Fourier Phase Retrieval: Uniqueness and Algorithms Tamir Bendory∗1, Robert Beinerty2 and Yonina C. Eldarz3 1The Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, USA 2Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, 8010 Graz, Austria 3The Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel Abstract The problem of recovering a signal from its phaseless Fourier transform measurements, called Fourier phase retrieval, arises in many applications in engineering and science. Fourier phase retrieval poses fundamental theo- retical and algorithmic challenges. In general, there is no unique mapping between a one-dimensional signal and its Fourier magnitude and therefore the problem is ill-posed. Additionally, while almost all multidimensional signals are uniquely mapped to their Fourier magnitude, the performance of existing algorithms is generally not well-understood. In this chapter we survey methods to guarantee uniqueness in Fourier phase retrieval. We then present different algorithmic approaches to retrieve the signal in practice. We conclude by outlining some of the main open questions in this field. arXiv:1705.09590v3 [cs.IT] 6 Nov 2017 ∗
[email protected] [email protected]. The Institute of Mathematics and Scientific Computing is a mem- ber of NAWI Graz (http://www.nawigraz.at). The author is supported by the Austrian Science Fund (FWF) within the project P 28858.
[email protected]. The author is supported by the European Unions Horizon 2020 research and innovation program under grant agreement no. 646804-ERC-COG-BNYQ, and from the Israel Science Foundation under Grant no.