Recovering Lost Information in the Digital World by Yonina Eldar Resolution

Total Page:16

File Type:pdf, Size:1020Kb

Recovering Lost Information in the Digital World by Yonina Eldar Resolution newstest 2018 SIAM NEWS • 1 Recovering Lost Information in the Digital World By Yonina Eldar resolution. Is it possible to use sampling- related ideas to recover information lost due We live in an increasingly digital world to physical principles? where computers and microprocessors per- We consider two methods to recover form data processing and storage. Digital lost information. The first utilizes structure devices are programmed to quickly and that often exists in signals, and the sec- efficiently process sequences of bits. Signal ond accounts for the ultimate processing processing then translates to mathematical task. Together they form the basis for the algorithms that are programmed in a com- Xampling framework, which suggests prac- puter operating on these bits. An analog- tical, sub-Nyquist sampling and processing to-digital converter converts the continuous techniques that result in faster and more time signal into samples; the transition efficient scanning, processing of wideband from the physical world to a sequence signals, smaller devices, improved resolu- Figure 3. Ultrasound imaging at three percent of the Nyquist rate (right), as compared to a of bits causes information loss in both tion, and lower radiation doses [5]. standard image (left). Image courtesy of [1]. time (sampling phase) and amplitude (the The union of subspaces model is a popu- An interesting sampling question is as Combining the aforementioned ideas quantization step). Is it possible to restore lar choice for describing structure in signals follows. What is the rate at which we allows us to create images in a variety of information that is lost in transition to the [7, 9]. As special cases, it includes sparse must sample a stationary ergodic signal contexts at higher resolution using far fewer digital domain? vectors — vectors with a small number to recover its power spectrum? This rate samples. For example, we can recover an The answer depends on what we know of nonzero values in an appropriate repre- can be arbitrarily low using appropriate ultrasound image from only three percent about the signal. One way to ensure a sig- sentation, which is the model underlying nonuniform sampling methods. If we con- of the Nyquist rate without degrading image nal’s recovery from its samples is to limit the compressed sensing field [6]. It also sider practical sampling approaches—such quality (see Figure 3). This ability allows its speed of change. This idea forms the includes some popular examples of finite- as periodic nonuniform sampling with N for multiple technology developments with basis of the famous Nyquist theorem, devel- rate-of-innovation signals, such as streams samplers, each operating at an Nth of the broad clinical significance, such as fast Nyquist rate—then only cardiac and three-dimensional imaging, on the order of N which is currently limited by high data rate. samplers are needed Moreover, the low sampling rate enables the to recover the signal’s replacement of large standard ultrasound second-order statistics. devices and their cumbersome cables with This leads to a reduc- wireless transducers and simple processing tion of sampling rate on devices, such as tablets or phones. The sam- the order of N . Next, pled data’s low rate facilitates its transmis- suppose that we quantize sion over a standard WiFi channel, allowing our signal after sampling a physician to recover the image with a with a finite-resolution handheld device. In parallel, the data may quantizer. Traditionally, be transmitted to the cloud for remote health sampling and quantiza- and further, more elaborate processing. tion are considered sep- Our approaches can also help increase Figure 1. Sub-Nyquist prototypes for different applications developed in the Signal Acquisition Modeling and arately. However, the resolution in florescence microscopy [10]. Processing Lab at Technion – Israel Institute of Technology. Image courtesy of Yonina Eldar Lab. signal introduced by the In 2014, William Moerner, Eric Betzig, oped in parallel by mathematicians Edmund of pulses [11]. An example of this signal quantizer is distorted, which begs the fol- and Stefan Hell received the Nobel Prize in Taylor Whitaker and Vladimir Kotelinkov arises naturally in radar. In a radar system, lowing question: must we still sample at the chemistry for breaking the diffraction limit [5]. The theorem states that we can recover a pulse moves towards the targets, which Nyquist rate, which is the rate required for with florescence imaging. They sought to a signal from its samples as long as the sam- reflect it back to the receiver. The received perfect recovery assuming no distortion? It obtain a high-resolution image by using pling rate (the number of samples per unit pulse hence consists of a stream of pulses, turns out that without assuming any particu- thousands of images, each containing only time) is at least twice the highest frequency where each pulse’s time of arrival is pro- lar structure of the input analog signal, we a small number of fluorescing molecules. in the signal. This result is the cornerstone portional to the distance to the target, and can achieve the minimal possible distortion This method—referred to as photo-activated of all current digital applications, which the amplitude conveys information about by sampling below the signal’s Nyquist localization microscopy (PALM)—allows sample at the Nyquist rate or higher. the target’s velocity through the Doppler rate. We attain this result by extending researchers to localize and average the Despite the tremendous influence of the Nyquist theorem on the digital revolu- tion, satisfying the Nyquist requirement in modern applications often necessitates complicated and expensive hardware that consumes considerable power, time, and space. Many applications use signals with sizable bandwidth to deliver a high rate of information and obtain good resolution in various imaging applications, such as radar and medical imaging. Large bandwidth translates into high sampling rates that are challenging to execute in practice. Thus, an important question is as follows: Do we really have to sample at the Nyquist rate, or Figure 4. Superresolution in optical microscopy. 4a. The image obtained in a standard microscope. 4b. The original image at high resolution. 4c. The image obtained using 12,000 frames via photo-activated localization microscopy. 4d. The image obtained using only 60 frames via sparsity- can we restore information when sampling based super-resolution correlation microscopy. Image courtesy of [10]. at a lower rate? A related concern is the problem of super effect. Several samplers based on union of Claude Shannon’s rate-distortion function molecules in each frame to obtain one high- resolution. Any physical device is limited subspace modeling appear in Figure 1. to describe digital encoding of continuous- resolution image. This leads to high spa- in bandwidth or resolution, meaning that we Researchers have also recently been time signals with a constraint on both the tial resolution but low temporal resolution. cannot obtain infinite precision in time, fre- exploring the actual processing task. We sampling rate and the system’s bit rate [8]. Since estimating each pixel’s variance can quency, and space. For example, the resolu- consider three such examples: (i) scenarios As a final example of task-based sam- form a brightness image, we can exploit our tion of an optical microscope is limited by in which the relevant information is embed- pling, consider a radar or ultrasound image ability to perform power spectrum recovery the Abbe diffraction limit, which is half the ded in the signal’s second-order statistics that is created by beamforming. An antenna from fewer samples to dramatically reduce wavelength used for illumination. We can [3], (ii) cases where the signal is quantized array receives multiple signals reflected the number of samples needed to form thus see large objects such as bacteria in to a low number of bits [8], and (iii) set- off the target; these signals are delayed a super-resolved image. This approach is the optical regime, but proteins and small tings in which multiple antennas form an and summed to form a beamformed output called sparsity-based super-resolution cor- molecules are not visible with sufficient image [1, 2]. that can often be modeled as a stream of relation microscopy (SPARCOM). Due pulses. However, the individual signals do to the small number of required frames, not typically contain significant structure SPARCOM paves the way for live cell and are often buried in noise. Nonetheless, imaging. Figure 4 compares SPARCOM by exploiting the beamforming process with 60 images and PALM with 12,000 we can form the final beamformed output images. Both approaches generate similar from samples of the individual signals at spatial resolution, but SPARCOM requires very low rates, despite the signals’ lack of two-orders-of-magnitude fewer samples. structure. In addition, we can preserve the The same idea is applicable to contrast- beampattern of a uniform linear array by enhanced ultrasound imaging. We may using far fewer elements (a sparse array) treat the contrast agents flowing through and modifying the beamforming process. the blood similarly to the blinking of the By applying convolutional beamforming, florescent molecules; in this way, we per- we can achieve the beampattern associated form ultrasound imaging with high spatial with a uniform linear array of N elements and temporal resolution. This distinguishes Figure 2. The same cardiac image obtained with delay-and-sum beamforming using a uniform using only on the order of N elements between close blood vessels and facilitates linear array of 64 elements (left) and convolutional beamforming using a sparse array with 16 (see Figure 2). the observation of capillary blood flow. elements (right). Image courtesy of [4]. 2 • newstest 2018 SIAM NEWS In summary, to recover information with [6] Eldar, Y.C., & Kutyniok, G. higher precision and minimum data we (2012).
Recommended publications
  • Sampling Signals on Graphs: from Theory to Applications
    GRAPH SIGNAL PROCESSING: FOUNDATIONS AND EMERGING DIRECTIONS Yuichi Tanaka, Yonina C. Eldar, Antonio Ortega, and Gene Cheung Sampling Signals on Graphs From theory to applications he study of sampling signals on graphs, with the goal of building an analog of sampling for standard signals in the T time and spatial domains, has attracted considerable atten- tion recently. Beyond adding to the growing theory on graph signal processing (GSP), sampling on graphs has various promising applications. In this article, we review the current progress on sampling over graphs, focusing on theory and potential applications. Although most methodologies used in graph signal sam- pling are designed to parallel those used in sampling for standard signals, sampling theory for graph signals signifi- cantly differs from the theory of Shannon–Nyquist and shift- invariant (SI) sampling. This is due, in part, to the fact that the definitions of several important properties, such as shift invariance and bandlimitedness, are different in GSP systems. Throughout this review, we discuss similarities and differenc- es between standard and graph signal sampling and highlight open problems and challenges. Introduction Sampling is one of the fundamental tenets of digital signal pro- cessing (see [1] and the references therein). As such, it has been studied extensively for decades and continues to draw consid- erable research efforts. Standard sampling theory relies on concepts of frequency domain analysis, SI signals, and band- ©ISTOCKPHOTO.COM/ALISEFOX limitedness [1]. The sampling of time and spatial domain sig- nals in SI spaces is one of the most important building blocks of digital signal processing systems. However, in the big data era, the signals we need to process often have other types of connections and structure, such as network signals described by graphs.
    [Show full text]
  • Deep Task-Based Quantization †
    entropy Article Deep Task-Based Quantization † Nir Shlezinger 1,* and Yonina C. Eldar 2 1 School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel 2 Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 7610001, Israel; [email protected] * Correspondence: [email protected] † This paper is an extended paper presented in the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) in Brighton, UK, on 12–17 May 2019. Abstract: Quantizers play a critical role in digital signal processing systems. Recent works have shown that the performance of acquiring multiple analog signals using scalar analog-to-digital converters (ADCs) can be significantly improved by processing the signals prior to quantization. However, the design of such hybrid quantizers is quite complex, and their implementation requires complete knowledge of the statistical model of the analog signal. In this work we design data- driven task-oriented quantization systems with scalar ADCs, which determine their analog-to- digital mapping using deep learning tools. These mappings are designed to facilitate the task of recovering underlying information from the quantized signals. By using deep learning, we circumvent the need to explicitly recover the system model and to find the proper quantization rule for it. Our main target application is multiple-input multiple-output (MIMO) communication receivers, which simultaneously acquire a set of analog signals, and are commonly subject to constraints on the number of bits. Our results indicate that, in a MIMO channel estimation setup, the proposed deep task-bask quantizer is capable of approaching the optimal performance limits dictated by indirect rate-distortion theory, achievable using vector quantizers and requiring complete knowledge of the underlying statistical model.
    [Show full text]
  • Deep Learning in Ultrasound Imaging Deep Learning Is Taking an Ever More Prominent Role in Medical Imaging
    1 Deep learning in Ultrasound Imaging Deep learning is taking an ever more prominent role in medical imaging. This paper discusses applications of this powerful approach in ultrasound imaging systems along with domain-specific opportunities and challenges. RUUD J.G. VAN SLOUN1,REGEV COHEN2 AND YONINA C. ELDAR3 ABSTRACT j We consider deep learning strategies in ultra- a highly cost-effective modality that offers the clinician an sound systems, from the front-end to advanced applications. unmatched and invaluable level of interaction, enabled by its Our goal is to provide the reader with a broad understand- real-time nature. Its portability and cost-effectiveness permits ing of the possible impact of deep learning methodologies point-of-care imaging at the bedside, in emergency settings, on many aspects of ultrasound imaging. In particular, we rural clinics, and developing countries. Ultrasonography is discuss methods that lie at the interface of signal acquisi- increasingly used across many medical specialties, spanning tion and machine learning, exploiting both data structure from obstetrics to cardiology and oncology, and its market (e.g. sparsity in some domain) and data dimensionality (big share is globally growing. data) already at the raw radio-frequency channel stage. On the technological side, ultrasound probes are becoming As some examples, we outline efficient and effective deep increasingly compact and portable, with the market demand learning solutions for adaptive beamforming and adaptive for low-cost ‘pocket-sized’ devices expanding [2], [3]. Trans- spectral Doppler through artificial agents, learn compressive ducers are miniaturized, allowing e.g. in-body imaging for encodings for color Doppler, and provide a framework for interventional applications.
    [Show full text]
  • Sparse Array Design Via Fractal Geometries Regev Cohen , Graduate Student Member, IEEE, and Yonina C
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020 4797 Sparse Array Design via Fractal Geometries Regev Cohen , Graduate Student Member, IEEE, and Yonina C. Eldar , Fellow, IEEE Abstract—Sparse sensor arrays have attracted considerable at- Sparse arrays include the well-known minimum redundancy tention in various fields such as radar, array processing, ultrasound arrays (MRA) [13], minimum holes arrays (MHA), nested arrays imaging and communications. In the context of correlation-based (NA) [1] and coprime arrays (CP) [14], to name just a few. Such processing, such arrays enable to resolve more uncorrelated sources O N 2 N than physical sensors. This property of sparse arrays stems from arrays enable detection of ( ) sources using elements, the size of their difference coarrays, defined as the differences of unlike uniform linear arrays (ULAs) that can resolve O(N) element locations. Thus, the design of sparse arrays with large targets. This property of increased degrees-of-freedom (DOF) difference coarrays is of great interest. In addition, other array relies on correlation-based processing and arises from the size of properties such as symmetry, robustness and array economy are the difference coarray, defined as the pair-wise sensor separation. important in different applications. Numerous studies have pro- posed diverse sparse geometries, focusing on certain properties A large difference coarray increases resolution [1], [13], [14] while lacking others. Incorporating multiple properties into the and the number of resolvable sources [1], [14]. Hence, the size design task leads to combinatorial problems which are generally of the difference set is an important metric in designing sparse NP-hard.
    [Show full text]
  • Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
    1 Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing Vishal Monga, Senior Member, IEEE, Yuelong Li, Member, IEEE, and Yonina C. Eldar, Fellow, IEEE Abstract—Deep neural networks provide unprecedented per- model based analytic methods. In contrast to conventional formance gains in many real world problems in signal and iterative approaches where the models and priors are typically image processing. Despite these gains, future development and designed by analyzing the physical processes and handcrafting, practical deployment of deep networks is hindered by their black- box nature, i.e., lack of interpretability, and by the need for deep learning approaches attempt to automatically discover very large training sets. An emerging technique called algorithm model information and incorporate them by optimizing net- unrolling or unfolding offers promise in eliminating these issues work parameters that are learned from real world training sam- by providing a concrete and systematic connection between ples. Modern neural networks typically adopt a hierarchical iterative algorithms that are used widely in signal processing and architecture composed of many layers and comprise a large deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. number of parameters (can be millions), and are thus capable More recently, this direction has attracted enormous attention of learning complicated mappings which are difficult to design and is rapidly growing both in theoretic investigations and explicitly. When training data is sufficient, this adaptivity practical applications. The growing popularity of unrolled deep enables deep networks to often overcome model inadequacies, networks is due in part to their potential in developing efficient, especially when the underlying physical scenario is hard to high-performance and yet interpretable network architectures from reasonable size training sets.
    [Show full text]
  • Functional Nonlinear Sparse Models Luiz F
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020 2449 Functional Nonlinear Sparse Models Luiz F. O. Chamon , Student Member, IEEE, Yonina C. Eldar , Fellow, IEEE, and Alejandro Ribeiro Abstract—Signal processing is rich in inherently continuous and kernel Hilbert spaces (RKHSs) also admit finite descriptions often nonlinear applications, such as spectral estimation, optical through variational results known as representer theorems [14], imaging, and super-resolution microscopy, in which sparsity plays [15]. The infinite dimensionality of continuous problems is a key role in obtaining state-of-the-art results. Coping with the infi- nite dimensionality and non-convexity of these problems typically therefore often overcome by means of sampling theorems. Sim- involves discretization and convex relaxations, e.g., using atomic ilarly, nonlinear functions with bounded total variation or lying norms. Nevertheless, grid mismatch and other coherence issues in an RKHS can be written as a finite linear combination of basis often lead to discretized versions of sparse signals that are not functions. Under certain smoothness assumptions, nonlinearity sparse. Even if they are, recovering sparse solutions using convex can be addressed using “linear-in-the-parameters” methods. relaxations requires assumptions that may be hard to meet in prac- tice. What is more, problems involving nonlinear measurements Due to the limited number of measurements, however, dis- remain non-convex even after relaxing the sparsity objective. We cretization often leads to underdetermined problems. Sparsity address these issues by directly tackling the continuous, nonlinear priors then play an important role in achieving state-of-the-art re- problem cast as a sparse functional optimization program.
    [Show full text]
  • EE Research Day June 23Rd 2014
    Welcome to EE Research Day June 23rd 2014 משה נצרתי Prof. Moshe Nazarathy Head: Industrial Affiliates Program (IAP) תכנית "השבט התעשייתי" סביב הפקולטה להנדסת חשמל Electrical Engineering Department [email protected] The Electrical Engineering Department Vision • A top-tier, broad coverage research and education department, dedicated to the creation of knowledge and the development of human capital and technological leadership, for the advancement of the State of Israel and all humanity. MISSION: Serve the industry via best ECE Research & Education Electrical Engineering Department The Electrical Engineering Department International Review Committee - 2009 • Rafael Reif - (Chair), President of the MIT; previously Provost of the MIT • Leonard Kleinrock - Dist. Professor UCLA – an Internet pioneer • Sergio Verdú - Princeton, Shannon Award – Information Theory • Stepháne Mallat - Ecole Polytechnique and NYU - wavelets • Ehud Heyman - Dean of Eng., Tel Aviv University – wave propagation Electrical Engineering Department The Electrical Engineering Department International Review Committee Report (2009) Chaired by Prof. Rafael Reif - President, MIT • “The EE department at the Technion is a world class academic unit” … “and in the same league as the 10 highest-ranked departments in the US.” • “The faculty, the technical staff, and the undergraduate and graduate students, are among the best that can be found in a top ranked institution anywhere in the world.” • “The education of the undergraduate EE students at the Technion receive is, simply stated, outstanding.” • The graduates of this Department, whether with a B.Sc., M.Sc., or Ph.D., are as well prepared (if not better prepared) as EE graduates in any top ranked institution anywhere in the world.
    [Show full text]
  • Future Directions in Compressed Sensing and the Integration of Sensing and Processing What Can and Should We Know by 2030?
    Future Directions in Compressed Sensing and the Integration of Sensing and Processing What Can and Should We Know by 2030? Robert Calderbank, Duke University Guillermo Sapiro, Duke University Workshop funded by the Basic Research Office, Office of the Assistant Prepared by Brian Hider and Jeremy Zeigler Secretary of Defense for Research & Engineering. This report does not Virginia Tech Applied Research Corporation necessarily reflect the policies or positions of the US Department of Defense Preface OVER THE PAST CENTURY, SCIENCE AND TECHNOLOGY HAS BROUGHT REMARKABLE NEW CAPABILITIES TO ALL SECTORS of the economy; from telecommunications, energy, and electronics to medicine, transportation and defense. Technologies that were fantasy decades ago, such as the internet and mobile devices, now inform the way we live, work, and interact with our environment. Key to this technological progress is the capacity of the global basic research community to create new knowledge and to develop new insights in science, technology, and engineering. Understanding the trajectories of this fundamental research, within the context of global challenges, empowers stakeholders to identify and seize potential opportunities. The Future Directions Workshop series, sponsored by the Basic Research Office of the Office of the Assistant Secretary of Defense for Research and Engineering, seeks to examine emerging research and engineering areas that are most likely to transform future technology capabilities. These workshops gather distinguished academic and industry researchers from the world’s top research institutions to engage in an interactive dialogue about the promises and challenges of these emerging basic research areas and how they could impact future capabilities. Chaired by leaders in the field, these workshops encourage unfettered considerations of the prospects of fundamental science areas from the most talented minds in the research community.
    [Show full text]
  • Fourier Phase Retrieval: Uniqueness and Algorithms Arxiv:1705.09590V3 [Cs.IT] 6 Nov 2017
    Fourier Phase Retrieval: Uniqueness and Algorithms Tamir Bendory∗1, Robert Beinerty2 and Yonina C. Eldarz3 1The Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, USA 2Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, 8010 Graz, Austria 3The Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion - Israel Institute of Technology, Haifa, Israel Abstract The problem of recovering a signal from its phaseless Fourier transform measurements, called Fourier phase retrieval, arises in many applications in engineering and science. Fourier phase retrieval poses fundamental theo- retical and algorithmic challenges. In general, there is no unique mapping between a one-dimensional signal and its Fourier magnitude and therefore the problem is ill-posed. Additionally, while almost all multidimensional signals are uniquely mapped to their Fourier magnitude, the performance of existing algorithms is generally not well-understood. In this chapter we survey methods to guarantee uniqueness in Fourier phase retrieval. We then present different algorithmic approaches to retrieve the signal in practice. We conclude by outlining some of the main open questions in this field. arXiv:1705.09590v3 [cs.IT] 6 Nov 2017 ∗[email protected] [email protected]. The Institute of Mathematics and Scientific Computing is a mem- ber of NAWI Graz (http://www.nawigraz.at). The author is supported by the Austrian Science Fund (FWF) within the project P 28858. [email protected]. The author is supported by the European Unions Horizon 2020 research and innovation program under grant agreement no. 646804-ERC-COG-BNYQ, and from the Israel Science Foundation under Grant no.
    [Show full text]
  • Pushing the Frontiers of Signal-Processing and Machine Learning to Advance Human Lives and Wellbeing
    Pushing the frontiers of signal-processing and machine learning to advance human lives and wellbeing WHO WE ARE SAMPL Lab The Signal Acquisition Modeling Processing and Learning (SAMPL) Lab at the Weizmann Institute of Science, headed by Prof. Yonina Eldar, focuses on developing new technologies that more efficiently extract and process signals and information across a wide range of tasks, including medical imaging, radar, communication, scientific and optical imaging and biological inference. The lab also develops model-based methods for artificial intelligence (AI) that aid in obtaining increased information using minimal resources. What is Signal Processing Signal processing is the area of science and engineering concerned with the generation, acquisition, representation, transmission and analysis of signals and information using mathematical theory and methods. Digital signal processing enables conversion of physical signals to a digital representation for communication and processing by computers and digital devices. Signal processing is the power behind our modern lives, enhancing our ability to communicate and share information. The technology in our everyday lives – from computers, cell phones and autonomous vehicles to medical and defense systems – is enabled by signal processing. The performance and effectiveness of these systems depend on the quality and efficiency of signal sampling and processing. In many cases, such as medical applications, automotive and aviation, these capabilities are critical to human health, life and wellbeing. The Challenges We Are Facing In coming years, new and increasingly complex challenges will arise as we become even more dependent on signal-processing in our everyday lives. As countless additional tasks and functions are replaced by smart and automated applications, they will require increasingly faster and more powerful technologies.
    [Show full text]
  • Download The
    2018 Year in Review CONNECTOR News from the MIT Department of Electrical Engineering and Computer Science Year in Review: 2018 Connector The MIT Stephen A. Schwarzman College of Rising Stars, an academic-careers workshop Computing — established with a gift from the for women, brought 76 of the world’s top EECS co-founder, CEO, and chairman of Blackstone postdocs and grad students to MIT to hear — is scheduled to open in the fall of 2019. faculty talks, network with each other, and Photo: Courtesy of Blackstone. present their research. Photo: Gretchen Ertl CONTENTS 1 A Letter from the Department Head FACULTY FOCUS FEATURES 47 Faculty Awards 4 MIT Reshapes Itself to Shape the Future: EECS Leadership Update Asu Ozdaglar Introducing the MIT Stephen A. Schwarzman College of Computing 53 Asu Ozdaglar, Department Head Department Head 8 Artificial Intelligence in Action: Introducing the 54 Associate Department Heads MIT-IBM Watson AI Lab 55 Education and Undergraduate Officers Saman Amarasinghe 10 EECS Professor Antonio Torralba Appointed to 56 Faculty Research Innovation Fellowships (FRIFs) Associate Department Head Direct MIT Quest for Intelligence 57 Professorships 12 Summit Explores Pioneering Approaches for AI Nancy Lynch and Digital Technology for Health Care 62 Faculty Promotions Associate Department Head, 14 SuperUROP: Coding, Thinking, Sharing, 64 Tenured Faculty Building Strategic Directions 66 New Faculty 16 SuperUROP: CS+HASS Scholarship Program Debuts with Nine Projects 69 Remembering Professor Alan McWhorter, 1930-2018 Joel Voldman
    [Show full text]
  • Digital Signal Processing Research Program - 2 RLE Progress Report 144
    2 - Circuits, Systems and Communications – Digital Signal Processing Research Program - 2 RLE Progress Report 144 Digital Signal Processing Research Program Academic and Research Staff Professor Alan V. Oppenheim, Professor Arthur B. Baggeroer, Professor Gregory W. Wornell, Giovanni Aliberti Visiting Scientists and Research Affiliates Dr. Brian Chen, Dianne Egnor, Dr. Aaron Cohen, Dr. Bernard Gold, Dr. James C. Preisig, Dr. Ehud Weinstein1 Graduate Students Petros Boufounos, Albert Chan, Stark Draper, Yonina Eldar, Everest Huang, J. Nicholas Laneman, Michael J. Lopez, Emin Martinian, Andrew Russell, Maya R. Said, Charles Sestok, Wade Torres, Huan Yao Undergraduate Students Sourav Dey Technical and Support Staff Wendy-Kaye Russell, Dianne Wheeler Introduction The field of Digital Signal Processing grew out of the flexibility afforded by the use of digital computers in implementing signal processing algorithms and systems. It has since broadened into the use of a variety of both digital and analog technologies, spanning a broad range of applications, bandwidths, and realizations. The Digital Signal Processing Group carries out research on algorithms for signal processing and their applications. Current application areas of interest include signal enhancement and detection; speech, audio and underwater acoustic signal processing; and signal processing and coding for wireless and broadband multiuser/multimedia communication networks. In some of our recent work, we have developed new methods for signal enhancement and noise cancellation, and for implementing signal processing in distributed environments. We have also been developing new methods for representing and analyzing signals based on the mathematics of fractals, chaos and nonlinear dynamics and applying these to various application contexts. We are also exploring some areas of biology and physics as metaphors for new signal processing methods.
    [Show full text]