View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stirling Online Research Repository Author’s final refereed version of: Exploiting parallelism in the design of peer-to-peer overlays John Buford, Alan Brown and Mario Kolberg Computer Communications Volume 31, Issue 3, 25 February 2008, Pages 452-463 Available from: http://hdl.handle.net/1893/2779 NOTICE: this is the author’s version of a work that was accepted for publication in Computer Communications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Communications, Volume 31, Issue 3, (Feb 2008), DOI: 10.1016/j.comcom.2007.08.019 Exploiting Parallelism in the Design of Peer-to-Peer Overlays John Buford Alan Brown Mario Kolberg Avaya Research Laboratory University of Stirling University of Stirling USA Stirling, Scotland, FK9 4LA Stirling, Scotland, FK9 4LA
[email protected] [email protected] [email protected] phone: +44 1786 46 7440 fax: +44 1786 46 4551 (Corresponding Author) Abstract Many peer-to-peer overlay operations are inherently parallel and this parallelism can be exploited by using multi-destination multicast routing, resulting in significant message reduction in the underlying network. We propose criteria for assessing when multicast routing can effectively be used, and compare multi-destination multicast and host group multicast using these criteria. We show that the assumptions underlying the Chuang-Sirbu multicast scaling law are valid in large-scale peer-to-peer overlays, and thus Chuang-Sirbu is suitable for estimating the message reduction when replacing unicast overlay messages with multicast messages.