Lecture15-(138) Hormone and Body.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Lecture15-(138) Hormone and Body.Pdf 1/29/2015 Hormones and the Body | Principles of Biology from Nature Education contents Principles of Biology 138 Hormones and the Body Hormones are chemical messengers that coordinate functions in the body in response to changes in an animal's internal environment or stimuli from the outside world. Hormones regulate growth and development. From fertilization through adulthood, hormones mediate growth and development. Hormones even play a role in formation of the bond between mother and child. Picture Partners/Science Source. Topics Covered in this Module The Chemical Structure of Hormones Hormones and Homeostasis When Hormone Regulation Fails Major Objectives of this Module Classify hormones based on their chemical structure and solubility. Describe how hormones trigger responses in target cells. Distinguish between negative and positive feedback loops and give an example of each. Explain the role of hormones in maintaining homeostasis. page 704 of 986 5 pages left in this module http://www.nature.com/principles/ebooks/principles­of­biology­104015/29145728 1/1 1/29/2015 Hormones and the Body | Principles of Biology from Nature Education contents Principles of Biology 138 Hormones and the Body Most hormones can be classified based on their chemical composition and structure as either amine hormones, peptide hormones, or steroid hormones. Additionally, hormones can be classified as either water soluble or lipid soluble. The chemical properties and solubility of a hormone have consequences on how it is secreted, how it is transported through the blood, and how it signals to its target cell. The Chemical Structure of Hormones Hormones are chemical messengers produced in endocrine cells in one part of the body and transported through the blood to target cells in other parts of the body. Hormones carry out numerous regulatory functions in response to stimuli from both outside and inside the body. Hormones also regulate reproduction, growth, and the changes that occur during puberty. Hormones can be classified based on chemical structure. Hormones are a diverse group of organic compounds with a variety of chemical structures. The major hormones can be classified into three categories — amine hormones, peptide hormones, and steroid hormones. Amine hormones are all derived from single amino acids. Several hormones fall into this category, including thyroxine, dopamine, epinephrine, and norepinephrine, which are derived from the amino acid tyrosine, and melatonin and serotonin, which are derived from the amino acid tryptophan. Peptide hormones contain two or more amino acids joined by peptide bonds or are derivatives of such molecules. Some peptide hormones are relatively small molecules; for example, the hormones oxytocin and vasopressin are composed of only nine amino acids. Other peptide hormones are much larger; human growth hormone, for instance, is 191 amino acids in length. Steroid hormones are derived from cholesterol, a hydrophobic molecule containing four fused rings. Cholesterol is converted into steroid hormones in several endocrine glands, including the adrenal cortex, the testes (in males), and the ovaries (in females). Examples of steroid hormones include cortisol, testosterone, and progesterone. The solubility of a hormone, which is a function of its chemical structure, is important in determining how it is secreted, how it is transported through the body, and how it communicates its message once it reaches its target cell. All peptide hormones and most amine hormones are water soluble. Some amine hormones, including the thyroid hormones thyroxine and triiodothyronine, are lipid soluble. Steroid hormones, like their parent compound cholesterol, are lipid soluble. Water­soluble hormones cannot cross the lipid bilayer of plasma membranes and are typically released from endocrine cells by exocytosis. These hormones diffuse into the bloodstream and travel to target cells, which have cell surface receptors for the hormones associated with the plasma membrane. Hormone binding induces a conformational change in the receptor that activates a signal transduction pathway, triggering a response in the cell (Figure 1a). Most lipid­soluble hormones can freely diffuse through the plasma membranes of both the endocrine cell and the target cell. However, the lipid­soluble thyroid hormones thyroxine and triiodothyronine must be carried across the plasma membrane by transport proteins. Lipid­soluble hormones travel through the aqueous environment of the blood associated with transport proteins. Some receptors for lipid­soluble hormones are on the cell surface, and others are located inside the cell. To reach intracellular receptors, lipid­soluble hormones diffuse across the plasma membrane. The intracellular receptor­hormone complex moves into the nucleus, where it binds DNA and activates or inhibits expression of particular genes (Figure 1b). http://www.nature.com/principles/ebooks/principles­of­biology­104015/29145728/1 1/2 1/29/2015 Hormones and the Body | Principles of Biology from Nature Education Figure 1: Transmission pathways of water­soluble and lipid­soluble hormones. Water­soluble hormones (left), which cannot pass through the plasma membrane, bind to a receptor on the outside of the target cell. Signal transduction transfers the signal from the outside of the cell to the inside. Lipid­soluble hormones (right), which can diffuse through cell membranes, often bind intracellular receptors that directly mediate a cellular response. © 2014 Nature Education All rights reserved. The Hypothalamus Integrates Nervous System Input and Endocrine System Output The nervous system senses external stimuli such as the scent of a predator and internal stimuli such as an increase in blood pressure. The endocrine system mediates a response to these stimuli. Thus, these two systems must be closely coordinated. In vertebrates, the hypothalamus, an endocrine gland located in the brain (Figure 1b), is the primary site at which sensory input is converted to endocrine output. The hypothalamus receives sensory input from neurons and sends this information to the pituitary gland, which extends from the bottom of the hypothalamus. The pituitary has anterior and posterior lobes. The posterior pituitary is an extension of the hypothalamus that contains axons from specialized neurons originating in the hypothalamus. The specialized neurons, called neurosecretory cells, secrete neurohormones that circulate in the blood and act on distant cells. The neurosecretory cells of the posterior pituitary produce two types of neurohormones: oxytocin and vasopressin (ADH, also known as antidiuretic hormone, or ADP). Vasopressin regulates water and salt balance, and oxytocin moderates behavior and stimulates mammary glands and uterine contractions. The anterior pituitary, which is a separate organ from the posterior pituitary, synthesizes and secretes hormones based on hormonal signals from the hypothalamus. Hormones secreted from the anterior pituitary include growth hormone (GH), thyroid­stimulating hormone (TSH), follicle­stimulating hormone (FSH), luteinizing hormone (LH), adrenocorticotropic hormone (ACTH), and prolactin (PRL). GH stimulates growth and metabolism. TSH stimulates the thyroid gland, which is involved in maintaining metabolic balance. FSH stimulates egg and sperm production. LH regulates ovaries and testes. ACTH causes the adrenal cortex to release glucocorticoids in response to long­term stress. Prolactin stimulates the production and secretion of milk. The hypothalamus regulates activity of other endocrine glands. For example, in response to stress, the hypothalamus stimulates secretions of the adrenal gland, which sits above the kidneys. The hypothalamus may activate two different stress­response pathways in the adrenal gland, depending on whether the stress is acute or long term. In an acute stress response, which is activated by a scary event such as encountering a tiger in the woods, a nerve signal is sent from the hypothalamus to the adrenal gland. In response, the middle part of the adrenal gland, called the adrenal medulla, releases the hormones epinephrine and norepinephrine into the blood. Epinephrine and norepinephrine stimulate the "fight­or­flight" response, which results in the breakdown of glycogen by the liver and an increase in breathing and heart rate. Glycogen breakdown frees up glucose, an energy source the body will need for fight or flight; the increased breathing rate enables greater intake of oxygen, which will be needed for the additional cellular respiration cells will be performing during fight or flight to generate energy; and the increased heart rate speeds the delivery of that oxygen to the cells that will be performing cellular respiration. In long­term stress, which is activated by a stressful event such as loss of a job, the hormone corticotropin­releasing hormone (CRH) is released from the hypothalamus and travels through blood to anterior pituitary. CRH stimulates the anterior pituitary to secrete adrenocorticotropin hormone (ACTH), which travels to the adrenal gland through the bloodstream. In response, the outer part of the adrenal gland, called the adrenal cortex, releases glucocorticoids. Glucocorticoids promote breakdown of fats and proteins to increase blood glucose levels, and reduce immune function. Increased levels of glucocorticoids are associated with improved memory and vigilance, which are presumably needed to get an animal through a stressful situation. However, increased this vigilance takes an
Recommended publications
  • Hormonal Regulation of Oligodendrogenesis I: Effects Across the Lifespan
    biomolecules Review Hormonal Regulation of Oligodendrogenesis I: Effects across the Lifespan Kimberly L. P. Long 1,*,†,‡ , Jocelyn M. Breton 1,‡,§ , Matthew K. Barraza 2 , Olga S. Perloff 3 and Daniela Kaufer 1,4,5 1 Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; [email protected] (J.M.B.); [email protected] (D.K.) 2 Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA; [email protected] 3 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94143, USA; [email protected] 4 Department of Integrative Biology, University of California, Berkeley, CA 94720, USA 5 Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada * Correspondence: [email protected] † Current address: Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA. ‡ These authors contributed equally to this work. § Current address: Department of Psychiatry, Columbia University, New York, NY 10027, USA. Abstract: The brain’s capacity to respond to changing environments via hormonal signaling is critical to fine-tuned function. An emerging body of literature highlights a role for myelin plasticity as a prominent type of experience-dependent plasticity in the adult brain. Myelin plasticity is driven by oligodendrocytes (OLs) and their precursor cells (OPCs). OPC differentiation regulates the trajectory of myelin production throughout development, and importantly, OPCs maintain the ability to proliferate and generate new OLs throughout adulthood. The process of oligodendrogenesis, Citation: Long, K.L.P.; Breton, J.M.; the‘creation of new OLs, can be dramatically influenced during early development and in adulthood Barraza, M.K.; Perloff, O.S.; Kaufer, D.
    [Show full text]
  • Growth Hormone-Releasing Hormone in Lung Physiology and Pulmonary Disease
    cells Review Growth Hormone-Releasing Hormone in Lung Physiology and Pulmonary Disease Chongxu Zhang 1, Tengjiao Cui 1, Renzhi Cai 1, Medhi Wangpaichitr 1, Mehdi Mirsaeidi 1,2 , Andrew V. Schally 1,2,3 and Robert M. Jackson 1,2,* 1 Research Service, Miami VAHS, Miami, FL 33125, USA; [email protected] (C.Z.); [email protected] (T.C.); [email protected] (R.C.); [email protected] (M.W.); [email protected] (M.M.); [email protected] (A.V.S.) 2 Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101, USA 3 Department of Pathology and Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA * Correspondence: [email protected]; Tel.: +305-575-3548 or +305-632-2687 Received: 25 August 2020; Accepted: 17 October 2020; Published: 21 October 2020 Abstract: Growth hormone-releasing hormone (GHRH) is secreted primarily from the hypothalamus, but other tissues, including the lungs, produce it locally. GHRH stimulates the release and secretion of growth hormone (GH) by the pituitary and regulates the production of GH and hepatic insulin-like growth factor-1 (IGF-1). Pituitary-type GHRH-receptors (GHRH-R) are expressed in human lungs, indicating that GHRH or GH could participate in lung development, growth, and repair. GHRH-R antagonists (i.e., synthetic peptides), which we have tested in various models, exert growth-inhibitory effects in lung cancer cells in vitro and in vivo in addition to having anti-inflammatory, anti-oxidative, and pro-apoptotic effects. One antagonist of the GHRH-R used in recent studies reviewed here, MIA-602, lessens both inflammation and fibrosis in a mouse model of bleomycin lung injury.
    [Show full text]
  • Somatostatin, an Inhibitor of ACTH Secretion, Decreases Cytosolic Free Calcium and Voltage-Dependent Calcium Current in a Pituitary Cell Line
    The Journal of Neuroscience November 1986, &Ii): 3128-3132 Somatostatin, an Inhibitor of ACTH Secretion, Decreases Cytosolic Free Calcium and Voltage-Dependent Calcium Current in a Pituitary Cell Line Albert0 Luini,* Deborah Lewis,t Simon Guild,* Geoffrey Schofield,t and Forrest Weight? *Laboratory of Cell Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, j-Laboratory of Preclinical Studies, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland 20852, and *Experimental Therapeutics Branch, National Institute on Neurological, Communicative Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 Somatostatin is a neurohormone peptide that inhibits a variety (corticotropin releasing factor, vasointestinal peptide, isopro- of secretory responses in different cell types. We have investi- terenol, and forskolin) and to secretagogues independent of CAMP gated the effects of somatostatin on calcium current and intra- formation, such as potassium, 8-bromocyclic AMP, calcium cellular free calcium in AtT-20 cells, a pituitary tumor line in ionophores (Axelrod and Reisine, 1984) and phorbol esters which the inhibitory actions of this peptide have been well char- (Heisler, 1984). Somatostatin blocks the stimulation of secretion acterized. At concentrations similar to those that inhibit adre- by all of these agents (Axelrod and Reisine, 1984; Richardson, nocorticotropic hormone (ACTH) release, somatostatin and its 1983). A previously described mechanism of action of somato- analogs reduced the levels of intracellular free calcium (as mea- statin is the blockade of the secretagogue-evoked stimulation sured by the Quin-2 technique). Nifedipine and other blockers of CAMP synthesis (Heisler et al., 1982). We now report a novel of voltage-dependent calcium channels also reduced cytosolic effect of somatostatin; namely, the inhibition of voltage-depen- calcium levels.
    [Show full text]
  • Neurohormone Secretion Persists After Post-Afterdischarge Membrane Depolarization and Cytosolic Calcium Elevation in Peptidergic Neurons in Intact Nervous Tissue
    The Journal of Neuroscience, October 15, 2002, 22(20):9063–9069 Neurohormone Secretion Persists after Post-Afterdischarge Membrane Depolarization and Cytosolic Calcium Elevation in Peptidergic Neurons in Intact Nervous Tissue Stephan Michel and Nancy L. Wayne Department of Physiology, David Geffin School of Medicine at University of California at Los Angeles, Los Angeles, California 90095 The purpose of this work was to test the hypothesis that an secretion or on the post-AD membrane potential (Vm ) and electrical afterdischarge (AD) causes prolonged elevation in post-AD Ca 2ϩ signal, ruling out a role for extracellular calcium 2ϩ 2ϩ cytosolic calcium levels that is associated with prolonged se- in the post-AD elevation of [Ca ]i. Both Vm and [Ca ]i re- cretion of egg-laying hormone (ELH) from peptidergic neurons turned to baseline well before ELH secretion, such that neither in intact nervous tissue of Aplysia. Using a combination of prolonged membrane depolarization nor prolonged Ca 2ϩ sig- radioimmunoassay measurement of ELH secretion, electro- naling can fully account for the extent of the persistent secre- physiological measurement of membrane potential, and optical tion of ELH. These findings suggest a unique relationship be- imaging of the concentration of intracellular free calcium ions tween membrane excitability, Ca 2ϩ signaling, and prolonged 2ϩ ([Ca ]i ), we verified that there was persistent secretion of ELH neuropeptide secretion. after the end of the AD; this was accompanied by prolonged post-AD membrane depolarization and prolonged post-AD el- Key words: action potential; Aplysia; bag cell neurons; cal- 2ϩ evation in [Ca ]i. Extracellular treatment with the calcium che- cium imaging; calcium signaling; egg-laying hormone; exocyto- lator EGTA had no effect on the pattern or magnitude of ELH sis; membrane potential; neuroendocrine; neurosecretion ϩ Dependence of exocytosis on Ca 2 influx from extracellular fluid in living tissue.
    [Show full text]
  • Acceleration of Ambystoma Tigrinum Metamorphosis by Corticotropin-Releasing Hormone 1 1,2 GRAHAM C
    JOURNAL OF EXPERIMENTAL ZOOLOGY 293:94–98 (2002) RAPID COMMUNICATION Acceleration of Ambystoma tigrinum Metamorphosis by Corticotropin-Releasing Hormone 1 1,2 GRAHAM C. BOORSE AND ROBERT J. DENVER * 1Department of Ecology and Evolutionary Biology,The University of Michigan, AnnArbor,Michigan48109-1048 2 Department of Molecular,Cellular and Developmental Biology,The University of Michigan, Ann Arbor,Michigan 48109-1048 ABSTRACT Previous work of others and ours has shown that corticotropin-releasing hormone (CRH) is a positive stimulus for thyroid and interrenal hormone secretion in amphibian larvae and that activation of CRH neurons may mediate environmental e¡ects on the timing of metamorphosis. These studies have investigated CRH actions in anurans (frogs and toads), whereas there is currently no information regarding the actions of CRH on metamorphosis of urodeles (salamanders and newts). We tested the hypothesis that CRH can accelerate metamorphosis of tiger salamander (Ambystoma tigrinum) larvae. We injected tiger salamander larvae with ovine CRH (oCRH; 1 mg/day; i.p.) and mon- itored e¡ects on metamorphosis by measuring the rate of gill resorption. oCRH-injected larvae com- pleted metamorphosis earlier than saline-injected larvae.There was no signi¢cant di¡erence between uninjected and saline-injected larvae. Mean time to reach 50% reduction in initial gill length was 6.9 days for oCRH-injected animals, 11.9 days for saline-injected animals, and 14.1 days for uninjected controls. At the conclusion of the experiment (day 15), all oCRH-injected animals had completed metamorphosis, whereas by day 15, only 50% of saline-injected animals and 33% of uninjected animals had metamorphosed.
    [Show full text]
  • NIH Public Access Author Manuscript Neuroscience
    NIH Public Access Author Manuscript Neuroscience. Author manuscript; available in PMC 2010 August 18. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Neuroscience. 2004 ; 126(3): 533±540. doi:10.1016/j.neuroscience.2004.03.036. HIPPOCAMPAL CORTICOTROPIN RELEASING HORMONE: PRE- AND POSTSYNAPTIC LOCATION AND RELEASE BY STRESS Y. Chena, K. L. Brunsona, G. Adelmannb, R. A. Bendera, M. Frotscherb, and T. Z. Barama,* aDepartments of Anatomy/Neurobiology and Pediatrics, ZOT 4475, University of California at Irvine, Irvine, CA 92697-4475, USA bInstitute of Anatomy, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany Abstract Neuropeptides modulate neuronal function in hippocampus, but the organization of hippocampal sites of peptide release and actions is not fully understood. The stress-associated neuropeptide corticotropin releasing hormone (CRH) is expressed in inhibitory interneurons of rodent hippocampus, yet physiological and pharmacological data indicate that it excites pyramidal cells. Here we aimed to delineate the structural elements underlying the actions of CRH, and determine whether stress influenced hippocampal principal cells also via actions of this endogenous peptide. In hippocampal pyramidal cell layers, CRH was located exclusively in a subset of GABAergic somata, axons and boutons, whereas the principal receptor mediating the peptide’s actions, CRH receptor 1 (CRF1), resided mainly on dendritic spines of pyramidal cells. Acute ‘psychological’ stress led to activation of principal neurons that expressed CRH receptors, as measured by rapid phosphorylation of the transcription factor cyclic AMP responsive element binding protein. This neuronal activation was abolished by selectively blocking the CRF1 receptor, suggesting that stress-evoked endogenous CRH release was involved in the activation of hippocampal principal cells.
    [Show full text]
  • 1 General Overview of the Endocrine System Questions to Be Thinking
    General Overview of the Endocrine System Questions to be thinking about to help organize your learning of the components of the Endocrine System: Anatomy 1) Where are the different hormone producing cells located? 2) What hormone does a particular type of endocrine cell or neuron produce? General Overview of the Endocrine System Questions to be thinking about to help organize your learning of the components of the Endocrine System: Hormones 1) What is their general chemical structure? 2) How does their structure affect their function? 3) Where are they produced? 4) What environmental or physiological stimuli regulate their production and secretion? 5) Is their production and secretion under direct neural or hormonal control? 6) What are their targets? 7) What effects do they produce on their targets? 8) How do they produce their effects on their targets (how is the signal transduced? i.e. receptor mechanisms) 1 Often endocrine cells are clumped together into a well defined gland (e.g. pituitary, thyroid, adrenal, testes, ovaries), but not always (e.g. gut, liver, lung). Often endocrine cells are clumped together into a well defined gland (e.g. pituitary, thyroid, adrenal, testes, ovaries), but not always (e.g. gut, liver, lung). Remember, it's cells that produce hormones, not glands. Although many glands secrete more than one type of hormone, most neurons or endocrine cells only produce one type of hormone (there are a few exceptions). 2 Some Terminology Neurohormone: a hormone that is produced by a neuron Some Terminology All of the hormones we discuss can be classified as belonging to one of 2 general functional categories: 1] Releasing hormone (or factors) — hormone that acts on endocrine cells to regulate the release of other hormones.
    [Show full text]
  • The Cryptic Gonadotropin-Releasing Hormone Neuronal System Of
    RESEARCH ARTICLE The cryptic gonadotropin-releasing hormone neuronal system of human basal ganglia Katalin Skrapits1*, Miklo´ s Sa´ rva´ ri1, Imre Farkas1, Bala´ zs Go¨ cz1, Szabolcs Taka´ cs1, E´ va Rumpler1, Vikto´ ria Va´ czi1, Csaba Vastagh2, Gergely Ra´ cz3, Andra´ s Matolcsy3, Norbert Solymosi4, Szila´ rd Po´ liska5, Blanka To´ th6, Ferenc Erde´ lyi7, Ga´ bor Szabo´ 7, Michael D Culler8, Cecile Allet9, Ludovica Cotellessa9, Vincent Pre´ vot9, Paolo Giacobini9, Erik Hrabovszky1* 1Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary; 2Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary; 31st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; 4Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary; 5Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; 6Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary; 7Department of Gene Technology and Developmental Biology, Institute of Experimental Medicine, Budapest, Hungary; 8Amolyt Pharma, Newton, France; 9Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, Lille, France Abstract Human reproduction is controlled by ~2000 hypothalamic gonadotropin-releasing *For correspondence: [email protected] (KS); hormone (GnRH) neurons. Here, we report the discovery and characterization of additional [email protected] (EH) ~150,000–200,000 GnRH-synthesizing cells in the human basal ganglia and basal forebrain. Nearly all extrahypothalamic GnRH neurons expressed the cholinergic marker enzyme choline Competing interests: The acetyltransferase. Similarly, hypothalamic GnRH neurons were also cholinergic both in embryonic authors declare that no and adult human brains.
    [Show full text]
  • Osmoregulation of Vasopressin Secretion Via Activation of Neurohypophysial Nerve Terminals Glycine Receptors by Glial Taurine
    The Journal of Neuroscience, September 15, 2001, 21(18):7110–7116 Osmoregulation of Vasopressin Secretion via Activation of Neurohypophysial Nerve Terminals Glycine Receptors by Glial Taurine Nicolas Hussy, Vanessa Bre` s, Marjorie Rochette, Anne Duvoid, Ge´ rard Alonso, Govindan Dayanithi, and Franc¸ oise C. Moos Laboratoire de Biologie des Neurones Endocrines, Centre National de la Recherche Scientifique (CNRS) Unite´ Mixte de Recherche 5101, Centre CNRS–Institut National de la Sante´ et de la Recherche Me´ dicale de Pharmacologie et d’Endocrinologie, 34094 Montpellier Cedex 5, France Osmotic regulation of supraoptic nucleus (SON) neuron activity minals is confirmed by immunohistochemistry. Their implication depends in part on activation of neuronal glycine receptors in the osmoregulation of neurohormone secretion was as- (GlyRs), most probably by taurine released from adjacent as- sessed on isolated whole neurohypophyses. A 6.6% hypo- trocytes. In the neurohypophysis in which the axons of SON osmotic stimulus reduces by half the depolarization-evoked neurons terminate, taurine is also concentrated in and osmo- vasopressin secretion, an inhibition totally prevented by strych- dependently released by pituicytes, the specialized glial cells nine. Most importantly, depletion of taurine by a taurine trans- ensheathing nerve terminals. We now show that taurine release port inhibitor also abolishes the osmo-dependent inhibition of from isolated neurohypophyses is enhanced by hypo-osmotic vasopressin release. Therefore, in the neurohypophysis, an os- and decreased by hyper-osmotic stimulation. The high osmo- moregulatory system involving pituicytes, taurine, and GlyRs is sensitivity is shown by the significant increase on only 3.3% operating to control Ca 2ϩ influx in and neurohormone release reduction in osmolarity.
    [Show full text]
  • Involvement of Arginine Vasopressin and V1b Receptor in Heroin Withdrawal and Heroin Seeking Precipitated by Stress and by Heroin
    Neuropsychopharmacology (2008) 33, 226–236 & 2008 Nature Publishing Group All rights reserved 0893-133X/08 $30.00 www.neuropsychopharmacology.org Involvement of Arginine Vasopressin and V1b Receptor in Heroin Withdrawal and Heroin Seeking Precipitated by Stress and by Heroin ,1,3 2,3 2 2 1 Yan Zhou* , Francesco Leri , Erin Cummins , Marisa Hoeschele and Mary Jeanne Kreek 1 2 Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA; Department of Psychology, University of Guelph, Guelph, ON, Canada A previous study has shown that the stress responsive neurohormone arginine vasopressin (AVP) is activated in the amygdala during early withdrawal from cocaine. The present studies were undertaken to determine whether (1) AVP mRNA levels in the amygdala or hypothalamus, as well as hypothalamic–pituitary–adrenal (HPA) activity, would be altered during chronic intermittent escalating heroin administration (10 days; 7.5–60 mg/kg/day) or during early (12 h) and late (10 days) spontaneous withdrawal; (2) foot shock stress would alter AVP mRNA levels in the amygdala or hypothalamus in rats withdrawn from heroin self-administration (7 days, 3 h/day, 0.05 mg/kg/ infusion); and (3) the selective V1b receptor antagonist SSR149415 (1 and 30 mg/kg, intraperitoneal) would alter heroin seeking during tests of reinstatement induced by foot shock stress and by heroin primes (0.25 mg/kg), as well as HPA hormonal responses to foot shock. We found that AVP mRNA levels were increased during early spontaneous withdrawal in the amygdala only. This amygdalar AVP mRNA increase was no longer observed at the later stage of heroin withdrawal.
    [Show full text]
  • Somatostatin Gastrin and C-Peptide in Thyroid Dysfunctions
    Med. J. Cairo Univ., Vol. 62, No. 3, September: 677 - 682, 1994 Somatostatin Gastrin and C-Peptide in Thyroid Dysfunctions MOHAMMAD A. ABDEL HAFEZ, M.D.; NAHED ABDEL GHANY, M.D.; SHERIF M. NAGUIB, M.D.; NAGUA E. SOBHY, M.D. and MOHAMMAD S. MOGAWER, M.D. The Departments of Medical Biochemistry and Internal Medicine, Faculty of of Medicine, Cairo University. Abstract Three groups of subjects were chosen; 20 patients with primary hypothyroidism, 20 patients with primary hyperthyroidism and a third group of 15 euthyroid subjects as a control group. Plasma somatostatin, gastrin and C-peptide were determined in both fasting and lh postprandial after standard oral glucose load. FT3, FT4, TSH, oral glucose tolerance curve, serum cholesterol and triglycerides were also determined. It was found that both basal and stimulated somatostatin plasma concentrations were el- evated in hypothyroidism and diminished in hyperthyroidism. On the contrary, serum gastrin and C-peptide were decreased. Elevated somatostatin level in hypothyroidism has an inhibitory effect on gastrin and C-peptide. C-peptide was elevated in hyper- thyroidism, however glucose intolerance was noticed in only 20% of these subjects. Elevated gastrin level in hyperthyroidism suggests a role for gastrointestinal distur- bances observed in these patients. Introduction had shown that somatostatin inhibits the hepatic T4 deiodenase, thus promoting its SOMATOSTATIN was first isolated from conversion to rTg rather than T3. the hypothalamus and was subsequently found in large amounts in endocrine cells This study was done to investigate the of the stomach, pancreas and thyroid gland level of somatostatin as well as gastrin and Ill.
    [Show full text]
  • THE NEUROHORMONE SEROTONIN MODULATES the PERFORMANCE of a MECHNOSENSORY NEURON DURING TAIL POSITIONING in the CRAYFISH by HSING
    THE NEUROHORMONE SEROTONIN MODULATES THE PERFORMANCE OF A MECHNOSENSORY NEURON DURING TAIL POSITIONING IN THE CRAYFISH by HSING-JU TSAI Submitted in partial fulfillment of the requirements For the degree of Master of Science Thesis Adviser: Dr. Debra Wood Department of Biology CASE WESTERN RESERVE UNIVERSITY August, 2009 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS LIST OF FIGURES ...........................................................................................................2 LIST OF ABBREVIATIONS............................................................................................3 ABSTRACT ......................................................................................................................4 INTRODUCTION .............................................................................................................5 BACKGROUND................................................................................................................8
    [Show full text]