Technical Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluation of Liquid Ammonium Polyphosphate As a Carrier of Iron and Zinc
EVALUATION OF LIQUID AMMONIUM POLYPHOSPHATE AS A CARRIER OF IRON AND ZINC by ; V<P RATMUNDO RALLAN GANIRON B. S. A., University of the Philippines, 1961 A MASTER'S THESIS submitted in partial fulfillment of the requirement for the degree MASTER OF SCIENCE Department of Agronomy KANSAS STATE UNIVERSITY Manhattan, Kansas 1966 Approved by: Jor Professor LP ZGGf it Tj( £/<?7 TABLE OF CONTENTS INTRODUCTION 1 REVIEW OF LITERATURE 3 Iron . 3 Zinc * MATERIALS AND METHODS 13 Fertiliser Materials 13 Field Experiments H Soil Sampling 20 Laaf Sampling 22 Chemical Analysis 22 (a) Zinc 22 (b) Iron 24 (c) Phosphorua 25 (d) Potassium •« 27 (a) Organic Matter 27 (f) pH 27 (g) Protain 27 RESULTS AND DISCUSSIONS 26 SUMMARY AND CONCLUSIONS 4$ ACKNOWLEDGMENT. 51 LITERATURE CITED 52 INTRODUCTION Increasing attention has baan focused to the need of fertilising with micronutrient elements to achieve maximum production and optimum quality of farm crops. The supply of these elements in the soil has become limited in some areas as a result of the introduction of high yielding varieties, better and more intensive cropping practices, and increased use of high analysis fertilisers. In some cases, the ob- served deficiencies of these micronutrients have been man- made due to addition of interfering elements for other pur- poses. For instance there is the copper induced iron chlorosis, copper being introduced as agricultural sprays and the phosphorus induced iron and zinc deficiencies, phos- phorus being introduced to meet the phosphorus requirement of farm crops. How to minimise such interactions and the problems of keeping these micronutrient elements available to the plants when applied to the soil have been the sub- ject of intensive researches. -
Chemicals Used for Chemical Manufacturing Page 1 of 2
Chemicals used for Chemical Manufacturing Page 1 of 2 Acetic Acid (Glacial, 56%) Glycol Ether PMA Acetone Glycol Ether PNB Acrylic Acid Glycol Ether PNP Activated Carbon Glycol Ether TPM Adipic Acid Glycols Aloe Vera Grease Aluminum Stearate Gum Arabic Aluminum Sulfate Heat Transfer Fluids Amino Acid Heptane Ammonium Acetate Hexane Ammonium Bicarbonate Hydrazine Hydrate Ammonium Bifluoride Hydrochloric Acid (Muriatic) Ammonium Chloride Hydrogen Peroxide Ammonium Citrate Hydroquinone Ammonium Hydroxide Hydroxylamine Sulfate Ammonium Laureth Sulfate Ice Melter Ammonium Lauryl Sulfate Imidazole Ammonium Nitrate Isobutyl Acetate Ammonium Persulfate Isobutyl Alcohol Ammonium Silicofluoride Calcium Stearate Dipropylene Glycol Isopropanolamine Ammonium Sulfate Carboxymethylcellulose Disodium Phosphate Isopropyl Acetate Antifoams Caustic Potash D'Limonene Isopropyl Alcohol Antifreeze Caustic Soda (All Grades) Dodecylbenzene Sulfonic Acid Isopropyl Myristate Antimicrobials Caustic Soda (Beads, Prills) (DDBSA) Isopropyl Palmitate Antimony Oxide Cetyl Alcohol Dowfrost Itaconic Acid Aqua Ammonia Cetyl Palmitate Dowfrost HD Jojoba Oil Ascorbic Acid Chlorine, Granular Dowtherm SR-1 Keratin Barium Carbonate Chloroform Dowtherm 4000 Lactic Acid Barium Chloride Chromic Acid EDTA Lanolin Beeswax Citric Acid (Dry and Liquid) EDTA Plus Lauric Acid Bentonite Coal Epsom Salt Lauryl Alcohol Benzaldehyde Cocamide DEA Ethyl Acetate Lecithin Benzoic Acid Copper Nitrate Ethyl Alcohol (Denatured) Lime Benzyl Alcohol Copper Sulfate Ethylene Glycol Linoleic Acid Bicarbonate -
Inventory Stock Status by Item September 1 - 7, 2017 on Hand
10:14 AM MSU Chem Stores 09/07/17 Inventory Stock Status by Item September 1 - 7, 2017 On Hand Inventory 1-Propanol 1L (1-Propanol 1L) 2.00 1butanolt1L (tert-Butanol 1L Ea) 0.00 aceticacidgla (Acetic acid glacial 99.7% 2.5L Ea) 1.00 aceticanhyd (Acetic anhydride 500ml Ea) 0.00 aceton4Lchrom (Acetone chromAR for HPLC use) 0.00 acetone1L (Acetone HPLC 1L Ea) 0.00 acetone4L (Acetone HPLC 4L Ea) 1.00 acetonebulk (Acetone 345 lb/Drum (ACS) Bulk Lb) 720.63 Acetonit500ml (Acetonitrile 500ml ACS) 0.00 acetonitril4L (Acetonitrile HPLC 4L Ea 99.9%) 4.00 acetonitril4LHPLC99.9% (Acetonitril 4L HPLC 99.9% Gold Optima) -2.00 alconox (Alconox 4 Lb Carton Ea) 0.00 alcotabs (Alcotabs Bottle/100 Ea) 11.00 alumnitrate500 (Aluminum Nitrate 9 hydrate 500 g) 1.00 ammbicarb250 (Ammonium bicarbonate 250 gramEa) 0.00 ammcarbonaACS (Ammonium carbonate ACS 500g Ea) 1.00 ammchlori500g (Ammonium chloride 500g Ea) 0.00 ammfluoride (Ammonium fluoride 100g Ea) 0.00 ammhydroxide (Ammonium hydroxide 28-30% 2.5L Ea) 5.00 ammoniumnitrate2500 (Ammonium Nitrate Crystal 2500g) 8.00 ammoniumnitrate500 (Ammonium Nitrate Crystal 500g) 4.00 Ammoxal500g (Ammonium Oxalate 500G-Lab Grade) 0.00 amylalcmix8pt (Amyl alcohol (mixed isomers) 8pt (3.8L) Ea) 1.00 applicator (Applicators cotton-tipped Pk100) 77.00 aprondisp (Apron Tyvec 27x36" Ea) 1.00 ascorbicacid100g (L-ascorbic acid cry acs 100 grams) 0.00 aspiratorpoly (Aspirator poly Ea) 17.00 bags10x18 (Bags poly 10x18 Belart Ea) 90.00 bags12x20 (Bags poly 12x20 Belart Ea) 53.00 bagsbiohaz24x30 (Bags Biohazard 24"x30" 1.5mil per) 0.00 -
Triazene (H2NNNH) Or Triimide (HNHNNH) Markofçrstel,[A, D] Yetsedaw A
DOI:10.1002/cphc.201600414 Articles On the Formation of N3H3 Isomers in Irradiated Ammonia Bearing Ices:Triazene (H2NNNH) or Triimide (HNHNNH) MarkoFçrstel,[a, d] Yetsedaw A. Tsegaw,[b] Pavlo Maksyutenko,[a, d] Alexander M. Mebel,[c] Wolfram Sander,[b] and Ralf I. Kaiser*[a, d] The remarkable versatility of triazenesinsynthesis, polymer theoretical studies with our novel detection scheme of photo- chemistry and pharmacology has led to numerousexperimen- ionization-driven reflectron time-of-flight mass spectroscopy tal and theoretical studies.Surprisingly,only very little is we can obtain information on the isomersoftriazene formed known aboutthe most fundamental triazene:the parentmole- in the films. Using isotopically labeled starting material, we can cule with the chemical formula N3H3.Here we observe molecu- additionally gain insightinthe formation pathways of the iso- lar,isolated N3H3 in the gas phase after it sublimes from ener- mers of N3H3 under investigation and identify the isomers getically processed ammonia and nitrogen films. Combining formedastriazene (H2NNNH) andpossibly triimide(HNHNNH). 1. Introduction During the last decades, triazenes—a class of organic mole- life time of at least 1mswas also inferred as an intermediate cules carrying the =N N=N moiety—have received substan- in the radiolysis of an aqueous solution of hydrazine based on À À tial attention both from the theoretical and organic chemistry asingle absorption feature at 230 nm.[6] The cyclic isomer of [1] communities. Derived from cis-and trans-triazene (HN=NNH2 ; triazene, cyclotriazane, was first reported crystallographically in Scheme1), the substituted counterparts have significant appli- zeolite A, where it was stabilized by asilver cation as [1a,c] [1d] + [7] + cations in synthetic chemistry, polymer science, and phar- Ag(N3H3) . -
477 Subpart B—Multiple Purpose GRAS Food Substances
Food and Drug Administration, HHS § 182.1131 Casein. (c) Limitations, restrictions, or expla- Cellulose acetate. nation. This substance is generally rec- Cornstarch. ognized as safe when used as a salt sub- Diatomaceous earth filler. Ethyl cellulose. stitute in accordance with good manu- Ethyl vanillin. facturing practice. Glycerin. Oleic acid. § 182.1057 Hydrochloric acid. Potassium sorbate. (a) Product. Hydrochloric acid. Silicon dioxides. Sodium aluminate. (b) [Reserved] Sodium chloride. (c) Limitations, restrictions, or expla- Sodium hexametaphosphate. nation. This substance is generally rec- Sodium hydrosulfite. ognized as safe when used as a buffer Sodium phosphoaluminate. and neutralizing agent in accordance Sodium silicate. with good manufacturing practice. Sodium sorbate. Sodium tripolyphosphate. § 182.1073 Phosphoric acid. Sorbitol. Soy protein, isolated. (a) Product. Phosphoric acid. Starch, acid modified. (b) Conditions of use. This substance Starch, pregelatinized. is generally recognized as safe when Starch, unmodified. used in accordance with good manufac- Talc. Vanillin. turing practice. Zinc hydrosulfite. Zinc sulfate. § 182.1087 Sodium acid pyrophosphate. [42 FR 14640, Mar. 15, 1977] (a) Product. Sodium acid pyrophosphate. EDITORIAL NOTE: For additional FEDERAL (b) Conditions of use. This substance REGISTER citations affecting § 182.90, see the List of CFR Sections Affected, which appears is generally recognized as safe when in the Finding Aids section of the printed used in accordance with good manufac- volume and on GPO Access. turing practice. § 182.99 Adjuvants for pesticide chemi- § 182.1125 Aluminum sulfate. cals. (a) Product. Aluminum sulfate. Adjuvants, identified and used in ac- (b) Conditions of use. This substance cordance with 40 CFR 180.1001 (c) and is generally recognized as safe when (d), which are added to pesticide use di- used in accordance with good manufac- lutions by a grower or applicator prior turing practice. -
PRICELIST-1920-FINAL.Pdf
INDEX Page No. MD Speech 01 Our Vision / Our Mission 02 Product Classification and Grade Information 03 Label Information 04 GHS Compliance 05 Technical Data Sheet and COA 06 Qualikems Product Range 07 ISO Certificate 08 - 09 Company Details 10 Ordering Information 11 Terms & Conditions 12 Rate List 13 - 52 Images of Lab / Plant / R & D 53 - 58 Rate List 59 -116 BELIEVING yourselfIN IS THE FIRST SECRET TO Success Dear Reader, The document you are holding is the result of work performed by the team of professionals of QUALIKEMS. It is the fruit of our teams extensive technical experience combine with the collaboration of our customers, who have offered us their valuable comments and proposals for improvement. At Qualikems, we have been working and investing for many years with our thoughts focused on the long term. Only thus can this comprehensive catalogue be kept up to date with the products you need. Our highly trained workforce, using state of the art technology, is the driving force behind the management of our modern factory, and our principal aim is to guarantee that the QUALIKEMS product range meets the conditions you require. QUALIKEMS reinforces industrial character and the path to progress we have continuously forged over the years. This path requires the responsible use of resources and the sustainability of our business activity. It is likewise requires and ability to keep on growing as the way to earn and to preserve our status as the leading supplier of laboratory reagents to our Clients Ashok Sahni Managing Director QUALIKEMS FINE CHEM PVT. -
162 Part 175—Indirect Food Addi
§ 174.6 21 CFR Ch. I (4–1–19 Edition) (c) The existence in this subchapter B Subpart B—Substances for Use Only as of a regulation prescribing safe condi- Components of Adhesives tions for the use of a substance as an Sec. article or component of articles that 175.105 Adhesives. contact food shall not be construed as 175.125 Pressure-sensitive adhesives. implying that such substance may be safely used as a direct additive in food. Subpart C—Substances for Use as (d) Substances that under conditions Components of Coatings of good manufacturing practice may be 175.210 Acrylate ester copolymer coating. safely used as components of articles 175.230 Hot-melt strippable food coatings. that contact food include the fol- 175.250 Paraffin (synthetic). lowing, subject to any prescribed limi- 175.260 Partial phosphoric acid esters of pol- yester resins. tations: 175.270 Poly(vinyl fluoride) resins. (1) Substances generally recognized 175.300 Resinous and polymeric coatings. as safe in or on food. 175.320 Resinous and polymeric coatings for (2) Substances generally recognized polyolefin films. as safe for their intended use in food 175.350 Vinyl acetate/crotonic acid copoly- mer. packaging. 175.360 Vinylidene chloride copolymer coat- (3) Substances used in accordance ings for nylon film. with a prior sanction or approval. 175.365 Vinylidene chloride copolymer coat- (4) Substances permitted for use by ings for polycarbonate film. 175.380 Xylene-formaldehyde resins con- regulations in this part and parts 175, densed with 4,4′-isopropylidenediphenol- 176, 177, 178 and § 179.45 of this chapter. -
Environmental Protection Agency § 117.3
Environmental Protection Agency § 117.3 (iii) Which are used or could be used (j) Process waste water means any for industrial purposes by industries in water which, during manufacturing or interstate commerce; processing, comes into direct contact (4) All impoundments of waters oth- with or results from the production or erwise defined as navigable waters use of any raw material, intermediate under this paragraph; product, finished product, byproduct, (5) Tributaries of waters identified in or waste product. paragraphs (i) (1) through (4) of this section, including adjacent wetlands; [44 FR 50776, Aug. 29, 1979, as amended at 58 and FR 45039, Aug. 25, 1993; 65 FR 30904, May 15, (6) Wetlands adjacent to waters iden- 2000] tified in paragraphs (i) (1) through (5) of this section (‘‘Wetlands’’ means § 117.2 Abbreviations. those areas that are inundated or satu- NPDES equals National Pollutant rated by surface or ground water at a Discharge Elimination System. RQ frequency and duration sufficient to equals reportable quantity. support, and that under normal cir- cumstances do support, a prevalence of § 117.3 Determination of reportable vegetation typically adapted for life in quantities. saturated soil conditions. Wetlands Each substance in Table 117.3 that is generally included playa lakes, listed in Table 302.4, 40 CFR part 302, is swamps, marshes, bogs, and similar assigned the reportable quantity listed areas such as sloughs, prairie potholes, in Table 302.4 for that substance. wet meadows, prairie river overflows, mudflats, and natural ponds): Provided, TABLE 117.3—REPORTABLE QUANTITIES That waste treatment systems (other OF HAZARDOUS SUBSTANCES DES- than cooling ponds meeting the cri- IGNATED PURSUANT TO SECTION 311 OF teria of this paragraph) are not waters THE CLEAN WATER ACT of the United States. -
Chemical Resistance: Deco-Trowel
CHEMICAL RESISTANCE DECO-TROWEL ® SERIES 223 Tnemec Company, Inc. 6800 Corporate Drive Kansas City, Missouri 64120-1372 +1 816-483-3400 www.tnemec.com © December 16, 2019 by Tnemec Company, Inc. Chem223 Page 1 of 19 CHEMICAL RESISTANCE DECO-TROWEL ® | SERIES 223 COMMON PROBLEM AREAS FOR COATINGS AND SOLUTIONS Problem: Coating Solution: Points of failure Carefully and due to thin spots fully coat in coating Problem: Rough Pinhole Solution: Uneven Undercut Grind smooth welds Problem: Gaps between Solution: plates, coating Continuous can not cover welds Problem: Gaps between Solution: plates, coating Continuous can not cover welds Problem: Coating Sharp surface Solution: contours create Round the thin spots in contours coating Problem: Skip welding Solution: creates gaps Continuous that coating welds can not cover Problem: Skip welding Solution: creates gaps Continuous that coating welds can not cover 2 channels back to back IMPORTANT: Definitions for the terms and acronyms used in this guide to describe the recommended exposures, along with other important information, can be found on the cover page of this guide or by contacting Tnemec Technical Service. Coatings should not be applied in a chemical exposure environment until the user has thoroughly read and understood the product information and full project details have been discussed with Tnemec Technical Service. Tnemec Company, Inc. 6800 Corporate Drive Kansas City, Missouri 64120-1372 +1 816-483-3400 www.tnemec.com © December 16, 2019 by Tnemec Company, Inc. Chem223 Page 2 of 19 CHEMICAL RESISTANCE DECO-TROWEL ® | SERIES 223 ¹ Product is NOT suitable for direct or indirect food contact. Intended Use and temperature information relates to product’s performance capabilities only. -
NON-HAZARDOUS CHEMICALS May Be Disposed of Via Sanitary Sewer Or Solid Waste
NON-HAZARDOUS CHEMICALS May Be Disposed Of Via Sanitary Sewer or Solid Waste (+)-A-TOCOPHEROL ACID SUCCINATE (+,-)-VERAPAMIL, HYDROCHLORIDE 1-AMINOANTHRAQUINONE 1-AMINO-1-CYCLOHEXANECARBOXYLIC ACID 1-BROMOOCTADECANE 1-CARBOXYNAPHTHALENE 1-DECENE 1-HYDROXYANTHRAQUINONE 1-METHYL-4-PHENYL-1,2,5,6-TETRAHYDROPYRIDINE HYDROCHLORIDE 1-NONENE 1-TETRADECENE 1-THIO-B-D-GLUCOSE 1-TRIDECENE 1-UNDECENE 2-ACETAMIDO-1-AZIDO-1,2-DIDEOXY-B-D-GLYCOPYRANOSE 2-ACETAMIDOACRYLIC ACID 2-AMINO-4-CHLOROBENZOTHIAZOLE 2-AMINO-2-(HYDROXY METHYL)-1,3-PROPONEDIOL 2-AMINOBENZOTHIAZOLE 2-AMINOIMIDAZOLE 2-AMINO-5-METHYLBENZENESULFONIC ACID 2-AMINOPURINE 2-ANILINOETHANOL 2-BUTENE-1,4-DIOL 2-CHLOROBENZYLALCOHOL 2-DEOXYCYTIDINE 5-MONOPHOSPHATE 2-DEOXY-D-GLUCOSE 2-DEOXY-D-RIBOSE 2'-DEOXYURIDINE 2'-DEOXYURIDINE 5'-MONOPHOSPHATE 2-HYDROETHYL ACETATE 2-HYDROXY-4-(METHYLTHIO)BUTYRIC ACID 2-METHYLFLUORENE 2-METHYL-2-THIOPSEUDOUREA SULFATE 2-MORPHOLINOETHANESULFONIC ACID 2-NAPHTHOIC ACID 2-OXYGLUTARIC ACID 2-PHENYLPROPIONIC ACID 2-PYRIDINEALDOXIME METHIODIDE 2-STEP CHEMISTRY STEP 1 PART D 2-STEP CHEMISTRY STEP 2 PART A 2-THIOLHISTIDINE 2-THIOPHENECARBOXYLIC ACID 2-THIOPHENECARBOXYLIC HYDRAZIDE 3-ACETYLINDOLE 3-AMINO-1,2,4-TRIAZINE 3-AMINO-L-TYROSINE DIHYDROCHLORIDE MONOHYDRATE 3-CARBETHOXY-2-PIPERIDONE 3-CHLOROCYCLOBUTANONE SOLUTION 3-CHLORO-2-NITROBENZOIC ACID 3-(DIETHYLAMINO)-7-[[P-(DIMETHYLAMINO)PHENYL]AZO]-5-PHENAZINIUM CHLORIDE 3-HYDROXYTROSINE 1 9/26/2005 NON-HAZARDOUS CHEMICALS May Be Disposed Of Via Sanitary Sewer or Solid Waste 3-HYDROXYTYRAMINE HYDROCHLORIDE 3-METHYL-1-PHENYL-2-PYRAZOLIN-5-ONE -
1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5- -
Pp-03-25-New Dots.Qxd 10/23/02 2:38 PM Page 379
pp-03-25-new dots.qxd 10/23/02 2:38 PM Page 379 HYDROGEN SULFIDE 379 HYDROGEN SULFIDE [7783-06-4] Formula: H2S; MW 34.08 Synonyms: sulfur hydride; sulfureted hydrogen Occurrence and Uses Hydrogen sulfide occurs in natural gas. It also is found in many sewer gases. It is a by-product of many industrial processes. Trace amounts of dis- solved H2S are found in wastewaters in equilibrium with dissolved sulfides and hydrosulfides. It also is found in volcanic eruptions, hot springs and in troposphere. The average concentration of H2S in the air is about 0.05 ppb. The most important applications of hydrogen sulfide involve the production of sodium sulfide and other inorganic sulfides. Hydrogen sulfide obtained as a by-product often is converted into sulfuric acid. It also is used in organic syn- thesis to make thiols or mercaptans. Other applications are in metallurgy for extracting nickel, copper, and cobalt as sulfides from their minerals; and in classical qualitative analytical methods for precipitation of many metals (see Reactions). It also is used in producing heavy water for nuclear reactors. Physical Properties Colorless gas; characteristic odor of rotten eggs; odor threshold 1ppm; sweetish taste; fumes in air; flammable gas, burns with a pale blue flame; refractive index at 589.3nm, 1.000644 at 0°C and 1 atm; density 1.539 g/L at 0°C; critical temperature 100.4°C; critical pressure 88.9 atm; liquefies at –60.7°C; solidifies at –85.5°C; velocity of sound 289 m/sec in H2S gas; slightly soluble in water (0.4% at 20°C); pH of a saturated aqueous solution 4.5; slight- ly acidic; diffusivity in water at 16°C, 1.77x105 cm2/sec; soluble in carbon disulfide, methanol, acetone; very soluble in N-methylpyrrolidinone and alka- nolamines (salt formation occurs: salt dissociates on heating); liquid H2S dis- solves sulfur and SO2.