The Geology and Geomorphology of the Denton Hills Area of the Southern Mcmurdo Dry Valleys

Total Page:16

File Type:pdf, Size:1020Kb

The Geology and Geomorphology of the Denton Hills Area of the Southern Mcmurdo Dry Valleys THE GEOLOGY AND GEOMORPHOLOGY OF THE DENTON HILLS, SOUTHERN VICTORIA LAND, ANTARCTICA A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geology in the University of Canterbury by N. J. Carson University of Canterbury 2012 Dedication I would like to dedicate this thesis to two very special people who passed away during this research. Benjamin Andrew Carson 09/05/1984 – 25/04/2010 William Andrew Carson 28/01/1922 - 09/12/2009 ii Abstract This research is an integrated geological and geomorphological study into the Denton Hills area. The study area is part of the foothills to the Transantarctic Mountains, which divides East and West Antarctica, allowing an opportunity to investigate glacial events from both sides. As the study area is ice-free, it has allows good examination of the bedrock geology and has preserved geomorphological features allowing them to be examined and sampled. Comprehensive geological map and geomorphological maps have been produced, extending the knowledge into the spatial distribution of units and features. Both the geological and geomorphological maps reveal a complex history of evolution. The original geological units have been subjected to deformation and intrusion of large plutons. The geomorphological mapping shows ice has flowed in alternate direction through the valleys, and the valleys have had long periods where they have been occupied by large proglacial lakes. As the Antarctic ice sheets expanded they flowed into the valleys either from the west, the Royal Society Range draining the East Antarctic Ice Sheet or from the east, McMurdo Sound. Ice would flow from McMurdo Sound when the West Antarctic Ice Sheet expanded causing the grounding line of the ice sheet to move north through the Ross Sea. Surface exposure dating completed during the study has correlated the timing of glacial events to global cycles. The dating confirmed the presence of the large proglacial lake during the Last Glacial Maximum in the Miers Valley, which drained about 14 ka. The Garwood Glacier has also been directly linked to the Last Glacial Maximum with a moraine forming about 22 ka. The dating has also shown that during the Last Glacial Maximum there was little fluctuation in the size of glaciers draining the East Antarctic Ice Sheet, with features being date to the onset of the Last Glacial Maximum. iii Table of Contents Dedication ....................................................................................................................................... ii Abstract .......................................................................................................................................... iii Table of Figures .............................................................................................................................. ix Table of Tables .............................................................................................................................. xii 1. Introduction ............................................................................................................................... 1 1.1. Scope of research ............................................................................................................... 1 1.2. Association with IPY project (nzTABS) ........................................................................... 2 1.3. Methodology ...................................................................................................................... 3 1.4. Study Area ......................................................................................................................... 4 1.5. Regional Geological Setting .............................................................................................. 7 1.6. Antarctic Climate ............................................................................................................... 9 1.7. Styles of Antarctic Glaciation .......................................................................................... 10 1.7.1. Styles of Glaciation .................................................................................................. 10 1.7.2. Alpine Glaciers ......................................................................................................... 14 2. Previous Studies ...................................................................................................................... 15 2.1. Introduction ..................................................................................................................... 15 2.2. Geological Studies ........................................................................................................... 15 2.2.1. Early Explorers ......................................................................................................... 15 2.2.2. IGY (International Geophysical Year) Research ..................................................... 16 2.2.3. Research post IGY ................................................................................................... 19 2.2.4. Otago University Geology Department Antarctic Research .................................... 21 2.3. Geomorphological ........................................................................................................... 25 2.3.1 Glacial Geomorphology ........................................................................................... 25 iv 2.3.2. Lake Deposits ........................................................................................................... 28 2.3.3. Alluvial Deposits ...................................................................................................... 36 2.3.4. Aeolian Deposits ...................................................................................................... 37 2.4. Cosmogenic (Surface Exposure Dating) ......................................................................... 39 3. Geology ................................................................................................................................... 42 3.1. Introduction ..................................................................................................................... 42 3.2. Methodology .................................................................................................................... 42 3.3. Koettlitz Group ................................................................................................................ 42 3.3.1. Gneiss ....................................................................................................................... 43 3.3.2. Schist ........................................................................................................................ 45 3.3.3. Marble ...................................................................................................................... 45 3.4. Granitoids ........................................................................................................................ 47 3.5. Mafic Intrusions ............................................................................................................... 48 3.6. Deformation ..................................................................................................................... 50 3.7. Quaternary Deposits ........................................................................................................ 51 4. Glacial Geomorphology .......................................................................................................... 52 4.1. Introduction ..................................................................................................................... 52 4.2. Methodology .................................................................................................................... 52 4.2.1. Field Geomorphic Mapping ..................................................................................... 52 4.2.2. Digitising Geomorphic Maps ................................................................................... 52 4.3. Lakes, Rivers and Streams............................................................................................... 53 4.3.1. Lakes ........................................................................................................................ 53 4.3.2. Rivers/Streams ......................................................................................................... 54 4.4. Polygonal Patterned Ground ............................................................................................ 55 4.5. Desert Pavement .............................................................................................................. 56 v 4.6. Quaternary Faults ............................................................................................................ 57 4.7. Mass Movement .............................................................................................................. 58 4.7.1. Alluvial Fans ............................................................................................................ 58 4.7.2. Colluvial Deposits .................................................................................................... 59 4.8. Wind Processes ................................................................................................................ 60 4.8.1. Aeolian Deposits .....................................................................................................
Recommended publications
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • The Commonwealth Trans-Antarctic Expedition 1955-1958
    THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword ..................................................................................................................................
    [Show full text]
  • The Influence of Fцhn Winds on Glacial Lake Washburn And
    Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 3-1-2017 The Influence of öhnF Winds on Glacial Lake Washburn and Palaeotemperatures in the McMurdo Dry Valleys, Antarctica, During the Last Glacial Maximum Maciej Obryk Portland State University Peter Doran Louisiana State University Ed Waddington University of Washington-Seattle Chris McKay NASA Ames Research Center Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac Part of the Geology Commons Let us know how access to this document benefits ou.y Citation Details Obryk M.K., Doran P.T., Waddington E.D., Mckay C.P. 2017. The Influence of öhnF Winds on Glacial Lake Washburn and Palaeotemperatures in the McMurdo Dry Valleys, Antarctica, During the Last Glacial Maximum. Antarctic Science, 29(3)1-11. This Article is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Antarctic Science page 1 of 11 (2017) © Antarctic Science Ltd 2017 doi:10.1017/S0954102017000062 The influence of föhn winds on Glacial Lake Washburn and palaeotemperatures in the McMurdo Dry Valleys, Antarctica, during the Last Glacial Maximum M.K. OBRYK1,2, P.T. DORAN2, E.D. WADDINGTON3 and C.P. MCKAY4 1Department of Geology, Portland State University, Portland, OR 97219, USA 2Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA 3Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA 4Space Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA [email protected] Abstract: Large glacial lakes, including Glacial Lake Washburn, were present in the McMurdo Dry Valleys, Antarctica, during the Last Glacial Maximum (LGM) despite a colder and drier climate.
    [Show full text]
  • Biotic Interactions Are an Unexpected Yet Critical Control on the Complexity of an Abiotically Driven Polar Ecosystem
    ARTICLE https://doi.org/10.1038/s42003-018-0274-5 OPEN Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem Charles K. Lee et al. # 123456789 0():,; Abiotic and biotic factors control ecosystem biodiversity, but their relative contributions remain unclear. The ultraoligotrophic ecosystem of the Antarctic Dry Valleys, a simple yet highly heterogeneous ecosystem, is a natural laboratory well-suited for resolving the abiotic and biotic controls of community structure. We undertook a multidisciplinary investigation to capture ecologically relevant biotic and abiotic attributes of more than 500 sites in the Dry Valleys, encompassing observed landscape heterogeneities across more than 200 km 2. Using richness of autotrophic and heterotrophic taxa as a proxy for functional complexity, we linked measured variables in a parsimonious yet comprehensive structural equation model that explained signi ficant variations in biological complexity and identi fied landscape-scale and fine-scale abiotic factors as the primary drivers of diversity. However, the inclusion of lin- kages among functional groups was essential for constructing the best- fitting model. Our findings support the notion that biotic interactions make crucial contributions even in an extremely simple ecosystem. Correspondence and requests for materials should be addressed to S.C.C. (email: [email protected] ). #A full list of authors and their af filiations appears at the end of the paper. COMMUNICATIONS BIOLOGY | (2019) 2:62 | https://doi.org/10.1038/s42003-018-0274-5 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-018-0274-5 nderstanding how ecosystems self-organize at landscape soils 20 ,21 ,24 –27 .
    [Show full text]
  • Atmospheric Gas Records from Taylor Glacier, Antarctica, Reveal Ancient Ice with Ages Spanning the Entire Last Glacial Cycle Daniel Baggenstos1,*, Thomas K
    Clim. Past Discuss., doi:10.5194/cp-2017-25, 2017 Manuscript under review for journal Clim. Past Discussion started: 28 February 2017 c Author(s) 2017. CC-BY 3.0 License. Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle Daniel Baggenstos1,*, Thomas K. Bauska2, Jeffrey P. Severinghaus1, James E. Lee2, Hinrich Schaefer3, Christo Buizert2, Edward J. Brook2, Sarah Shackleton1, and Vasilii V. Petrenko4 1Scripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92093, USA. 2College of Earth, Ocean and Atmospheric Sciences, Oregon State University (OSU), Corvallis, OR, 97331, USA. 3National Institute of Water and Atmospheric Research Ltd (NIWA), PO Box 14901, Kilbirnie, 301 Evans Bay Parade, Wellington, New Zealand. 4Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA. *Current address: Climate and Environmental Physics, University of Bern, Switzerland. Correspondence to: [email protected] Abstract. Old ice for paleo-environmental studies, traditionally accessed through deep core drilling on domes and ridges on the large ice sheets, can also be retrieved at the surface from ice sheet margins and blue ice areas. The practically unlimited amount of ice available at these sites satisfies a need in the community for studies of trace components requiring large sample volumes. For margin sites to be useful as ancient ice archives, the ice stratigraphy needs to be understood and age models 5 need to be established. We present measurements of trapped gases in ice from Taylor Glacier, Antarctica, to date the ice 18 and assess the completeness of the stratigraphic section.
    [Show full text]
  • Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
    Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes.
    [Show full text]
  • Draft ASMA Plan for Dry Valleys
    Measure 18 (2015) Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND Introduction The McMurdo Dry Valleys are the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains mountain ranges, nunataks, glaciers, ice-free valleys, coastline, ice-covered lakes, ponds, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area was jointly proposed by the United States and New Zealand and adopted through Measure 1 (2004). This Management Plan aims to ensure the long-term protection of this unique environment, and to safeguard its values for the conduct of scientific research, education, and more general forms of appreciation.
    [Show full text]
  • Bulletin Vol. 13 No. 1 ANTARCTIC PENINSULA O 1 0 0 K M Q I Q O M L S
    ANttlcnc Bulletin Vol. 13 No. 1 ANTARCTIC PENINSULA O 1 0 0 k m Q I Q O m l s 1 Comandante fettai brazil 2 Henry Arctowski poono 3 Teniente Jubany Argentina 4 Artigas Uruguay 5 Teniente Rodolfo Marsh chile Bellingshausen ussr Great Wall china 6 Capitan Arturo Prat chile 7 General Bernardo O'Higgins chile 8 Esperania argentine 9 Vice Comodoro Marambio Argentina 10 Palmer us* 11 Faraday uk SOUTH 12 Rotheraux 13 Teniente Carvajal chile SHETLAND 14 General San Martin Argentina ISLANDS jOOkm NEW ZEALAND ANTARCTIC SOCIETY MAP COPYRIGHT Vol.l3.No.l March 1993 Antarctic Antarctic (successor to the "Antarctic News Bulletin") Vol. 13 No. 1 Issue No. 145 ^H2£^v March.. 1993. .ooo Contents Polar New Zealand 2 Australia 9 ANTARCTIC is published Chile 15 quarterly by the New Zealand Antarctic Italy 16 Society Inc., 1979 United Kingdom 20 United States 20 ISSN 0003-5327 Sub-antarctic Editor: Robin Ormerod Please address all editorial inquiries, Heard and McDonald 11 contributions etc to the Macquarie and Campbell 22 Editor, P.O. Box 2110, Wellington, New Zealand General Telephone: (04) 4791.226 CCAMLR 23 International: +64 + 4+ 4791.226 Fax: (04) 4791.185 Whale sanctuary 26 International: +64 + 4 + 4791.185 Greenpeace 28 First footings at Pole 30 All administrative inquiries should go to Feinnes and Stroud, Kagge the Secretary, P.O. Box 2110, Wellington and the Women's team New Zealand. Ice biking 35 Inquiries regarding back issues should go Vaughan expedition 36 to P.O. Box 404, Christchurch, New Zealand. Cover: Ice biking: Trevor Chinn contem plates biking the glacier slope to the Polar (S) No part of this publication may be Plateau, Mt.
    [Show full text]
  • 2016 Proposal
    PROJECT SUMMARY Overview: The McMurdo Dry Valleys, Antarctica, are a mosaic of terrestrial and aquatic ecosystems in a cold desert that support microbial foodwebs with few species of metazoans and no higher plants. Biota exhibit robust adaptations to the cold, dark, and arid conditions that prevail for all but a short period in the austral summer. The MCM-LTER has studied these ecosystems since 1993 and during this time, observed a prolonged cooling phase (1986-2002) that ended with an unprecedented summer of high temperature, winds, solar irradiance, glacial melt, and stream flow (the "flood year"). Since then, summers have been generally cool with relatively high solar irradiance and have included two additional high-flow seasons. Before the flood year, terrestrial and aquatic ecosystems responded synchronously to the cooling e.g., the declines in glacial melt, stream flow, lake levels, and expanding ice-cover on lakes were accompanied by declines in lake primary productivity, microbial mat coverage in streams and secondary production in soils. This overall trend of diminished melt-water flow and productivity of the previous decade was effectively reversed by the flood year, highlighting the sensitivity of this system to rapid warming. The observed lags or opposite trends in some physical and biotic properties and processes illustrated the complex aspects of biotic responses to climate variation. Since then, the conceptual model of the McMurdo Dry Valleys has evolved based on observations of discrete climate-driven events that elicit significant responses from resident biota. It is now recognized that physical (climate and geological) drivers impart a dynamic connectivity among landscape units over seasonal to millennial time scales.
    [Show full text]
  • A Sedimentological Record of Early Miocene Ice Advance and Retreat, AND-2A Drill Hole, Mcmurdo Sound, Antarctica GEOSPHERE
    Research Paper GEOSPHERE A sedimentological record of early Miocene ice advance and retreat, AND-2A drill hole, McMurdo Sound, Antarctica 1 1 2 3 2 4 5 6 7 8 GEOSPHERE; v. 14, no. 4 B.D. Field , G.H. Browne , C.R. Fielding , F. Florindo , D.M. Harwood , S.A. Judge , L.A. Krissek , K.S. Panter , S. Passchier , S.F. Pekar , S. Sandroni9, and F.M. Talarico9,10 1 https://doi.org/10.1130/GES01592.1 GNS Science, PO Box 30368, Lower Hutt, New Zealand 2Department of Earth and Atmospheric Sciences, 126 Bessey Hall, University of Nebraska-Lincoln, Nebraska 68588- 0340, USA 3Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 1-00143 Rome, Italy 15 figures 4Department of Geology, College of Wooster, 944 College Mall, Wooster, Ohio 44691, USA 5School of Earth Sciences, Ohio State University, 125 South Oval Mall, Columbus, Ohio 43210, USA 6 CORRESPONDENCE: brad .field@ gns .cri.nz Department of Geology, Bowling Green State University, Bowling Green, Ohio 43402, USA 7Department of Earth & Environmental Sciences, Montclair State University, 252 Mallory Hall, 1 Normal Avenue, Montclair, New Jersey 07043, USA 8School of Earth & Environmental Sciences, Queen’s College, 65-30 Kissena Blvd., Flushing, New York 11367, USA CITATION: Field, B.D., Browne, G.H., Fielding, 9Museo Nazionale dell’Antartide, Università degli Studi di Siena, Via Laterina 8, Siena, Italy C.R., Florindo, F., Harwood, D.M., Judge, S.A., 10Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, Università degli Studi di Siena, Via Laterina 8, Siena, Italy Krissek, L.A., Panter, K.S., Passchier, S., Pekar, S.F., Sandroni, S., and Talarico, F.M., 2018, A sedimento- logical record of early Miocene ice advance and re- ABSTRACT antarctic Mountains glacial activity under precessional control in CS1 and treat, AND-2A drill hole, McMurdo Sound, Antarctica: Geosphere, v.
    [Show full text]
  • Monsoonal Circulation of the Mcmurdo Dry Valleys, Ross Sea Region, Antarctica: Signal from the Snow Chemistry Nancy A.N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Maine The University of Maine DigitalCommons@UMaine Earth Science Faculty Scholarship Earth Sciences 2004 Monsoonal Circulation of the McMurdo Dry Valleys, Ross Sea Region, Antarctica: Signal from the Snow Chemistry Nancy A.N. Bertler Paul Andrew Mayewski University of Maine - Main, [email protected] Peter J. Barrett Sharon B. Sneed Michael J. Handley See next page for additional authors Follow this and additional works at: https://digitalcommons.library.umaine.edu/ers_facpub Part of the Earth Sciences Commons Repository Citation Bertler, Nancy A.N.; Mayewski, Paul Andrew; Barrett, Peter J.; Sneed, Sharon B.; Handley, Michael J.; and Kreutz, Karl J., "Monsoonal Circulation of the McMurdo Dry Valleys, Ross Sea Region, Antarctica: Signal from the Snow Chemistry" (2004). Earth Science Faculty Scholarship. 133. https://digitalcommons.library.umaine.edu/ers_facpub/133 This Conference Proceeding is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Earth Science Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Authors Nancy A.N. Bertler, Paul Andrew Mayewski, Peter J. Barrett, Sharon B. Sneed, Michael J. Handley, and Karl J. Kreutz This conference proceeding is available at DigitalCommons@UMaine: https://digitalcommons.library.umaine.edu/ers_facpub/133 Annals of Glaciology 39 2004 139 Monsoonal circulation of the McMurdo Dry Valleys, Ross Sea region, Antarctica: signal from the snow chemistry Nancy A. N. BERTLER,1 Paul A. MAYEWSKI,2 Peter J.
    [Show full text]
  • Fault Kinematic Studies in the Transantarctic Mountains, Southern Victoria Land TERRY J
    studies. Together these data will be used to develop a model to plate tectonic modeling. In R.A. Hodgson, S.P. Gay, Jr., and J.Y. of the structural architecture and motion history associated Benjamins (Eds.), Proceedings of the First International Conference with the Transantarctic Mountains in southern Victoria Land. on the New Basement Tectonics (Publication number 5). Utah Geo- logical Association. We thank Jane Ferrigno for cooperation and advice on Lucchita, B.K., J. Bowell, K.L. Edwards, E.M. Eliason, and H.M. Fergu- image selection; John Snowden, David Cunningham, and son. 1987. Multispectral Landsat images of Antarctica (U.S. Geo- Tracy Douglass at the Ohio State University Center for Map- logical Survey bulletin 1696). Washington, D.C.: U.S. Government ping for help with computer processing; and Carolyn Merry, Printing Office. Gary Murdock, and Ralph von Frese for helpful discussions Wilson, T.J. 1992. Mesozoic and Cenozoic kinematic evolution of the Transantarctic Mountains. In Y. Yoshida, K. Kaminuma, and K. concerning image analysis. This research was supported by Shiraishi (Eds.), Recent progress in antarctic earth science. Tokyo: National Science Foundation grant OPP 90-18055 and by the Terra Scientific. Byrd Polar Research Center of Ohio State University. Wilson, T.J. 1993. Jurassic faulting and magmatism in the Transantarctic Mountains: Implication for Gondwana breakup. In R.H. Findlay, M.R. Banks, R. Unrug, and J. Veevers (Eds.), Gond- References wana 8—Assembly, evolution, and dispersal. Rotterdam: A.A. Balkema. Wilson, T.J., P. Braddock, R.J. Janosy, and R.J. Elliot. 1993. Fault kine- Isachsen, Y.W. 1974.
    [Show full text]