Modification of Cellular Autophagy Protein LC3 by Poliovirus

Total Page:16

File Type:pdf, Size:1020Kb

Modification of Cellular Autophagy Protein LC3 by Poliovirus JOURNAL OF VIROLOGY, Nov. 2007, p. 12543–12553 Vol. 81, No. 22 0022-538X/07/$08.00ϩ0 doi:10.1128/JVI.00755-07 Copyright © 2007, American Society for Microbiology. All Rights Reserved. Modification of Cellular Autophagy Protein LC3 by Poliovirusᰔ Matthew P. Taylor and Karla Kirkegaard* Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305 Received 7 April 2007/Accepted 27 August 2007 Poliovirus infection remodels intracellular membranes, creating a large number of membranous vesicles on which viral RNA replication occurs. Poliovirus-induced vesicles display hallmarks of cellular autophagosomes, including delimiting double membranes surrounding the cytosolic lumen, acquisition of the endosomal marker LAMP-1, and recruitment of the 18-kDa host protein LC3. Autophagy results in the covalent lipidation of LC3, conferring the property of membrane association to this previously microtubule-associated protein and pro- Downloaded from viding a biochemical marker for the induction of autophagy. Here, we report that a similar modification of LC3 occurs both during poliovirus infection and following expression of a single viral protein, a stable precursor termed 2BC. Therefore, one of the early steps in cellular autophagy, LC3 modification, can be genetically separated from the induction of double-membraned vesicles that contain the modified LC3, which requires both viral proteins 2BC and 3A. The existence of viral inducers that promote a distinct aspect of the formation of autophagosome-like membranes both facilitates the dissection of this cellular process and supports the hypothesis that this branch of the innate immune response is directly subverted by poliovirus. jvi.asm.org All positive-strand RNA viruses of eukaryotes replicate their gosomes, double-membraned organelles that become degrada- genomes on cytoplasmic membranes, and infections are often tive upon maturation, breaking down cytoplasmic proteins and at SERIALS CONTROL Lane Medical Library on January 10, 2008 accompanied by dramatic reorganization of those membranes. organelles entrapped within their lumen. Originally identified We and others have argued that one function of membrane as a process induced by cellular starvation, autophagy is now localization of viral RNA replication proteins is to create two- appreciated as a cellular response to a variety of stimuli. For dimensional surfaces to promote the oligomerization of viral example, the estrogen receptor agonist tamoxifen is a potent proteins (6, 31). Yet the detailed cell biology of the targeted inducer of autophagy, indicating a role for the hormonal in- membranes and the mechanisms by which they are altered duction of autophagy (2–4). In Saccharomyces cerevisiae, for- differ greatly from virus to virus (40, 53). mation and maturation of autophagosomes requires the func- Poliovirus infection rearranges intracellular membranes, tion of many genes (reviewed in reference 52). Human creating membranous vesicles, 200 to 400 nm in diameter, that homologs of several yeast autophagy genes have recently been accumulate in the cytoplasm (9, 42, 47). Immunoelectron mi- identified, including LC3, the human homolog of ATG8, and it croscopy revealed that the cytoplasmic surfaces of these mem- is likely that much of the autophagic pathway has been evolu- branous vesicles, not the interior lumen, are the sites of viral tionarily conserved (22, 50). Many recent experiments have RNA replication (1, 7). The specific morphology of these identified the autophagy pathway as a critical component of membranes has proven somewhat controversial, because they the innate immune response of plants and mammals (reviewed are rich in lipids (17, 33) and their apparent morphology is in references 10 and 30). Therefore, we sought to discover the therefore sensitive to the fixation method used in electron similarities and differences between the poliovirus-induced microscopy (43, 46). Using high-pressure cryopreservation membranes and cellular autophagosomes and to investigate methods, we have consistently observed double-membraned the mechanism of formation of the double-membraned vesi- vesicles (42, 47), as did Dales et al. using more conventional cles induced by poliovirus and the role of the autophagy path- fixation techniques (9). Double-membraned vesicular struc- way during viral infection. Previous studies show that reduced tures have also been associated with viral RNA replication function of the autophagy pathway resulted in reduced complexes in cells infected with several other positive-strand amounts of extracellular and intracellular poliovirus (20), ar- RNA viruses, including equine arterivirus (37), murine hepa- guing that the autophagic pathway plays a positive role in the titis virus (16), and sudden acute respiratory syndrome-associ- growth of both these positive-strand RNA viruses. ated virus (15). Therefore, understanding the mechanism(s) by The formation and maturation of autophagosomes involve which viral proteins induce the formation of double-membrane the stepwise acquisition of proteins from disparate cellular vesicles is of interest for understanding the formation of RNA compartments (reviewed in references 28 and 39). Nascent replication complexes of several kinds of RNA viruses. autophagosomes form either de novo or from the endoplasmic Several of the features displayed by the vesicles induced reticulum and comprise cellular cytoplasm surrounded by two during poliovirus infection are shared with cellular autopha- lipid bilayers that fuse from a C-shaped intermediate (14, 32, 36). Although relatively protein poor, they have been shown to contain a modified form of the autophagy protein LC3. Orig- * Corresponding author. Mailing address: Department of Microbi- inally characterized as microtubule-associated protein light ology and Immunology, 299 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305. Phone: (650) 498-7075. Fax: (650) chain 3, or MAP-LC-3, LC3 protein is cleaved after synthesis 498-7147. E-mail: [email protected]. by cellular protease Atg4, generating an 18-kDa species ᰔ Published ahead of print on 5 September 2007. termed LC3-I (see Fig. 1A). When autophagy is activated, a 12543 12544 TAYLOR AND KIRKEGAARD J. VIROL. series of covalent transfers links LC3 to Atg7, then to Atg3, 2 ϫ 105 cells per 10-cm dish, followed by transfection with 2 ␮g of plasmid DNA and finally to phosphatidylethanolamine, generating a lipi- using Effectene reagent (QIAGEN, Valencia, CA) and incubation for 48 h at dated species termed LC3-II (Fig. 1A) (19, 45, 50). This mod- 37°C. Cells were harvested with phosphate-buffered saline (PBS) containing 5 mM EDTA (pH 8.0) and collected by centrifugation at 300 ϫ g for 5 min. Cell ification allows LC3 to become membrane associated, prefer- pellets were washed in the same buffer, pelleted in an Eppendorf microcentrifuge entially associating with the developing and newly formed at 6,000 ϫ g, resuspended in RSB–NP-40 (10 mM Tris–HCl [pH 7.5], 10 mM autophagosomes (23, 24). NaCl, 1.5 mM MgCl2, 1% NP-40) supplemented with Mini-complete EDTA-free The genomes of poliovirus and other picornaviruses consist protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN), and in- cubated on ice for 15 min. Nuclei and insoluble debris were pelleted by centrif- of a single, positive-stranded RNA. A single encoded polypro- ugation at 6,000 ϫ g for 5 min. Cell extracts were then stored at Ϫ20°C or tein is processed by viral proteases to produce individual capsid subjected immediately to sodium dodecyl sulfate-polyacrylamide gel electro- proteins, the viral RNA-dependent RNA polymerase 3D, and phoresis (SDS-PAGE). For saponin extraction, cell pellets were resuspended in several other multifunctional nonstructural proteins. Of the a solution containing 0.5% saponin, 80 mM PIPES [piperazine-N,NЈ-bis(2-eth- nonstructural proteins, three (2B, 2C, and 3A) associate with anesulfonic acid), pH 6.8], 1 mM CaCl2, and 5 mM EGTA as described else- where (29) and collected by centrifugation prior to the addition of the RSB— membranes when expressed in isolation; mutations in any of NP-40 solution. Cell extracts were mixed with 6ϫ Laemmli loading buffer and these three proteins lead to defects in RNA replication. The heated to 95°C for 5 min prior to electrophoresis at 120 V for 1 to2honeither Downloaded from expression of stable protein precursor 2BC and protein 3A, in 10% or 13.5% SDS-polyacrylamide gels. For immunoblotting, proteins were combination but not separately, was found to induce the for- transferred to Immobilon polyvinylidene difluoride (PVDF) membranes (Milli- pore, Billerica, MA) for 75 min at 20 V in a Miniprotean III transfer tank mation of double-membraned vesicles that display biochemical (Bio-Rad, Hercules, CA). Membranes were then air dried before rewetting with markers and fractionate similarly to the vesicles induced dur- 70% methanol followed by blocking with PBS supplemented with 0.1% (vol/vol) ing poliovirus infection (20, 47). Thus, should these mem- Tween-20 and 2% (wt/vol) bovine serum albumin. All primary antibody incuba- tions were done in blocking solution for a minimum of1hatroom temperature branes prove to derive directly from the autophagy pathway, jvi.asm.org these viral proteins will be among the few molecularly charac- followed by washing with PBS-Tween (PBS supplemented with 0.1% Tween). Alkaline phosphatase-conjugated secondary antibodies were diluted 1:10,000 in terized inducers of this process. PBS-Tween,
Recommended publications
  • 2019 Annual Report
    BECKMAN CENTER 279 Campus Drive West Stanford, CA 94305 650.723.8423 Stanford University | Beckman Center 2019 Annual Report Annual 2019 | Beckman Center University Stanford beckman.stanford.edu 2019 ANNUAL REPORT ARNOLD AND MABEL BECKMAN CENTER FOR MOLECULAR AND GENETIC MEDICINE 30 Years of Innovation, Discovery, and Leadership in the Life Sciences CREDITS: Cover Design: Neil Murphy, Ghostdog Design Graphic Design: Jack Lem, AlphaGraphics Mountain View Photography: Justin Lewis Beckman Center Director Photo: Christine Baker, Lotus Pod Designs MESSAGE FROM THE DIRECTOR Dear Friends and Trustees, It has been 30 years since the Beckman Center for Molecular and Genetic Medicine at Stanford University School of Medicine opened its doors in 1989. The number of translational scientific discoveries and technological innovations derived from the center’s research labs over the course of the past three decades has been remarkable. Equally remarkable have been the number of scientific awards and honors, including Nobel prizes, received by Beckman faculty and the number of young scientists mentored by Beckman faculty who have gone on to prominent positions in academia, bio-technology and related fields. This year we include several featured articles on these accomplishments. In the field of translational medicine, these discoveries range from the causes of skin, bladder and other cancers, to the identification of human stem cells, from the design of new antifungals and antibiotics to the molecular underpinnings of autism, and from opioids for pain
    [Show full text]
  • Journal of Virology Volume 68 * April 1994 * Number 4
    JOURNAL OF VIROLOGY VOLUME 68 * APRIL 1994 * NUMBER 4 Arnold J. Levine, Editor in Chief (1994) Vincent R. Racaniello, Editor (1997) Princeton University Columbia University Princeton, N.J. Peter M. Howley, Editor (1998) New York, N.Y Harvard Medical School John M. Coffin, Editor (1996) Boston, Mass. Thomas E. Shenk, Editor (1994) Tufts University Medical School Princeton University Boston, Mass. Michael B. A. Oldstone, Editor (1994) Princeton, N.J. Scripps Clinic & Research Foundation Ronald C. Desrosiers, Editor (1998) La Jolla, Calif. Joseph Sodroski, Editor (1998) Harvard Medical School Dana-Farber Cancer Institute Boston, Mass. Carol Prives, Editor (1996) Boston, Mass. Columbia University Mary K. Estes, Editor (1998) New N.Y Inder M. Verma, Editor (1998) Baylor College of Medicine York, The Salk Institute Houston, Tex. San Diego, Calif. EDITORIAL BOARD Rafi Ahmed (1994) Harry B. Greenberg (1995) Elizabeth Moran (1996) Priscilla A. Schaffer (1996) Carl C. Baker (1994) Hidesaburo Hanafusa (1995) Bernard Moss (1995) Heinz Schaller (1995) Amiya K. Banerjee (1996) Ed Harlow (1996) Richard W. Moyer (1995) Sondra Schlesinger (1995) Kenneth L. Berns (1994) Gary S. Hayward (1996) James Mullins (1996) Robert J. Schneider (1994) Joseph B. Bolen (1994) Ari H. Helenius (1996) Brian R Murphy (1994) Manfred H. Schubert (1996) Thomas J.'Braciale (1994) Virginia S. Hinshaw (1996) Nicholas A. Muzyczka (1996) Bartholomew M. Sefton (1994) John Brady (1994) David D. Ho (1996) Gerald Myers (1995) Bert L. Semler (1995) Thomas R. Broker (1995) James M. Hogle (1994) Gary J. Nabel (1996) David A. Shafritz (1994) Michael J. Buchmeier (1995) John J. Holland (1996) Opendra Narayan (1994) Yosef Shaul (1995) Robert Callahan (1994) Kathryn V.
    [Show full text]
  • Poliovirus Mutant That Does Not Selectively Inhibit Host Cell Protein Synthesis
    MOLECULAR AND CELLULAR BIOLOGY. November 1985. p. 2913-2923 Vol. 5. No. 11 0270-7306/85/112913-11$02.00/0 Copyright © 1985. American Society for Microbiology Poliovirus Mutant That Does Not Selectively Inhibit Host Cell Protein Synthesis HARRIS D. BERNSTEIN,1 NAHUM SONENBERG.~ AND DAVID BALTIMOREh Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, 1 and Department of Biochemistry, McGill Unirersity, Montreal, Quebec, Canada H3G I Y6~ Received 20 May 1985/Accepted 1 August 1985 A poliovirus type I (Mahoney strain) mutant was obtained by inserting three base pairs into an infectious eDNA clone. The extra amino acid encoded by the insertion was in the amino-terminal (protein 8) portion of the P2 segment of the polyprotein. The mutant virus makes small plaques on HeLa and monkey kidney (CV-1) cells at all temperatures. It lost the ability to mediate the selective inhibition of host cell translation which ordinarily occurs in the first few hours after infection. As an apparent consequence, the mutant synthesizes far less protein than does wild-type virus. In mutant-infected CV-1 cells enough protein was produced to permit a normal course of RNA replication, but the yield of progeny virus was very low. In mutant-infected He La cells there was a premature cessation of both cellular and viral protein synthesis followed by a premature halt of viral RNA synthesis. This nonspecific translational inhibition was distinguishable from wild-type-mediated inhibition and did not appear to be part of an interferon or heat shock response.
    [Show full text]
  • Microbiology and Immunology (MI) Courses” Section of This Assistants for Two Courses
    National Science Foundation. Program for Graduate Study—The Ph.D. degree requires course MICROBIOLOGY AND work and independent research demonstrating an individual’s creative, scholastic, and intellectual abilities. On entering the department, students meet an advisory faculty member; together they IMMUNOLOGY design a timetable for completion of the degree requirements. Typically, this consists of first identifying gaps in the student’s Emeriti: (Professors) Edward S. Mocarski, Sidney Raffel, Leon T. undergraduate education and determining courses that should be Rosenberg taken. Then, a tentative plan is made for two to four lab rotations Chair: Karla Kirkegaard (one rotation per quarter). During the first year of graduate study in Associate Chair: Hugh O. McDevitt the department, each student also takes six or seven upper-level Professors: Ann Arvin, Helen Blau, John C. Boothroyd, Yueh-Hsiu (200-series) courses. Three of these courses are requirements of the Chien, Mark M. Davis, Stanley Falkow, Stephen J. Galli, Harry department: MI 215, Principles of Biological Techniques; MI 209, B. Greenberg, Karla Kirkegaard, A. C. Matin, Hugh O. Advanced Pathogenesis of Bacteria, Viruses, and Eukaryotic McDevitt, Peter Parham, Phillip Pizzo, Charles Prober, David Parasites, Part I; and MI 210, Advanced Pathogenesis of Bacteria, Relman, Peter Sarnow, Gary K. Schoolnik, Lucy S. Tompkins Viruses, and Eukaryotic Parasites, Part II. Three courses are part of Associate Professors: Christopher Contag, Garry Nolan, David the core curriculum that is required of many graduate students in Schneider, Julie Theriot Stanford Biosciences: BIO 203 /DBIO 203 /GENE 203, Advanced Assistant Professors: Manuel Amieva, Matthew Bogyo, Chang- Genetics; BIO 230, Molecular and Cellular Immunology; and MCP Zheng Chen, Denise Monack, Upinder Singh, Justin Sonnenburg, 221/BIO 214, Cell Biology of Physiological Processes.
    [Show full text]
  • Lecture Slides
    (J. American Chemical Association, 78, 3458-3459) The Secondary Structure of Complementary RNA E. Peter Geiduschek, John W. Moohr, and Smauel B. Weiss, Proceedings of The National Academy of Sciences, 48, 1078-1086, 1962. R.H. DOI RH, and S. SPIEGELMAN Homology test between the nucleic acid of an RNA virus and the DNA in the host cell. Science 1962 Dec 14 1270-2. MONTAGNIER L, SANDERS FK. REPLICATIVE FORM OF ENCEPHALOMYOCARDITIS VIRUS RIBONUCLEIC ACID. Nature. 1963 Aug 17;199:664-7. (Science 143, 1034-1036, March 6, 1964) WARNER RC, SAMUELS HH, ABBOTT MT, KRAKOW JS. (1963) Ribonucleic acid polymerase of Azotobacter vinelandii, II. Formation of DNA- RNA hybrids with single-stranded DNA as primer. Proc Natl Acad Sci U S A. 49:533-8. Double Stranded RNA as a Specific Biological Effector December 8, 2006 Karolinska Institute, Stockholm, Sweden Viral interference (Interferon) effects in animals M. Hoskins (1935) A protective action of neurotropic against viscerotropic yellow fever virus in Macacus rhesus. American Journal of Tropical Medicine, 15, 675-680 G. Findlay and F. MacCallum (1937) An interference phenomenon in relation to yellow fever and other viruses. J. Path. Bact. 44, 405-424. A. Isaacs and J. Lindenmann (1957) Virus Interference. I. The Interferon Proc. Royal Soc. B 147, 268-273. Proceedings of the National Academy of Sciences, USA, Volume 58, Pages 782-789. 1967 Promoter Make transgenic worms geneX Antisense Transcripts Interference (Development 113:503 [1991]) geneX Promoter Make transgeneic worms geneX SENSE Transcripts Also Interference! (Development 113:503 [1991]) In Vitro Promoter Make RNA in vitro geneX Antisense RNA Inject worm gonad Interference! (Guo and Kemphues, 1995) In Vitro geneX Promoter Make RNA in vitro geneX SENSE RNA Inject worm gonad Also Interference! (Guo and Kemphues, 1995) Craig Mello's RNAi Workshop: 1997 C.
    [Show full text]
  • Surrender, Avoidance and Subversion by Microorganisms
    REVIEWS CELLULAR AUTOPHAGY: SURRENDER, AVOIDANCE AND SUBVERSION BY MICROORGANISMS Karla Kirkegaard, Matthew P.Taylor and William T. Jackson Intracellular bacteria and viruses must survive the vigorous antimicrobial responses of their hosts to replicate successfully. The cellular process of autophagy — in which compartments bound by double membranes engulf portions of the cytosol and then mature to degrade their cytoplasmic contents — is likely to be one such host-cell response. Several lines of evidence show that both bacteria and viruses are vulnerable to autophagic destruction and that successful pathogens have evolved strategies to avoid autophagy, or to actively subvert its components, to promote their own replication. The molecular mechanisms of the avoidance and subversion of autophagy by microorganisms will be the subject of much future research, not only to study their roles in the replication of these microorganisms, but also because they will provide — as bacteria and viruses so often have — unique tools to study the cellular process itself. 6,7 4 DAUER Cellular autophagy involves the sequestration of thaliana and C. elegans ,wild-type autophagy genes An arrested stage in regions of the cytosol within double-membrane-bound are required to prevent premature senescence. Caenorhabditis elegans compartments that then mature and degrade their cyto- One attractive hypothesis is that the degradation of development that can be formed plasmic contents. It is a highly regulated process, the cytosolic structures by autophagy might have
    [Show full text]
  • Current Topics in Microbiology and Immunology Volume
    BookID 160045_ChapID FM_Proof# 1 - 17/4/2009 Current Topics in Microbiology and Immunology Volume 335 Series Editors R. John Collier Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA Richard W. Compans Emory University School of Medicine, Department of Microbiology and Immunology, 3001 Rollins Research Center, Atlanta, GA 30322, USA Max D. Cooper Department of Pathology and Laboratory Medicine, Georgia Research Alliance, Emory University, 1462 Clifton Road, Atlanta, GA 30322, USA Yuri Y. Gleba ICON Genetics AG, Biozentrum Halle, Weinbergweg 22, Halle 6120, Germany Tasuku Honjo Department of Medical Chemistry, Kyoto University, Faculty of Medicine, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan Hilary Koprowski Thomas Jefferson University, Department of Cancer Biology, Biotechnology Foundation Laboratories, 1020 Locust Street, Suite M85 JAH, Philadelphia, PA 19107-6799, USA Bernard Malissen Centre d’Immunologie de Marseille-Luminy, Parc Scientifique de Luminy, Case 906, Marseille Cedex 9 13288, France Fritz Melchers Biozentrum, Department of Cell Biology, University of Basel, Klingelbergstr. 50–70, 4056 Basel Switzerland Michael B.A. Oldstone Department of Neuropharmacology, Division of Virology, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA Sjur Olsnes Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello 0310 Oslo, Norway Herbert W. “Skip” Virgin Washington University School of Medicine, Pathology and Immunology, University Box 8118, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA Peter K. Vogt The Scripps Research Institute, Dept. of Molecular & Exp. Medicine, Division of Oncovirology, 10550 N. Torrey Pines. BCC-239, La Jolla, CA 92037, USA BookID 160045_ChapID FM_Proof# 1 - 17/4/2009 BookID 160045_ChapID FM_Proof# 1 - 17/4/2009 ii Current Topics in Microbiology and Immunology Previously published volumes Further volumes can be found at springer.com Vol.
    [Show full text]
  • Julie K. Pfeiffer, Ph.D. 1/2019
    Julie K. Pfeiffer, Ph.D. 1/2019 University of Texas Southwestern Medical Center Phone: (214) 648-8775 Department of Microbiology 6000 Harry Hines Blvd, NL4.140B Dallas, TX 75390-9048 email: [email protected] CURRENT POSITION Professor 9/2017- University of Texas Southwestern Medical Center, Department of Microbiology, Dallas, Texas Associate Professor 9/2012-8/2017 University of Texas Southwestern Medical Center, Department of Microbiology, Dallas, Texas Assistant Professor 2/2006-8/2012 University of Texas Southwestern Medical Center, Department of Microbiology, Dallas, Texas2 EDUCATION and TRAINING Post-Doctoral Research Fellow 9/2001-12/2005 PI: Professor Karla Kirkegaard, Ph.D. Stanford University, Department of Microbiology, Stanford, California Graduate Research Assistant 9/1996-8/2001 Ph.D., 6/14/2001, Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan PI: Associate Professor Alice Telesnitsky, Ph.D. Thesis: Factors that affect template switching during M-MuLV reverse transcription Undergraduate Studies 9/1992-5/1996 B.A., Microbiology, cum laude, Miami University, Oxford, Ohio RESEARCH SUPPORT Ongoing Research Support Burroughs Wellcome- Investigators in the Pathogenesis of Infectious Diseases 7/2012-6/2021 Title: How gut microbes enhance enteric virus infectivity Role: PI NIH R01, NIAID R01AI074668 2/2008-2/2023 Title: Enteric virus-microbiota interactions Role: PI Howard Hughes Medical Institute 55108554 11/2016-10/2021 Faculty Scholars Program Title: Enteric virus-microbiota interactions Role: PI NIH T32, NIAID 5T32 AI007520-17 (Norgard) 9/1/2014-8/31/2019 Molecular Microbiology Training Grant This training grant supports a multi-disciplinary Molecular Microbiology Training Program. The program supports 5 pre-doctoral and 2 post-doctoral trainees annually.
    [Show full text]
  • Translational Enhancement of the Poliovirus 5' Noncoding Region
    Proc. Nadl. Acad. Sci. USA Vol. 89, pp. 10272-10276, November 1992 Biochemistry Translational enhancement of the poliovirus 5' noncoding region mediated by virus-encoded polypeptide 2A (tanslational regualon/dlistronlc mRNA/17 RNA ply e res cell me/firefly uferase gene) SIMON J. HAMBIDGE* AND PETER SARNOW*t Departments of *Microbiology and Immunology, and tBiochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver, CO 80262 Communicated by Maxine F. Singer, July 6, 1992 ABSTRACT Genetic and biochemical studies have re- cleavage (7). As a result, eIF-4F is rendered nonfunctional, vealed that the 5' noncodlng region of pollovirus mites and capped host cell mRNAs cannot be translated by a tranation of the viral mRNA by an unusual m nim cap-dependent scanning mechanism (8), while the uncapped involving entry of ribosomes in internal sequences of mRNA viral mRNA can be translated by a cap-independent mech- molecules. We have found that mRNAs bearing the S' non- anism of internal ribosome binding (9). This mechanism coding region ofpoliovirus were transted at an enhced rate involves the binding ofribosomes to RNA sequences, termed in poliovirus-infected cells at a time when trans- the internal ribosome entry site (IRES) (10) or the ribosome lation of cellular mRNAs was not yet inhibited. This btnla- landing pad (9), present in the 5' NCR of the viral RNA. tional enhancement of the polioviral 5' noncodn region was Here, we provide evidence that mRNAs containing the 5' medated by the expression of virus-encoded polypeptde 2A. NCR of poliovirus are translated at an enhanced rate com- This indites that 2A Is a multifunctional protein Involved pared to mRNAs lacking the viral 5' NCR in cells at very directly or indirectly in the activation of viral mRNA trasla- early times after infection with poliovirus.
    [Show full text]
  • Homeotic Gene Antennapedia Mrna Contains 5'-Noncoding Sequences That Confer Translational Initiation by Internal Ribosome Binding
    Downloaded from genesdev.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press Homeotic gene Antennapedia mRNA contains 5'-noncoding sequences that confer translational initiation by internal ribosome binding Soo-Kyung OH, 1 Matthew P. Scott, 2 and Peter Sarnow 1'3 ~Department of Biochemistry, Biophysics and Genetics, 3Department of Microbiology and Immunology, University of Colorado Health Sciences Center, Denver, Colorado 80262 USA; 2Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California 94305-5427 USA The Antennapedia (Antp) homeotic gene of Drosophila melanogaster has two promoters, P1 and P2. The resulting Antp mRNAs contain 1512-nucleotide (P1) and 1727-nucleotide (P2) 5'-noncoding regions, composed of exons A, B, D, and E (PI) or exons C, D, and E (P2), respectively. Multiple AUG codons are present in exons A, B, and C. We have found that 252-nucleotide exon D, common to mRNAs from both transcription units and devoid of AUG codons, can mediate initiation of translation by internal ribosome binding in cultured cells. Many mRNAs in Drosophila contain long 5'-noncoding regions with apparently unused AUG codons, suggesting that internal ribosome binding may be a common mechanism of translational initiation, and possibly its regulation, in Drosoptu'la. [Key Words: Internal ribosome binding; homeotic gene; Antennapedia mRNA; dicistronic mRNA; RNA transfection] Received May 18, 1992; revised version accepted July 7, 1992. The homeotic genes required for segments in Drosophila similarly, exon C contains 15 upstream AUG codons. All melanogaster to have different developmental fates are of these upstream AUG codons are followed by very expressed in some segment primordia but not in others.
    [Show full text]
  • Covalent Bonds Between Protein Anddna FORMATION of PHOSPHOTYROSINE LINKAGE BETWEEN CERTAIN DNA TOPOISOMERASES and DNA*
    THEJOURNAL OF BIOLOGICALCHEMISTRY Vol. 255. No 12, Issue of June 25. pp. 5560-5565. 1980 Printed Ln U.S.A. Covalent Bonds between Protein andDNA FORMATION OF PHOSPHOTYROSINE LINKAGE BETWEEN CERTAIN DNA TOPOISOMERASES AND DNA* (Received for publication, November 27, 1979, and in revised form, March 7, 1980) Yuk-Ching Tse, Karla Kirkegaard, andJames C. Wang From the Department of Biochemistry and Molecular Biology, Haruard Uniuersity, Cambridge, Massachusetts 02138 The cleavageof a DNA phosphodiester bondby Esch- catalytic function. There are, however, a number of other erichia coli DNA topoisomerase I and the simultaneous protein. DNA covalent complexes for which the protein com- covalent linkage of the enzyme to the 5’-phosphoryl ponents themselves havebeen purified in catalytically active group of the DNA at the cleavage site have been re- form, and, therefore, their covalent linking to DNA can be ported previously (Depew, R. E., Liu, L. F., and Wang, studied in some detail. These proteins aregenerally found to J. C. (1978) J. Biol. Chem 253, 511-518; Liu, L. F., and catalyze the breaking and rejoining of DNA backbone bonds. Wang, J. C. (1979) J. Biol. Chem 254,11082-11088). In some cases, the breaking of a DNA internucleotidebond With either E. coli or Micmcoccus luteus DNA topo- is followed in concert by the rejoining of the bond; thus the isomerase I, formation of the covalent complex with overall reaction usually manifests itself by the conversion of 32P-labeled single-stranded DNA, followed by nucleo- one DNA topological isomer (topoisomer) to another. ,The lytic treatment of the complex, yields a 32P-labeled term DNA topoisomerases has been proposed for these en- protein.
    [Show full text]
  • And Vpg-Pupu in Poliovirus-Infected Cells (RNA Replication/Picornavirus) NIGEL M
    Proc. Natl. Acad. Sci. USA Vol. 80, pp. 7452-7455, December 1983 Biochemistry Genome-linked protein VPg of poliovirus is present as free VPg and VPg-pUpU in poliovirus-infected cells (RNA replication/picornavirus) NIGEL M. CRAWFORD AND DAVID BALTIMORE Whitehead Institute for Biomedical Research, Cambridge, MA 02139; and Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Contributed by David Baltimore, September 15, 1983 ABSTRACT VPg is a virus-encoded protein covalently at- line). 32P-Labeled virion RNA was isolated as described (12) from tached to the 5' end of poliovirus virion RNA. We have used an- virions collected by centrifugation during preparation of the tibody prepared against chemically synthesized VPg to detect two cell lysates. Synthetic VPg and coupled VPg-bovine serum al- forms of VPg in infected cells. Both forms were specifically im- bumin were gifts from Margaret Baron (7). 125I-Labeled VPg munoprecipitated from lysates of infected cells labeled with [3H]- was leucine. One appears to be unmodified VPg because it had the prepared by iodinating synthetic VPg on tyrosine with Nam25I same electrophoretic mobility as synthetic VPg. The other had a and Iodo-Beads (Pierce) as recommended by the manufacturer. larger apparent molecular weight than VPg and could be labeled Anti-VPg serum and nonimmune serum from rabbits were in vivo with 32p,. Its structure is VPg-pUpU, the UMP dinucleotide prepared as described (7). Serum was passed through a column being attached to VPg via a phosphodiester bond to tyrosine, the containing DEAE-Affi-Gel Blue overlaid with CM-Affi-Gel Blue third amino acid from the NH2 terminus of VPg.
    [Show full text]