ICPS Edition

Total Page:16

File Type:pdf, Size:1020Kb

ICPS Edition {jIAPS} 2016 ICPS edition jIAPS 2016 In this issue Editor’s note 2 Vikings from the North 15 President’s letter 2 Trondheim Science Week 16 Connected by Light 3 Choosing Orientation 17 The International School Day: PHYSICS With the jDPG 4 Pendulum with Rotating With the FAPS 5 Pivot 18 Lights of Tuscany 6 Mnemonic Devices in Next Summer, Physics 20 Italy Will Impress You 7 Solving Problems in PLANCKS - Be Part of It! 8 Theoretical Physics 23 iaps2CERN 10 Nanophysics and its Going International with Italy 12 frontiers 27 Mexico Has Joined! 13 Introducting Preovskite Two Closer Unions 14 Solar Cells 29 Editor-in-chief Ivana Kurecic Editors Henrik Siboni Sofie Metzchen Spell checking Gönenc Mogol Moeen Ghafoor Cover page image Berit Watkin AN PRODUCTION First distributed at: The International Conference of Physics Students 2016 11-17 August in Malta 1 Editor’s Note Dear colleagues and friends, international level, and learn about express my sincere gratitude I would like to welcome you to the new topics in physics, guided by to everyone who helped form ICPS 2016 edition of the journal students such as yourselves. this issue -- most of all our PR of the International Association of Manager Henrik Siboni, and Sofie Physics Students - jIAPS. In this issue, the Executive Metzchen Andersen of the PR Committee of IAPS would like to Subcommittee, who spent long This magazine brings you articles congratulate Baptiste Ravina for hours to put together what you see written especially for you, physics winning this year's jIAPS Article here. A grateful mention goes to students, by your colleagues from Contest, with his contribution titled the whole PR Subcommittee and around the world. You will read "Solving Problems in Theoretical all contributors to this edition! about some of the wonderful Physics," for which he will be More articles can be found at jiaps. trips and activities organized awarded the full ICPS participation org. and attended by the members of fee! You can find his article (and the International Association of other selected submissions) on the Ivana Kurecic Physics Students (IAPS), find out following pages. Editor-in-chief what it's like to cooperate and collaborate with your peers on an In conclusion, I would like to President’s Letter Dear reader, experiences here as well. Even After all this, make sure you don’t Before you is a balanced mix of though it is over, IYL will leave forget to check out our featured everything a physics student needs a mark on IAPS with the start of ICPS and PLANCKS articles! – scientific articles, opportunities the annual School Day project A special thanks goes to everyone for improvement, reports from – with reports from our German involved in process of putting this interesting events and member and Iranian members on their edition of jIAPS together. I hope articles through which you can experiences. However, these are you have learned something new get to know you fellow physics not the only articles on educational in the process. This is the whole students from around the globe. projects so you have plenty to read. point of student involvement so This year, IAPS has really spread If you are looking for an IAPS and myself eagerly await its international wings – gaining 6 opportunity to learn and visit more. new members in 5 new countries some awesome labs, check out our across 3 continents. In this edition, articles on iaps2CERN, Lights of you will read about our new Tuscany and iaps@GranSasso. National Committee in Mexico. Last but not least, the variety of Their country was the host of the scientific articles this year should International Year of Light Closing tickle anyone’s fancy and give a Ceremony which IAPS volunteers good overview of the full potential Ana Milinović attended – you will find their of physics for those just starting. President 2 jIAPS 2016 Connected by light- IYL Closing Ceremony 2015 was announced to be the Inter- national Year of Light (IYL) by the United Nations. This year came to an end in the beginning of 2016. People from all over the world were invited to meet in Mérida, Mexico from Feb- ruary 3 to 6 for this occasion. An article in the last issue of jIAPS reported on the Opening Ceremony in Paris, France. Similar as it was the case for that event, the organisers reached out to IAPS asking for stu- dent volunteers. Nine students from six different countries were found to complete the team of almost 30 vol- unteers. Travel expenses weren’t covered by the organisers, which caused the rath- er low number of IAPS volunteers. However, sponsors were found from universities, societies or by similar means, one of which was the The Optical Society, which made the at- tendance possible for two of the IAPS members. We also want to thank the mura, the inventor of blue LED and gies, the event was completed by the Danish Physical Society, SPS, the John C. Mather, who was the leading Chichén Itza Light Show. Student Union in Graz, the Farhangi- scientist behind COBE satellite that an University and IYL Secretariat. investigated the Cosmic Microwave The Closing Ceremony made a very The team of volunteers from five dif- Background. He is currently the pro- memorable impression on us We be- ferent continents was working very ject scientist of the James Webb Space came a part of a team of internation- well together. The registration, techni- Telescope. The ceremony did not only al volunteers, who are committed to cal support and guidance of the partic- catch the physical aspect of light but popularize science. Hopefully we ipants were the main tasks. But luck- it also covered light in architecture, all stay connected and we will meet ily we had the chance to attend most light in arts and air pollution by light. again, let it be at an IAPS event or at of the program. The Closing Ceremo- Workshops and coffee breaks be- another similar event as a volunteer. ny was opened with a message of the tween the plenary and panel sessions Secretary General of the United Na- allowed the participants and volun- tions, Ban Ki Moon. teers to make contacts that might help in the future. During the official program John The evenings were covered by a visit Dudley, who is the chairman of the to the Gran Museo del Mundo Maya, Steering Committee of the IYL, gave open-air light exhibitions in the streets a feedback on the International Year of Merida, and time spend together of Light and Light-based Technolo- with the volunteers in either the hotel gies naming also a garden society as lobby or at a local bar. an organiser of light events . He sum- marized the significant effect of the The ceremony ended with a cultur- Gábor Galgóczi is active in the IYL on the world. There were more al trip to the beautiful sights of Iza- Hungarian NC and is currently than 5000 activities in 148 countries mal and Chichén Itza. Two lectures working on particle detectors. and 15.000 media mentions in 120 on Mayan culture were held in the Sabrina Gronow is an active countries. foreground of the pyramid El Castil- part of NC Germany and the lo illuminated with different colours. Two Nobel laureates were invited as Appropriate for the International Year IAPS EC. Her thesis is on the guest speakers, namely Shuji Naka- of Light and Light-based Technolo- astrophysics of stellar objects. 3 The IAPS School Day The past academic year marked the to just a few kids while others man- you are always welcome to contact beginning of a new concept - the IAPS aged to reach hundreds. IAPS as [email protected]. We have also School Day! 10 November - to be No matter the amount, we are thank- put a guideline up on our webpage specific - in an effort to improve our ful to everyone who joined and it has with possible experiments and more. standing in outreach and education, certainly helped create the next gen- Find more information here: we invited members to spread interest eration of physics students as well as iaps.info/activities/iyl/school-day in physics amongst the local school strengthen the international bonds be- pupils. In the end, the event reached tween the current member communi- As a thank you to this year's partici- eight different countries, probably re- ty. We hope that it will become a tradi- pants, and as an inspiration, we have sulting in the most spread out, simul- tion and grow with each passing year. gathered two stories from the special taneous IAPS activitity ever. Some If you are interested in hearing about day on these two pages. places showed the wonders of physics the next edition of the School Day, Enjoy! With the jDPG Light! - all present but still unimag- work?”. Other pupils in Hannover possible in everydays classroom, ex- inable and fascinating. Pupils of five learned how light can be used to de- plained Mrs Redeker-Borsch, physics different schools all over Germany tect gravitational waves, while those teacher in Dortmund. At all participat- had the opportunity to do hands on in Dortmund did an experiment on ing schools, teachers expressed their experiments teaching the physics of sky’s color using an old aquarium. praise to the students and invited them light. In occasion of the “Internation- They learned a lot about scattering to repeat such an event in the coming al Year of Light” the regional Groups by observing red and blue light, de- year. The experiments, as well as ex- of Dortmund, Göttingen, Hannover, veloped from the white light of an changes between young people and Karlsruhe and Ulm visited sever- overhead projector on different sides students was thus a valuable addition al high schools to conduct simple of the aquarium.
Recommended publications
  • Axions and Other Similar Particles
    1 91. Axions and Other Similar Particles 91. Axions and Other Similar Particles Revised October 2019 by A. Ringwald (DESY, Hamburg), L.J. Rosenberg (U. Washington) and G. Rybka (U. Washington). 91.1 Introduction In this section, we list coupling-strength and mass limits for light neutral scalar or pseudoscalar bosons that couple weakly to normal matter and radiation. Such bosons may arise from the spon- taneous breaking of a global U(1) symmetry, resulting in a massless Nambu-Goldstone (NG) boson. If there is a small explicit symmetry breaking, either already in the Lagrangian or due to quantum effects such as anomalies, the boson acquires a mass and is called a pseudo-NG boson. Typical examples are axions (A0)[1–4] and majorons [5], associated, respectively, with a spontaneously broken Peccei-Quinn and lepton-number symmetry. A common feature of these light bosons φ is that their coupling to Standard-Model particles is suppressed by the energy scale that characterizes the symmetry breaking, i.e., the decay constant f. The interaction Lagrangian is −1 µ L = f J ∂µ φ , (91.1) where J µ is the Noether current of the spontaneously broken global symmetry. If f is very large, these new particles interact very weakly. Detecting them would provide a window to physics far beyond what can be probed at accelerators. Axions are of particular interest because the Peccei-Quinn (PQ) mechanism remains perhaps the most credible scheme to preserve CP-symmetry in QCD. Moreover, the cold dark matter (CDM) of the universe may well consist of axions and they are searched for in dedicated experiments with a realistic chance of discovery.
    [Show full text]
  • Gaugino Mass in Heavy Sfermion Scenario
    IPMU 15-0137 Gaugino mass in heavy sfermion scenario Keisuke Harigaya1, 2 1Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, 277-8583, Japan 2ICRR, University of Tokyo, Kashiwa, Chiba 277-8582, Japan (Dated: May 8, 2018) Abstract The heavy sfermion scenario is naturally realized when supersymmetry breaking fields are charged under some symmetry or are composite fields. There, scalar partners of standard model fermions and the gravitino are as heavy as O(10-1000) TeV while gauginos are as heavy as O(1) TeV. The scenario is not only consistent with the observed higgs mass, but also is free from cosmo- logical problems such as the Polonyi problem and the gravitino problem. In the scenario, gauginos are primary targets of experimental searches. In this thesis, we discuss gaugino masses in the heavy sfermion scenario. First, we derive the so-called anomaly mediated gaugino mass in the superspace formalism of supergravity with a Wilsonian effective action. Then we calculate gaugino masses generated through other possible one-loop corrections by extra light matter fields and the QCD axion. Finally, we consider the case where some gauginos are degenerated in their masses with each other, because the thermal relic abundance of the lightest supersymmetric particle as well as the the strategy to search gauginos drastically change in this case. After calculating the thermal relic abundance of the lightest supersymmetric particle for the degenerated case, we discuss the phenomenology of gauginos at the Large Hadron Collider and cosmic ray experiments. arXiv:1508.04811v1 [hep-ph] 19 Aug 2015 1 Contents I. Introduction 6 II.
    [Show full text]
  • The WISP Paradigm
    The WISP Paradigm Javier Redondo Max Planck Institut (Werner Heisenberg Institut) Munich MPI 14/12/2009 Hidden Sectors in PBSM Extensions of SM often include Hidden Sectors Fields coupled to SM only through gravity or high energy “messenger” fields... This is the case in string theory (compactifications produce many particles, new gauge symmetries, and KKs) Desirable for SUSY Also in GUT theories... Massive Messengers Standard Model Hidden Sector e−, ν, q, γ, W ±, Z, g...H a, γ, ψMCP... Hidden Sectors can be quite complicated we certainly don’t know! Hidden Sector BIG guys Light guys (live in the mountains) (mass is protected by a symmetry) Goldstone Chiral Bosons fermions Gauge and more... Bosons hard to detect; not only as hidden they have suppressed interactions but as hidden, also heavy! light they have no thresholds and they can have maybe at LHC or ILC... coherent forces Let symmetry be our guide ! Hidden Sectors can be quite complicated we certainly don’t know! Hidden Sector BIG guys Light guys (live in the mountains) (mass is protected by a symmetry) Goldstone Chiral Bosons WISPsfermions (very) weakly interacting sub-eV Particles Gauge and more... Bosons hard to detect; not only as hidden they have suppressed interactions but as hidden, also heavy! light they have no thresholds and they can have maybe at LHC or ILC... coherent forces Let symmetry be our guide ! Axion-like-Particles and Axions 1 µν Axions are GB of a color anomalous U(1) Tr Gµν G a 4fa { } The color anomalous term creates a potential with CP conserving minimum Solution to Strong CP which gives the axion a mass m f 10 10GeV 1 m π π 0.6 meV − − .
    [Show full text]
  • Axions & Wisps
    FACULTY OF SCIENCE AXIONS & WISPS STEPHEN PARKER 2nd Joint CoEPP-CAASTRO Workshop September 28 – 30, 2014 Great Western, Victoria 2 Talk Outline • Frequency & Quantum Metrology Group at UWA • Basic background / theory for axions and hidden sector photons • Photon-based experimental searches + bounds • Focus on resonant cavity “Haloscope” experiments for CDM axions • Work at UWA: Past, Present, Future A Few Useful Review Articles: J.E. Kim & G. Carosi, Axions and the strong CP problem, Rev. Mod. Phys., 82(1), 557 – 601, 2010. M. Kuster et al. (Eds.), Axions: Theory, Cosmology, and Experimental Searches, Lect. Notes Phys. 741 (Springer), 2008. P. Arias et al., WISPy Cold Dark Matter, arXiv:1201.5902, 2012. [email protected] The University of Western Australia 3 Frequency & Quantum Metrology Research Group ~ 3 staff, 6 postdocs, 8 students Hosts node of ARC CoE EQuS Many areas of research from fundamental to applied: Cryogenic Sapphire Oscillator Tests of Lorentz Symmetry & fundamental constants Ytterbium Lattice Clock for ACES mission Material characterization Frequency sources, synthesis, measurement Low noise microwaves + millimetrewaves …and lab based searches for WISPs! Core WISP team: Stephen Parker, Ben McAllister, Eugene Ivanov, Mike Tobar [email protected] The University of Western Australia 4 Axions, ALPs and WISPs Weakly Interacting Slim Particles Axion Like Particles Slim = sub-eV Origins in particle physics (see: strong CP problem, extensions to Standard Model) but become pretty handy elsewhere WISPs Can be formulated as: Dark Matter (i.e. Axions, hidden photons) ALPs Dark Energy (i.e. Chameleons) Low energy scale dictates experimental approach Axions WISP searches are complementary to WIMP searches [email protected] The University of Western Australia 5 The Axion – Origins in Particle Physics CP violating term in QCD Lagrangian implies neutron electric dipole moment: But measurements place constraint: Why is the neutron electric dipole moment (and thus θ) so small? This is the Strong CP Problem.
    [Show full text]
  • Rare Event Physics WG1
    Rare event physics WG1 Our ambitious mission : ● Show the state of the art of the physics of rare events ● Cover for both experimental and theoretical aspects ● Provide hints for the exploration of next generation experiments (link with WG5) ● Provide a guideline for experimental and technological efforts, like constraints for low cosmo- and radio-purity techniques(WG2), for detection methods (WG3) and analysis tools (WG4) ● Being inclusive to any other scientific field that would profit of deep underground sites Christine Marquet, CENBG Mariangela Settimo, Subatech May 31, 2021 - visioconference Luca Scotto Lavina, LPNHE Two major axes 1. Dark Matter WG1 We will keep a particular eye on direct search of dark matter : ● Scoping the whole zoology of models (WIMP, WISP, axions, …), nucleo- or lepto-philic ● Exploring a wide (and experimentally accessible) range of masses/energies ( >GeV, sub-GeV, down to μeV) ● Looking for any trace of daily and seasonal modulation ● Using a plethora of targets and combinations of energy losses ● Complementarity with colliders (new particles) and indirect evidences (annihilation) Christine Marquet, CENBG Mariangela Settimo, Subatech May 31, 2021 - visioconference Luca Scotto Lavina, LPNHE Two major axes 2. Neutrinoless double beta decay WG1 We will keep an eye on the search for the intimate nature of neutrinos : ● Nature of neutrino (Majorana/Dirac) ● Fixing the neutrino mass scale and possible mass scenarii ● Proof of a lepton number violation ● Neutrino hierarchy ● Impact on baryon asymmetry of the Universe
    [Show full text]
  • Non–Baryonic Dark Matter V
    Non–Baryonic Dark Matter V. Berezinsky1 , A. Bottino2,3 and G. Mignola3,4 1INFN, Laboratori Nazionali del Gran Sasso, 67010 Assergi (AQ), Italy 2Universit`a di Torino, via P. Giuria 1, I-10125 Torino, Italy 3INFN - Sezione di Torino, via P. Giuria 1, I-10125 Torino, Italy 4Theoretical Physics Division, CERN, CH–1211 Geneva 23, Switzerland (presented by V. Berezinsky) The best particle candidates for non–baryonic cold dark matter are reviewed, namely, neutralino, axion, axino and Majoron. These particles are considered in the context of cosmological models with the restrictions given by the observed mass spectrum of large scale structures, data on clusters of galaxies, age of the Universe etc. 1. Introduction (Cosmological environ- The structure formation in Universe put strong ment) restrictions to the properties of DM in Universe. Universe with HDM plus baryonic DM has a Presence of dark matter (DM) in the Universe wrong prediction for the spectrum of fluctuations is reliably established. Rotation curves in many as compared with measurements of COBE, IRAS galaxies provide evidence for large halos filled by and CfA. CDM plus baryonic matter can ex- nonluminous matter. The galaxy velocity distri- plain the spectrum of fluctuations if total density bution in clusters also show the presence of DM in Ω0 ≈ 0.3. intercluster space. IRAS and POTENT demon- There is one more form of energy density in the strate the presence of DM on the largest scale in Universe, namely the vacuum energy described the Universe. by the cosmological constant Λ. The correspond- The matter density in the Universe ρ is usually 2 ing energy density is given by ΩΛ =Λ/(3H0 ).
    [Show full text]
  • QCD Axion Dark Matter with a Small Decay Constant
    UC Berkeley UC Berkeley Previously Published Works Title QCD Axion Dark Matter with a Small Decay Constant. Permalink https://escholarship.org/uc/item/61f6p95k Journal Physical review letters, 120(21) ISSN 0031-9007 Authors Co, Raymond T Hall, Lawrence J Harigaya, Keisuke Publication Date 2018-05-01 DOI 10.1103/physrevlett.120.211602 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PHYSICAL REVIEW LETTERS 120, 211602 (2018) Editors' Suggestion QCD Axion Dark Matter with a Small Decay Constant Raymond T. Co,1,2,3 Lawrence J. Hall,2,3 and Keisuke Harigaya2,3 1Leinweber Center for Theoretical Physics, University of Michigan, Ann Arbor, Michigan 48109, USA 2Department of Physics, University of California, Berkeley, California 94720, USA 3Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Received 20 December 2017; published 23 May 2018) The QCD axion is a good dark matter candidate. The observed dark matter abundance can arise from 11 misalignment or defect mechanisms, which generically require an axion decay constant fa ∼ Oð10 Þ GeV (or higher). We introduce a new cosmological origin for axion dark matter, parametric resonance from 8 11 oscillations of the Peccei-Quinn symmetry breaking field, that requires fa ∼ ð10 –10 Þ GeV. The axions may be warm enough to give deviations from cold dark matter in large scale structure. DOI: 10.1103/PhysRevLett.120.211602 Introduction.—The absence of CP violation from QCD is unstable and decays into axions [10], yielding a dark is a long-standing problem in particle physics [1] and is matter density [11,12] elegantly solved by the Peccei-Quinn (PQ) mechanism 1.19 [2,3] involving a spontaneously broken anomalous sym- 2 fa Ω h j − ≃ 0.04–0.3 : ð2Þ metry.
    [Show full text]
  • Dark Radiation from the Axino Solution of the Gravitino Problem
    21st of July 2011 Dark radiation from the axino solution of the gravitino problem Jasper Hasenkamp II. Institute for Theoretical Physics, University of Hamburg, Hamburg, Germany [email protected] Abstract Current observations of the cosmic microwave background could confirm an in- crease in the radiation energy density after primordial nucleosynthesis but before photon decoupling. We show that, if the gravitino problem is solved by a light axino, dark (decoupled) radiation emerges naturally in this period leading to a new upper 11 bound on the reheating temperature TR . 10 GeV. In turn, successful thermal leptogenesis might predict such an increase. The Large Hadron Collider could en- dorse this opportunity. At the same time, axion and axino can naturally form the observed dark matter. arXiv:1107.4319v2 [hep-ph] 13 Dec 2011 1 Introduction It is a new opportunity to determine the amount of radiation in the Universe from obser- vations of the cosmic microwave background (CMB) alone with precision comparable to that from big bang nucleosynthesis (BBN). Recent measurements by the Wilkinson Mi- crowave Anisotropy Probe (WMAP) [1], the Atacama Cosmology Telescope (ACT) [2] and the South Pole Telescope (SPT) [3] indicate|statistically not significant|the radi- ation energy density at the time of photon decoupling to be higher than inferred from primordial nucleosynthesis in standard cosmology making use of the Standard Model of particle physics, cf. [4,5]. This could be taken as another hint for physics beyond the two standard models. The Planck satellite, which is already taking data, could turn the hint into a discovery. We should search for explanations from particle physics for such an increase in ra- diation [6,7], especially, because other explanations are missing, if the current mean values are accurate.
    [Show full text]
  • Unifying Inflation with the Axion, Dark Matter, Baryogenesis, and the Seesaw Mechanism
    Unifying Inflation with the Axion, Dark Matter, Baryogenesis, and the Seesaw Mechanism. Andreas Ringwald Astroteilchenseminar Max-Planck-Institut für Kernphysik Heidelberg, D 13 November 2017 [Guillermo Ballesteros, Javier Redondo, AR, Carlos Tamarit, 1608.05414; 1610.01639] Fundamental Problems > Standard Model (SM) describes interactions of all known particles with remarkable accuracy Andreas Ringwald | Unifying Inflation with Axion, Dark Matter, Baryogenesis, and Seesaw, Seminar, MPIK HD, D, 13 November 2017 | Page 2 Fundamental Problems > Standard Model (SM) describes interactions of all known particles with remarkable accuracy > Big fundamental problems in par- ticle physics and cosmology seem to require new physics § Dark matter § Neutrino masses and mixing § Baryon asymmetry § Inflation § Strong CP problem [PLANCK] Andreas Ringwald | Unifying Inflation with Axion, Dark Matter, Baryogenesis, and Seesaw, Seminar, MPIK HD, D, 13 November 2017 | Page 3 Fundamental Problems > Standard Model (SM) describes interactions of all known particles with remarkable accuracy > Big fundamental problems in par- ticle physics and cosmology seem to require new physics § Dark matter § Neutrino masses and mixing § Baryon asymmetry § Inflation § Strong CP problem > These problems may be intertwin- ed in a minimal way, with a solu- tion pointing to a new physics sca- le around [Ballesteros,Redondo,AR,Tamarit, 1608.05414; 1610.01639] Andreas Ringwald | Unifying Inflation with Axion, Dark Matter, Baryogenesis, and Seesaw, Seminar, MPIK HD, D, 13 November 2017 | Page 4 Strong CP Problem > Most general gauge invariant Lagrangian of QCD: § Parameters: strong coupling ↵s, quark masses and theta angle [Belavin et al. `75;´t Hooft 76;Callan et al. `76;Jackiw,Rebbi `76 ] Andreas Ringwald | Unifying Inflation with Axion, Dark Matter, Baryogenesis, and Seesaw, Seminar, MPIK HD, D, 13 November 2017 | Page 5 Strong CP Problem > Most general gauge invariant Lagrangian of QCD: § Parameters: strong coupling ↵s, quark masses and theta angle [Belavin et al.
    [Show full text]
  • Collider Signatures of Axino and Gravitino Dark Matter
    2005 International Linear Collider Workshop - Stanford, U.S.A. Collider Signatures of Axino and Gravitino Dark Matter Frank Daniel Steffen DESY Theory Group, Notkestrasse 85, 22603 Hamburg, Germany The axino and the gravitino are extremely weakly interacting candidates for the lightest supersymmetric particle (LSP). We demonstrate that either of them could provide the right amount of cold dark matter. Assuming that a charged slepton is the next-to-lightest supersymmetric particle (NLSP), we discuss how NLSP decays into the axino/gravitino LSP can provide evidence for axino/gravitino dark matter at future colliders. We show that these NLSP decays will allow us to estimate the value of the Peccei–Quinn scale and the axino mass if the axino is the LSP. In the case of the gravitino LSP, we illustrate that the gravitino mass can be determined. This is crucial for insights into the mechanism of supersymmetry breaking and can lead to a microscopic measurement of the Planck scale. 1. INTRODUCTION A key problem in cosmology is the understanding of the nature of cold dark matter. In supersymmetric extensions of the Standard Model, the lightest supersymmetric particle (LSP) is stable if R-parity is conserved [1]. An electrically and color neutral LSP thus appears as a compelling solution to the dark matter problem. The lightest neutralino is such an LSP candidate from the minimal supersymmetric standard model (MSSM). Here we consider two well- motivated alternative LSP candidates beyond the MSSM: the axino and the gravitino. In the following we introduce the axino and the gravitino. We review that axinos/gravitinos from thermal pro- duction in the early Universe can provide the right amount of cold dark matter depending on the value of the reheating temperature after inflation and the axino/gravitino mass.
    [Show full text]
  • Exotic Particles in Topological Insulators
    EXOTIC PARTICLES IN TOPOLOGICAL INSULATORS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Rundong Li July 2010 © 2010 by Rundong Li. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/yx514yb1109 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Shoucheng Zhang, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Ian Fisher I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Steven Kivelson Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Recently a new class of quantum state of matter, the time-reversal invariant topo- logical insulators, have been theoretically proposed and experimentally discovered.
    [Show full text]
  • L Gauge and Higgs Bosons at the DUNE Near Detector
    FERMILAB-PUB-21-200-T, MI-TH-218 Light, Long-Lived B L Gauge and Higgs Bosons at the DUNE − Near Detector P. S. Bhupal Dev,a Bhaskar Dutta,b Kevin J. Kelly,c Rabindra N. Mohapatra,d Yongchao Zhange;a aDepartment of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130, USA bMitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77845, USA cTheoretical Physics Department, Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA dMaryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742, USA eSchool of Physics, Southeast University, Nanjing 211189, China E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: The low-energy U(1)B−L gauge symmetry is well-motivated as part of beyond Standard Model physics related to neutrino mass generation. We show that a light B L gauge boson Z0 and the associated − U(1)B−L-breaking scalar ' can both be effectively searched for at high-intensity facilities such as the near detector complex of the Deep Underground Neutrino Experiment (DUNE). Without the scalar ', the Z0 −9 can be probed at DUNE up to mass of 1 GeV, with the corresponding gauge coupling gBL as low as 10 . In the presence of the scalar ' with gauge coupling to Z0, the DUNE capability of discovering the gauge 0 boson Z can be significantly improved, even by one order of magnitude in gBL, due to additional production from the decay ' Z0Z0.
    [Show full text]