with climatic activity. The Moss Landing harbor, which sits above the head of the Monterey Bay Canyon, is a prime example of the need to understand earth's cycles. Since the construction of the harbor in 1946 an eminent need for dredging of the mud and sediment that buries the harbor has existed. If the harbor was never constructed or had been fully completed to prevent the need of dredging in the harbor, the sediment would just flow into the canyon. Instead, the dredge fills the harbor creating costly problems for the Moss Landing District because it is considered toxic according to EPA standards preventing it from being dumped directly down the canyon. Many environmentalists and scientists alike believe that the dumping of toxic substances is never a solution and that other means of removal should be used on the dredge. The scientists at Moss Landing Marine Labs (MLML) and Monterey Bay Aquarium Research Institute (MBARI) believe the proximity of the canyon, the presence of colonizing benthic communities, and sediment-flushing events make the Monterey Bay a perfect candidate for dredging.
    [Show full text]
  • Carmel Bay : Oceanographic Dynamics and Nutrient Transport in a Small Embayment of the Central California Coast
    California State University, Monterey Bay Digital Commons @ CSUMB Capstone Projects and Master's Theses 2009 Carmel Bay : oceanographic dynamics and nutrient transport in a small embayment of the central California coast Dustin Carroll California State University, Monterey Bay Follow this and additional works at: https://digitalcommons.csumb.edu/caps_thes Recommended Citation Carroll, Dustin, "Carmel Bay : oceanographic dynamics and nutrient transport in a small embayment of the central California coast" (2009). Capstone Projects and Master's Theses. 69. https://digitalcommons.csumb.edu/caps_thes/69 This Master's Thesis is brought to you for free and open access by Digital Commons @ CSUMB. It has been accepted for inclusion in Capstone Projects and Master's Theses by an authorized administrator of Digital Commons @ CSUMB. Unless otherwise indicated, this project was conducted as practicum not subject to IRB review but conducted in keeping with applicable regulatory guidance for training purposes. For more information, please contact [email protected]. 1.1 Carmel Bay Carmel Bay is a small embayment located on the central coast of California. The mouth of the bay faces directly westward and is exposed to open ocean coastal California Current conditions; however, it is also possibly influenced by smaller scale topographic effects such as wind and wave sheltering (Figure 1). Carmel Bay also has a unique bathymetric gradient, as the Carmel Submarine Canyon is located within close proximity to the near-shore environment within the bay. At the south end of Carmel Bay, the 100-m isobath is located ~ 500 m from shore. Stillwater Cove is a small semi-enclosed basin located directly inside of Carmel Bay.
    [Show full text]
  • 4.1 Surface Water Resources
    4. Environmental Setting, Impacts, and Mitigation Measures 4.1 Surface Water Resources 4.1.1 Introduction This section presents the existing surface water conditions and the applicable regulations on the federal, state, and local levels. The section evaluates potential impacts from construction and operation of the Moss Landing Project and the North Marina Project on surface water resources including fresh, estuarine, and marine water bodies within and adjacent to the project area. Section 4.1.2 presents the environmental setting related to surface hydrology, water quality, and flooding. Section 4.1.3 provides federal, state, and local regulations that would apply to the Moss Landing Project and North Marina Project. Section 4.1.4 describes the project impacts and identifies mitigation measures to minimize any potentially significant impacts. Refer to Section 4.2, Groundwater Resources, for groundwater-related impacts and Section 4.3, Marine Biological Resources, for impacts to biological resources in marine waters from the project- related discharges. 4.1.2 Environmental Setting The project area spans portions of several cities (i.e., Castroville, Marina, Sand City, Seaside, Del Rey Oaks, Monterey, and Pacific Grove) and unincorporated areas of Monterey County. The climate in the project area is moderate year-round with warm, dry summers and cool, moist winters. The average temperature is approximately 59 degrees Fahrenheit (Monterey County, 2007). Rainfall occurs primarily between November and April. The average rainfall in the county varies, but is approximately 18 inches per year. The project area lies within Monterey County, in the southern portion of the Coast Ranges geomorphic province. Topographic features in the basin are dominated by a rugged seacoast and three parallel ranges of the Southern Coast Mountains - the Diablo, Gabilan, and Santa Lucia Ranges, which have peaks of up to 5,844 feet above mean sea level (amsl).
    [Show full text]