Scyphozoa: Rhizostomeae) Inhabiting a Brackish-Water Environment

Total Page:16

File Type:pdf, Size:1020Kb

Scyphozoa: Rhizostomeae) Inhabiting a Brackish-Water Environment animals Article Life Cycle of Edible Jellyfish Acromitus hardenbergi Stiasny, 1934 (Scyphozoa: Rhizostomeae) Inhabiting a Brackish-Water Environment Hiroshi Miyake 1,*, Shiho Honda 1, Jun Nishikawa 2 and Fatimah Md. Yusoff 3 1 School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan; [email protected] 2 Department of Marine Biology, School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka 424-8610, Japan; [email protected] 3 Department of Aquaculture, Faculty of Agriculture, Putra University Malaysia, Selangor Darul Ehsan, Serdang 43400, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +81-42-778-9132 Simple Summary: The edible jellyfish Acromitus hardenbergi Stiasny, 1934 is an important fishery resource. The aim of the present study was to elucidate the life history of this brackish-water jellyfish in order to conserve the species and develop sustainable jellyfish fisheries. Matured medusae were collected at the mouth of the Perak River. Primary polyps had a long stalk with a small stolon at the base of the calyx. Fully developed polyps were bowl- or goblet-shaped. Asexual reproduction was accomplished only by means of budding. Strobilation was mono-disc type. Polyps of A. hardenbergi expand their population not by podocysts, but by budding as quickly as possible and forming one large ephyra by mono-disc strobilation without the residuum, because the polyp cannot remain Citation: Miyake, H.; Honda, S.; for a long time at its settlement place where there is a sediment-rich environment with drastic Nishikawa, J.; Yusoff, F.M.. Life Cycle salinity change. of Edible Jellyfish Acromitus hardenbergi Stiasny, 1934 (Scyphozoa: Abstract: The edible jellyfish Acromitus hardenbergi Stiasny, 1934 is harvested throughout the year at Rhizostomeae) Inhabiting a the mouth of the Perak River, Malaysia. Although this species is an important fishery resource in Brackish-Water Environment. the local area, limited biological studies have been carried out on it. The aim of the present study Animals 2021, 11, 2138. https:// was to elucidate the life cycle of this unique brackish-water jellyfish in order to conserve the species doi.org/10.3390/ani11072138 and develop sustainable jellyfish fisheries. Mature medusae were collected at the mouth of the Perak River. Embryonic and larval development after fertilization was completed within 24 h until the Academic Editor: Charles Griffiths planula stage and within 48 h until the polyp stage. Primary polyps had a long stalk with a small stolon at the base of the calyx. Fully developed polyps were bowl-or goblet-shaped but became Received: 23 May 2021 Accepted: 8 July 2021 an elongated stalk under starved conditions. Asexual reproduction was accomplished only by means Published: 20 July 2021 of budding, and no podocysts were produced. Strobilation was mono-disc type. These characteristics may be adaptations to the dynamic environmental conditions in the estuary of the Perak River, Publisher’s Note: MDPI stays neutral where salinity fluctuates widely due to strong inflows of highly turbid freshwater coupled with tidal with regard to jurisdictional claims in changes. This study suggests that polyps of A. hardenbergi expand their population not by podocysts, published maps and institutional affil- but by budding as quickly as possible and forming one large ephyra by mono-disc strobilation iations. without the residuum, because the polyp cannot remain for a long time at its settlement place in the sediment-rich environment with drastic salinity change. Keywords: Acromitus hardenbergi; brackish water; budding; life cycle; mono-disc strobilation Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and 1. Introduction conditions of the Creative Commons Jellyfish cuisine is a traditional custom in East Asia. In the 1990s, owing to an increasing Attribution (CC BY) license (https:// demand for jellyfish in Asia, edible jellyfish catches increased to larger than those of scallops or creativecommons.org/licenses/by/ lobsters [1]. Recently, jellyfish demand has drastically increased, leading to expanded jellyfish 4.0/). Animals 2021, 11, 2138. https://doi.org/10.3390/ani11072138 https://www.mdpi.com/journal/animals Animals 2021, 11, x FOR PEER REVIEW 2 of 17 Animals 2021, 11, 2138 2 of 16 expanded jellyfish fisheries worldwide [2–5]. Southeast Asia is the center of jellyfish ex- ports; exportation of edible rhizostomes from this region account for the majority of the fisheriesworld jellyfish worldwide trade [ 2[1,6–9],–5]. Southeast and they Asia are an is theimportant center ofcommodity jellyfish exports; for the fisheries exportation indus- of edibletry in rhizostomes this area. Rhizostome from this region jellyfishes account targ for theeted majority for fisheries of the worldin the jellyfish Southeast trade Asia [1,6– are9], andCrambione they are mastigophora an important Maas, commodity 1903; Crambionella for the fisheries orsini (Vanhöffen, industry in this1888); area. Crambionella Rhizostome an- jellyfishesnandalei Rao, targeted 1931; for Crambionella fisheries in helmbiru the Southeast Nishikawa, Asia are MulyadiCrambione and mastigophora Ohtsuka, 2014;Maas, Lobone- 1903; Crambionellamoides robustus orsini (Vanhöffen,Stiasny, 1920 1888);, RhopilemaCrambionella esculentum annandalei Kishinouye,Rao, 1931; Crambionella 1891; R. helmbiruhispidum Nishikawa,(Vanhöffen, Mulyadi 1888); and and Acromitus Ohtsuka, hardenbergi 2014; Lobonemoides Stiasny, robustus 1934 [6,7,10,11].Stiasny, 1920, JellyfishesRhopilema are escu-used lentumnot onlyKishinouye, for food but 1891; alsoR. for hispidum fishing(Vanhöffen, bait, fish feed, 1888); cosmetics, and Acromitus pharmaceuticals, hardenbergi andStiasny, ma- 1934terial [6 sciences,7,10,11]. [3], Jellyfishes and are also are usedsources not of only collagen for food [12,13]. but also for fishing bait, fish feed, cosmetics,In Malaysia, pharmaceuticals, fisheries andof Rhopilema material sciences esculentum [3],, and Rhopilema are also hispidum sources of, Lobonema collagen [smithii12,13]., and InAcromitus Malaysia, hardenbergi fisheries ofareRhopilema operated esculentumin Bagan Datoh,, Rhopilema Kukup, hispidum and some, Lobonema parts of smithii Sabah, andandAcromitus Sarawak [14]. hardenbergi In general,are operatedjellyfish fisheries in Bagan depend Datoh, on Kukup, the fluctuations and some partsin the oftemporal Sabah andand Sarawak spatial distributions [14]. In general, of medusae. jellyfish fisheries On the dependother hand, on the fisheries fluctuations of A. in hardenbergi the temporal are andoperated spatial all distributions year round in of the medusae. estuary On of Perak the other River, hand, Malaysia. fisheries Acromitus of A. hardenbergi hardenbergiare is operatedone of the all most year important round in the jellyfish estuary species of Perak for River,fisheries Malaysia. in this areaAcromitus [10,14]. hardenbergi The Perakis is onethe ofsecond the most longest important river (402 jellyfish km) in species peninsular for fisheries Malaysia in and this runs area into [10 ,its14]. estuary The Perak located is theat Bagan second Datoh longest to join river the (402 Straits km) of in Malacca peninsular (Figure Malaysia 1). The and river’s runs intolarge its watershed estuary located (14,700 atkm Bagan2) provides Datoh a towide join range the Straitsof salinity of Malacca variations (Figure in its1 estuary). The river’s[15,16]. largeThe Perak watershed estuary (14,700is an important km2) provides area for awide Acromitus range hardenbergi. of salinity variations in its estuary [15,16]. The Perak estuary is an important area for Acromitus hardenbergi. Figure 1. Map of the sampling sites of Perak River in Bagan Datoh, Perak, Malaysia. Black points labelled A–H show CTD castingFigure points.1. Map Mapof the was sampling created sites using of GMTPerak 6.0 River [17 ].in Bagan Datoh, Perak, Malaysia. Black points labelled A–H show CTD casting points. Map was created using GMT 6.0 [17]. Recently, it has been suggested that Acromitus hardenbergi could potentially be used for theRecently, production it has of been nutricosmetics suggested that and Acromitus functional hardenbergi food [12,13 could]. Acromitus potentially hardenbergi be used willfor the be aproduction commercially of nutricosmeti and biologicallycs and important functional species food [12,13]. in Malaysia. Acromitus However, hardenbergi jellyfish will fisheriesbe a commercially in the Perak and River biologically are not regulated.important species Therefore, in Malaysia. overfishing However, of jellyfish jellyfish and fish- the sustainabilityeries in the Perak of its River production are not are regulated. of great Therefore, concern. Thus, overfishing management of jellyfish action and plans the sus- for sustainabletainability fisheriesof its production and conservation are of great of this concern. species Thus, are necessary. management For the action strategic plans plan for to be successful, gaining knowledge of the life cycle of A. hardenbergi is required, and should be the first step in establishing a sustainable management plan. However, other Animals 2021, 11, 2138 3 of 16 than its spatial distribution, limited biological information about A. hardenbergi is now available [10,12,14]. As for the life cycle, within the same family, Catostylidae, the life cycle has been described in only three species, Catostylus mosaicus (Quoy and Gaimard,
Recommended publications
  • Research Funding (Total $2,552,481) $15,000 2019
    CURRICULUM VITAE TENNESSEE AQUARIUM CONSERVATION INSTITUTE 175 BAYLOR SCHOOL RD CHATTANOOGA, TN 37405 RESEARCH FUNDING (TOTAL $2,552,481) $15,000 2019. Global Wildlife Conservation. Rediscovering the critically endangered Syr-Darya Shovelnose Sturgeon. $10,000 2019. Tennessee Wildlife Resources Agency. Propagation of the Common Logperch as a host for endangered mussel larvae. $8,420 2019. Tennessee Wildlife Resources Agency. Monitoring for the Laurel Dace. $4,417 2019. Tennessee Wildlife Resources Agency. Examining interactions between Laurel Dace (Chrosomus saylori) and sunfish $12,670 2019. Trout Unlimited. Southern Appalachian Brook Trout propagation for reintroduction to Shell Creek. $106,851 2019. Private Donation. Microplastic accumulation in fishes of the southeast. $1,471. 2019. AZFA-Clark Waldram Conservation Grant. Mayfly propagation for captive propagation programs. $20,000. 2019. Tennessee Valley Authority. Assessment of genetic diversity within Blotchside Logperch. $25,000. 2019. Riverview Foundation. Launching Hidden Rivers in the Southeast. $11,170. 2018. Trout Unlimited. Propagation of Southern Appalachian Brook Trout for Supplemental Reintroduction. $1,471. 2018. AZFA Clark Waldram Conservation Grant. Climate Change Impacts on Headwater Stream Vertebrates in Southeastern United States $1,000. 2018. Hamilton County Health Department. Step 1 Teaching Garden Grants for Sequoyah School Garden. $41,000. 2018. Riverview Foundation. River Teachers: Workshops for Educators. $1,000. 2018. Tennessee Valley Authority. Youth Freshwater Summit $20,000. 2017. Tennessee Valley Authority. Lake Sturgeon Propagation. $7,500 2017. Trout Unlimited. Brook Trout Propagation. $24,783. 2017. Tennessee Wildlife Resource Agency. Assessment of Percina macrocephala and Etheostoma cinereum populations within the Duck River Basin. $35,000. 2017. U.S. Fish and Wildlife Service. Status surveys for conservation status of Ashy (Etheostoma cinereum) and Redlips (Etheostoma maydeni) Darters.
    [Show full text]
  • Treatment of Lion´S Mane Jellyfish Stings- Hot Water Immersion Versus Topical Corticosteroids
    THE SAHLGRENSKA ACADEMY Treatment of Lion´s Mane jellyfish stings- hot water immersion versus topical corticosteroids Degree Project in Medicine Anna Nordesjö Programme in Medicine Gothenburg, Sweden 2016 Supervisor: Kai Knudsen Department of Anesthesia and Intensive Care Medicine 1 CONTENTS Abstract ................................................................................................................................................... 3 Introduction ............................................................................................................................................. 3 Background ............................................................................................................................................. 4 Jellyfish ............................................................................................................................................... 4 Anatomy .......................................................................................................................................... 4 Nematocysts .................................................................................................................................... 4 Jellyfish in Scandinavian waters ......................................................................................................... 5 Lion’s Mane jellyfish, Cyanea capillata .......................................................................................... 5 Moon jelly, Aurelia aurita ..............................................................................................................
    [Show full text]
  • Medusa Catostylus Tagi: (I) Preliminary Studies on Morphology, Chemical Composition, Bioluminescence and Antioxidant Activity
    MEDUSA CATOSTYLUS TAGI: (I) PRELIMINARY STUDIES ON MORPHOLOGY, CHEMICAL COMPOSITION, BIOLUMINESCENCE AND ANTIOXIDANT ACTIVITY Ana Maria PINTÃO, Inês Matos COSTA, José Carlos GOUVEIA, Ana Rita MADEIRA, Zilda Braga MORAIS Centro de Polímeros Biomédicos, Cooperativa Egas Moniz, Campus Universitário Quinta da Granja, 2829-511, Portugal, [email protected] The Portuguese continental coast, specially Tejo and Sado estuaries, is the habitat of Catostylus tagi [1]. This barely studied medusa was first described in 1869, by Haeckel, and is classified in the Cnidaria phylum, Scyphozoa class, Rhizostomeae order, Catostylidae family, Catostylus genus. According to the European Register of Marine Species, the referred medusa is the only species of the Catostylidae family found in the European continent [2]. C. tagi is particularly abundant during the summer. Several medusas from the Rhizostomae order are traditionally used as food in some oriental countries [3]. Simultaneously, modern medusa utilizations are related to bioluminescence [4], toxicology [5] and biopolymers [6]. The lack of information on this genus along with the recent discoveries of new marine molecules showing anti-arthritic, anti-inflammatory or antioxidant properties motivated our studies [7]. In addition, the abundant medusa biomass could be evaluated as another natural collagen source, alternative to bovine collagen, with its multiple cosmetic and surgical potential uses [8]. The capture and sample preparation methods were optimized in 2003 [9]. Results reported in this poster relate to 65 animals that were captured in the river Sado in August and September of 2004. Macroscopic aspects, like mass and dimensions, were evaluated as well as their C. tagi by J.Gouveia chemical characteristics.
    [Show full text]
  • DOCTORAL THESIS a Physio-Ecological Study of Ephyrae
    DOCTORAL THESIS A Physio-ecological Study of Ephyrae of the Common Jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa), with Special Reference to their Survival Capability under Starvation Zhilu Fu Graduate School of Biosphere Science Hiroshima University September 2014 DOCTORAL THESIS A Physio-ecological Study of Ephyrae of the Common Jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa), with Special Reference to their Survival Capability under Starvation Zhilu Fu Department of environmental Dynamics and Management Graduate School of Biosphere Science Hiroshima University September 2014 Abstract The moon jellyfish Aurelia aurita s.l. is the most common scyphozoan jellyfish in the coastal waters around the world, and the mass occurrences of this species have been reported from various regions. In recent decades, A. aurita blooms have become increasingly prominent in East Asian seas, causing serious problems to human sectors such as fisheries and coastal power plant operations. Therefore, it is important to identify causes for the enhancement of A. aurita populations to forecast likely outbreaks prior to the season of medusa blooms. In the population dynamics of scyphozoan jellyfish, the following two factors are important to determine the size of adult (medusa) population: (1) the abundance of benthic polyps, which reproduce asexually and undergo seasonal strobilation to release planktonic ephyrae, and (2) the mortality of ephyrae before recruitment to the medusa stage. Although much knowledge has been accumulated about physio-ecology of the polyp stage by previous studies, only few studies have been conducted for the ephyra stage. The success for survival through larval stage is basically affected by two factors, viz. food availability and predation.
    [Show full text]
  • Pdf) and Their Values Are Plotted Against Temperature in Fig
    Vol. 510: 255–263, 2014 MARINE ECOLOGY PROGRESS SERIES Published September 9 doi: 10.3354/meps10799 Mar Ecol Prog Ser Contribution to the Theme Section ‘Jellyfish blooms and ecological interactions’ FREEREE ACCESSCCESS Body size reduction under starvation, and the point of no return, in ephyrae of the moon jellyfish Aurelia aurita Zhilu Fu1, Masashi Shibata1, Ryosuke Makabe2, Hideki Ikeda1, Shin-ichi Uye1,* 1Graduate School of Biosphere Science, Hiroshima University, 4-4 Kagamiyama 1 Chome, Higashi-Hiroshima 739−8528, Japan 2Faculty of Science and Engineering, Ishinomaki Senshu University, 1 Shinmito Minamisakai, Ishinomaki 986-8580, Japan ABSTRACT: Scyphozoan ephyrae need to start feeding before their endogenous nutritional reserves run out, and the success of feeding and growth is crucial to their recruitment into the medusa population. To evaluate starvation resistance in first-feeding ephyrae of the moon jellyfish Aurelia aurita s.l., we determined their point of no return (PNR50), i.e. days of starvation after which 50% of ephyrae die even if they then feed. PNR50 values were 33.8, 38.4 and 58.6 d at 15, 12 and 9°C, respectively. Before reaching PNR50, the ephyrae showed significant body size reduc- tion: ca. 30 and 50% decrease in disc diameter and carbon content, respectively. These PNR50 val- ues are nearly 1 order of magnitude longer than those of larval marine molluscs, crustaceans and fishes, which is attributable to the ephyra’s extremely low metabolic (i.e. respiration) rate relative to its copious carbon reserves. Such a strong endurance under prolonged starvation is likely an adaptive strategy for A. aurita ephyrae, the release of which is programmed to occur during the annual period of lowest temperatures, allowing them to cope with the concomitant seasonal food scarcity.
    [Show full text]
  • Two New Species of Box Jellies (Cnidaria: Cubozoa: Carybdeida)
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 29 010–019 (2014) DOI: 10.18195/issn.0312-3162.29(1).2014.010-019 Two new species of box jellies (Cnidaria: Cubozoa: Carybdeida) from the central coast of Western Australia, both presumed to cause Irukandji syndrome Lisa-Ann Gershwin CSIRO Marine and Atmospheric Research, Castray Esplanade, Hobart, Tasmania 7000, Australia. Email: [email protected] ABSTRACT – Irukandji jellies are of increasing interest as their stings are becoming more frequently reported around the world. Previously only two species were known from Western Australia, namely Carukia shinju Gershwin, 2005 and Malo maxima Gershwin, 2005, both from Broome. Two new species believed to cause Irukandji syndrome have recently been found and are described herein. One, Malo bella sp. nov., is from the Ningaloo Reef and Dampier Archipelago regions. It differs from its congeners in its small size at maturity, its statolith shape, irregular warts on the perradial lappets, and a unique combination of other traits outlined herein. This species is not associated with any particular stings, but its phylogenetic affi nity would suggest that it may be highly toxic. The second species, Keesingia gigas gen. et sp. nov., is from the Shark Bay and Ningaloo Reef regions. This enormous species is unique in possessing key characters of three families, including crescentic phacellae and broadly winged pedalia (Alatinidae) and deeply incised rhopalial niches and feathery diverticulations on the velarial canals (Carukiidae and Tamoyidae). These two new species bring the total species known or believed to cause Irukandji syndrome to at least 16. Research into the biology and ecology of these species should be considered a high priority, in order to manage their potential impacts on public safety.
    [Show full text]
  • Cassiopea Xamachana (Upside-Down Jellyfish)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Cassiopea xamachana (Upside-down Jellyfish) Order: Rhizostomeae (Eight-armed Jellyfish) Class: Scyphozoa (Jellyfish) Phylum: Cnidaria (Corals, Sea Anemones and Jellyfish) Fig. 1. Upside-down jellyfish, Cassiopea xamachana. [http://images.fineartamerica.com/images-medium-large/upside-down-jellyfish-cassiopea-sp-pete-oxford.jpg, downloaded 9 March 2016] TRAITS. Cassiopea xamachana, also known as the upside-down jellyfish, is quite large with a dominant medusa (adult jellyfish phase) about 30cm in diameter (Encyclopaedia of Life, 2014), resembling more of a sea anemone than a typical jellyfish. The name is associated with the fact that the umbrella (bell-shaped part) settles on the bottom of the sea floor while its frilly tentacles face upwards (Fig. 1). The saucer-shaped umbrella is relatively flat with a well-defined central depression on the upper surface (exumbrella), the side opposite the tentacles (Berryman, 2016). This depression gives the jellyfish the ability to stick to the bottom of the sea floor while it pulsates gently, via a suction action. There are eight oral arms (tentacles) around the mouth, branched elaborately in four pairs. The most commonly seen colour is a greenish grey-blue, due to the presence of zooxanthellae (algae) embedded in the mesoglea (jelly) of the body, and especially the arms. The mobile medusa stage is dioecious, which means that there are separate males and females, although there are no features which distinguish the sexes. The polyp stage is sessile (fixed to the substrate) and small (Sterrer, 1986). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology DISTRIBUTION.
    [Show full text]
  • Role of Winds and Tides in Timing of Beach Strandings, Occurrence, And
    Hydrobiologia (2016) 768:19–36 DOI 10.1007/s10750-015-2525-5 PRIMARY RESEARCH PAPER Role of winds and tides in timing of beach strandings, occurrence, and significance of swarms of the jellyfish Crambione mastigophora Mass 1903 (Scyphozoa: Rhizostomeae: Catostylidae) in north-western Australia John K. Keesing . Lisa-Ann Gershwin . Tim Trew . Joanna Strzelecki . Douglas Bearham . Dongyan Liu . Yueqi Wang . Wolfgang Zeidler . Kimberley Onton . Dirk Slawinski Received: 20 May 2015 / Revised: 29 September 2015 / Accepted: 29 September 2015 / Published online: 8 October 2015 Ó Springer International Publishing Switzerland 2015 Abstract Very large swarms of the red jellyfish study period, this result was not statistically significant. Crambione mastigophora in north-western Australia Dedicated instrument measurements of meteorological disrupt swimming on tourist beaches causing eco- parameters, rather than the indirect measures used in nomic impacts. In October 2012, jellyfish stranding on this study (satellite winds and modelled currents) may Cable Beach (density 2.20 ± 0.43 ind. m-2) was improve the predictability of such events and help estimated at 52.8 million individuals or 14,172 t wet authorities to plan for and manage swimming activity weight along 15 km of beach. Reports of strandings on beaches. We also show a high incidence of after this period and up to 250 km south of this location predation by C. mastigophora on bivalve larvae which indicate even larger swarm biomass. Strandings of may have a significant impact on the reproductive jellyfish were significantly associated with a 2-day lag output of pearl oyster broodstock in the region. in conditions of small tidal ranges (\5 m).
    [Show full text]
  • Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish
    diversity Review Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish Michael J. Kingsford * , Jodie A. Schlaefer and Scott J. Morrissey Marine Biology and Aquaculture, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; [email protected] (J.A.S.); [email protected] (S.J.M.) * Correspondence: [email protected] Abstract: Understanding the hierarchy of populations from the scale of metapopulations to mesopop- ulations and member local populations is fundamental to understanding the population dynamics of any species. Jellyfish by definition are planktonic and it would be assumed that connectivity would be high among local populations, and that populations would minimally vary in both ecological and genetic clade-level differences over broad spatial scales (i.e., hundreds to thousands of km). Although data exists on the connectivity of scyphozoan jellyfish, there are few data on cubozoans. Cubozoans are capable swimmers and have more complex and sophisticated visual abilities than scyphozoans. We predict, therefore, that cubozoans have the potential to have finer spatial scale differences in population structure than their relatives, the scyphozoans. Here we review the data available on the population structures of scyphozoans and what is known about cubozoans. The evidence from realized connectivity and estimates of potential connectivity for scyphozoans indicates the following. Some jellyfish taxa have a large metapopulation and very large stocks (>1000 s of km), while others have clade-level differences on the scale of tens of km. Data on distributions, genetics of medusa and Citation: Kingsford, M.J.; Schlaefer, polyps, statolith shape, elemental chemistry of statoliths and biophysical modelling of connectivity J.A.; Morrissey, S.J.
    [Show full text]
  • Pelagia Benovici Sp. Nov. (Cnidaria, Scyphozoa): a New Jellyfish in the Mediterranean Sea
    Zootaxa 3794 (3): 455–468 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3794.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:3DBA821B-D43C-43E3-9E5D-8060AC2150C7 Pelagia benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish in the Mediterranean Sea STEFANO PIRAINO1,2,5, GIORGIO AGLIERI1,2,5, LUIS MARTELL1, CARLOTTA MAZZOLDI3, VALENTINA MELLI3, GIACOMO MILISENDA1,2, SIMONETTA SCORRANO1,2 & FERDINANDO BOERO1, 2, 4 1Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy 2CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma 3Dipartimento di Biologia e Stazione Idrobiologica Umberto D’Ancona, Chioggia, Università di Padova. 4 CNR – Istituto di Scienze Marine, Genova 5Corresponding authors: [email protected], [email protected] Abstract A bloom of an unknown semaestome jellyfish species was recorded in the North Adriatic Sea from September 2013 to early 2014. Morphological analysis of several specimens showed distinct differences from other known semaestome spe- cies in the Mediterranean Sea and unquestionably identified them as belonging to a new pelagiid species within genus Pelagia. The new species is morphologically distinct from P. noctiluca, currently the only recognized valid species in the genus, and from other doubtful Pelagia species recorded from other areas of the world. Molecular analyses of mitochon- drial cytochrome c oxidase subunit I (COI) and nuclear 28S ribosomal DNA genes corroborate its specific distinction from P. noctiluca and other pelagiid taxa, supporting the monophyly of Pelagiidae. Thus, we describe Pelagia benovici sp.
    [Show full text]
  • The Lesser-Known Medusa Drymonema Dalmatinum Haeckel 1880 (Scyphozoa, Discomedusae) in the Adriatic Sea
    ANNALES · Ser. hist. nat. · 24 · 2014 · 2 Original scientifi c article UDK 593.73:591.9(262.3) Received: 2014-10-20 THE LESSER-KNOWN MEDUSA DRYMONEMA DALMATINUM HAECKEL 1880 (SCYPHOZOA, DISCOMEDUSAE) IN THE ADRIATIC SEA Alenka MALEJ & Martin VODOPIVEC Marine Biology Station, National Institute of Biology, SI-6330 Piran, Fornače 41, Slovenia E-mail: [email protected] Davor LUČIĆ & Ivona ONOFRI Institute for Marine and Coastal Research, University of Dubrovnik, POB 83, HR-20000 Dubrovnik, Croatia Branka PESTORIĆ Institute for Marine Biology, University of Montenegro, POB 69, ME-85330 Kotor, Montenegro ABSTRACT Authors report historical and recent records of the little-known medusa Drymonema dalmatinum in the Adriatic Sea. This large scyphomedusa, which may develop a bell diameter of more than 1 m, was fi rst described in 1880 by Haeckel based on four specimens collected near the Dalmatian island Hvar. The paucity of this species records since its description confi rms its rarity, however, in the last 15 years sightings of D. dalmatinum have been more frequent. Key words: scyphomedusa, Drymonema dalmatinum, historical occurrence, recent observations, Mediterranean Sea LA POCO NOTA MEDUSA DRYMONEMA DALMATINUM HAECKEL 1880 (SCYPHOZOA, DISCOMEDUSAE) NEL MARE ADRIATICO SINTESI Gli autori riportano segnalazioni storiche e recenti della poco conosciuta medusa Drymonema dalmatinum nel mare Adriatico. Questa grande scifomedusa, che può sviluppare un cappello di diametro di oltre 1 m, è stata descrit- ta per la prima volta nel 1880 da Haeckel, in base a quattro esemplari catturati vicino all’isola di Lèsina (Hvar) in Dalmazia. La scarsità delle segnalazioni di questa specie dalla sua prima descrizione conferma la sua rarità.
    [Show full text]
  • Jellyfish of Khuzestan Coastal Waters and Their Impact on Fish Larvae Populations
    Short communication: Jellyfish of Khuzestan coastal waters and their impact on fish larvae populations Item Type article Authors Dehghan Mediseh, S.; Koochaknejad, E.; Mousavi Dehmourdi, L.; Zarshenas, A.; Mayahi, M. Download date 01/10/2021 04:19:39 Link to Item http://hdl.handle.net/1834/37817 Iranian Journal of Fisheries Sciences 16(1) 422-430 2017 Jellyfish of Khuzestan coastal waters and their impact on fish larvae populations Dehghan Mediseh S.1*; Koochaknejad E.2; Mousavi Dehmourdi L.3; Zarshenas A.1; Mayahi M.1 Received: September 2015 Accepted: December 2016 1-Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), P.O. Box: 14155-6116, Tehran, Iran. 2-Iranian National Institute for Oceanography and Atmospheric Science, PO Box: 14155-4781, Tehran, Iran. 3-Khatam Alanbia university of technology–Behbahan * Corresponding author's Email: [email protected] Keywords: Jellyfish, Fish larvae, Persian Gulf Introduction parts of the marine food web. Most One of the most valuable groups in the jellyfish include Hydromedusae, food chain of aquatic ecosystems is Siphonophora and Scyphomedusae and zooplankton. A large portion of them planktonic Ctenophora, especially in are invertebrate organisms with great the productive warm months (Brodeur variety of forms and structure, size, et al., 1999). In recent years, the habitat and food value. The term frequency of the jellyfish in many ‘jellyfish’ is used in reference to ecosystems has increased (Xian et al., medusa of the phylum Cnidaria 2005; Lynam et al., 2006). (hydromedusae, siphonophores and Following the increase of jellyfish scyphomedusae) and planktonic populations in world waters, scientists members of the phylum Ctenophora have studied medusa due to its high (Mills, 2001).
    [Show full text]