The Spiny Mouse, Acomys Cahirinus Malcolm Maden* and Justin A

Total Page:16

File Type:pdf, Size:1020Kb

The Spiny Mouse, Acomys Cahirinus Malcolm Maden* and Justin A © 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev167718. doi:10.1242/dev.167718 PRIMER Model systems for regeneration: the spiny mouse, Acomys cahirinus Malcolm Maden* and Justin A. Varholick ABSTRACT Voronstova and Liosner, 1960) and perhaps also chinchillas, cows The spiny mouse, Acomys spp., is a recently described model and pigs (Williams-Boyce and Daniel, 1986). It is also known that organism for regeneration studies. For a mammal, it displays several individual mammalian tissues can regenerate, such as surprising powers of regeneration because it does not fibrose (i.e. skeletal muscle after myotoxin administration (Musarò, 2014) and scar) in response to tissue injury as most other mammals, including the liver, which displays prodigious powers of proliferation during humans, do. In this Primer article, we review these regenerative compensatory hypertrophy (Fausto et al., 2012). This compensatory abilities, highlighting the phylogenetic position of the spiny mouse hypertrophy is a process which the lungs can also undergo (Hsia, relative to other rodents. We also briefly describe the Acomys tissues 2017), whereby the tissue remaining after removal of part of the that have been used for regeneration studies and the common organ expands to compensate for the missing part. Many features of their regeneration compared with the typical mammalian mammalian epithelial tissues, such as the epidermis or the response. Finally, we discuss the contribution that Acomys has made intestinal lining, also exhibit continuous replacement, although in understanding the general principles of regeneration and elaborate this is a property of all animals and so is not considered an unusual hypotheses as to why this mammal is successful at regenerating. regenerative process. Admittedly, all of these regenerative abilities observed in mammals are limited compared with those seen in KEY WORDS: Spiny mouse, Acomys, Tissue regeneration, Fibrosis, axolotls (Joven et al., 2019) or zebrafish (Marques et al., 2019), but Scarring this only represents a very narrow sampling of extant mammalian species and there may be some truly regeneration-competent Introduction mammals out there that remain undiscovered. The field of regenerative medicine aims to identify strategies to Spiny mice, Acomys spp., are one such example of a regeneration- either engineer or repair human tissues, organs and body parts that competent mammal, regenerating several tissues of their body to full cannot naturally be replaced when damaged by trauma or disease. functionality after injury – rather than the reduced functionality Who would not want to take a drug to stimulate the proliferation of normally observed after scarring or fibrosis. Here, we provide an cardiomyocytes and recover from a heart attack? Or, stimulate overview of the history and regenerative abilities of spiny mice. We axonal regrowth across a site of contusion in the spinal cord and propose that if fibrosis can be prevented in humans – as it is in spiny recover function of the lower body and extremities? To solve this mice – then we may be able to regenerate a surprising array of problem of inducing regeneration in humans, conventional wisdom tissues. Moreover, we highlight how the study of spiny mice can suggests that we must identify the molecular and cellular signals that allow us to begin to compare regeneration-competent mammals guide regeneration in regeneration-competent organisms, such as with regeneration-incompetent mammals to discover the cellular axolotls and zebrafish, and extrapolate what we learn to induce it in and molecular signals governing regeneration. regeneration-incompetent organisms such as rats and mice, and eventually humans. General background on Acomys But is it true that mammals really are regeneration-incompetent There are 2050 living species of rodents (which are defined by organisms? The general impression would surely be yes, mammals having upper and lower pairs of continually growing incisors) and cannot regenerate, but a deeper look across the remarkably few two thirds of these belong to the family Muroidea. There are likely species that have been investigated reveals some surprises. For 16 subfamilies of Muroidea including the old world rats (Rattus) example, human children and mice can regenerate their digit tips (Illingworth, 1974; Yu et al., 2019); mammalian fetuses can heal skin wounds in a regenerative manner (Yates et al., 2012); male deer can annually regenerate their antlers, which are initially covered in Model systems for regeneration skin or velvet which itself has regenerated (Goss, 1983); young This article is part of a series entitled ‘Model systems for regeneration’. C57BL/6J mice can regenerate hair follicles via wound-induced hair This series of articles aims to highlight key model systems and species that are currently being used to study tissue and organ regeneration. follicle neogenesis following large skin wounds (Ito et al., 2007); Each article provides background information about the phylogenetic the neonatal mouse heart can regenerate until postnatal day 7 position of the species, its life-cycle and habitat, the different organs and (Porrello et al., 2011); and some species can regenerate large holes tissues that regenerate, and the experimental tools and techniques that punched through their ears, including rabbits (Gawriluk et al., 2016; are available for studying these organisms in a regenerative context. Importantly, these articles also give examples of how the study of these models has increased our understanding of regenerative mechanisms Department of Biology & UF Genetics Institute, University of Florida, PO Box more broadly, and how some of the open questions in the field of 118525, Gainesville, FL 32611, USA. regeneration may be answered using these organisms. To see the full collection as it grows, please visit: https://dev.biologists.org/collection/ *Author for correspondence ([email protected]) regeneration_models. M.M., 0000-0001-7178-5309 DEVELOPMENT 1 PRIMER Development (2020) 147, dev167718. doi:10.1242/dev.167718 11 other subfamilies Acomys cahirinus (Gawriluk et al., 2016; Seifert et al., 2012). All Mus three have been shown to regenerate tissue of the ear following a Muroidea Muridae biopsy punch, although only the regeneration of A. cahirinus has Rattus been studied extensively. Thus, we might assume that regeneration Lophiomys Lophiomyinae is a property of the genus. The colonies that are currently maintained in Europe, USA and Meriones Gerbillinae Australia are A. cahirinus, although one colony of Acomys dimidiatus Deomys is maintained in Geneva (Montandon et al., 2014). Because of their relatively long history of use as laboratory animals, there are several Lophuromys Deomyinae papers published on the care, maintenance and management of Acomys colonies, from early days (Strasser, 1968; Young, 1976) up until the present day (Dickinson and Walker, 2007; Haughton et al., 2016; Uranomys Pinheiro et al., 2018). From these latter works it appears that their Fig. 1. Phylogeny and phenotype of Acomys. Phylogenetic position of the lifespan is usually 3-4 years, but can extend to 6 years. genus Acomys among the 15 sub-families of the family Muridae. There are four Spiny mice have a complex social organization and are often genera including Acomys in the sub-family Deomyinae, the closest relatives of housed in groups of up to 20 to permit communal breeding, which are the gerbils. Adapted from Steppan and Schenk, 2017. although keeping three to five females and one male together in a cage allows the parentage of the pups to be determined (Haughton and mice (Mus), which are placed in the subfamily Muridae et al., 2016). Gestation lasts 39 days, considerably longer than in (Steppan and Schenk, 2017). Spiny mice of the genus Acomys are other rodents, and one to four pups (usually two or three) are placed in one of the other subfamilies called Deomyinae produced. The pups are precocial and born with grey fur, open eyes (previously called Acomyinae) along with Rudd’s mouse and unfurled ears, and they are soon mobile and eating solid food. (Uranomys), the Congo forest mouse or link rat (Deomys), and After 6 weeks, the grey coloured pups (Fig. 2) start producing the the brush-furred mouse (Lophuromys) (Steppan and Schenk, 2017) thick spiny hairs – from posterior to anterior, on the dorsum – and as (Fig. 1). The closest relatives to Deomyinae are the gerbils of the a result change their coat colour to that of the adult (Fig. 2). They subfamily Gerbillinae (Chevret et al., 1993; Steppan and Schenk, become sexually mature at 3-4 months of age (Dieterlen, 1961). 2017) from which they separated 17.6-20 million years ago. Females have an 11-day oestrus cycle after which they undergo There are at least five major groups in the genus Acomys: menstruation (Bellofiore and Evans, 2019). Mating does not result subspinosus, spinosissimus, russatus, wilsoni and cahirinus in the formation of a vaginal plug, making identification of the day (Aghová et al., 2019). All species share morphological of fertilization impossible, although later stages of gestation have characteristics of dorsal spine-like hairs, which are golden brown, been identified by ultrasound (Dickinson and Walker, 2007). grey or rusty brown depending on the species. Ventral hairs are Although spiny mice have recently come to prominence because white. Spiny mice are distributed throughout Africa, the eastern of their striking ability to regenerate several organs and
Recommended publications
  • Mammals of Jordan
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order.
    [Show full text]
  • <I>Psammomys Obesus</I>
    Journal of the American Association for Laboratory Animal Science Vol 51, No 6 Copyright 2012 November 2012 by the American Association for Laboratory Animal Science Pages 769–774 Sex-Associated Effects on Hematologic and Serum Chemistry Analytes in Sand Rats (Psammomys obesus) Julie D Kane,1,* Thomas J Steinbach,1 Rodney X Sturdivant,2 and Robert E Burks3 We sought to determine whether sex had a significant effect on the hematologic and serum chemistry analytes in adult sand rats (Psammomys obesus) maintained under normal laboratory conditions. According to the few data available for this species, we hypothesized that levels of hematologic and serum chemistry analytes would not differ significantly between clinically normal male and female sand rats. Data analysis revealed several significant differences in hematologic parameters between male and female sand rats but none for serum biochemistry analytes. The following hematologic parameters were greater in male than in female sand rats: RBC count, hemoglobin, hematocrit, red cell hemoglobin content, and percentage monocytes. Red cell distribution width, hemoglobin distribution width, mean platelet volume, and percentage lymphocytes were greater in female than in male sand rats. The sex of adult sand rats is a source of variation that must be considered in terms of clinical and research data. The data presented here likely will prove useful in the veterinary medical management of sand rat colonies and provide baseline hematologic and serum chemistry analyte information for researchers wishing to use this species. Psammomys obesus, commonly called the sand rat or fat sand Sand rats currently are not raised at any commercial rodent rat, is a diurnal desert animal belonging to the family Muridae breeding farms in the United States.
    [Show full text]
  • The Status and Distribution of Mediterranean Mammals
    THE STATUS AND DISTRIBUTION OF MEDITERRANEAN MAMMALS Compiled by Helen J. Temple and Annabelle Cuttelod AN E AN R R E IT MED The IUCN Red List of Threatened Species™ – Regional Assessment THE STATUS AND DISTRIBUTION OF MEDITERRANEAN MAMMALS Compiled by Helen J. Temple and Annabelle Cuttelod The IUCN Red List of Threatened Species™ – Regional Assessment The designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of IUCN or other participating organizations, concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland and Cambridge, UK Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Red List logo: © 2008 Citation: Temple, H.J. and Cuttelod, A. (Compilers). 2009. The Status and Distribution of Mediterranean Mammals. Gland, Switzerland and Cambridge, UK : IUCN. vii+32pp. ISBN: 978-2-8317-1163-8 Cover design: Cambridge Publishers Cover photo: Iberian lynx Lynx pardinus © Antonio Rivas/P. Ex-situ Lince Ibérico All photographs used in this publication remain the property of the original copyright holder (see individual captions for details).
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Evolutionary Systematics in African Gerbilline Rodents of the Genus Gerbilliscus: Inference from Mitochondrial Genes
    Molecular Phylogenetics and Evolution 42 (2007) 797–806 www.elsevier.com/locate/ympev Evolutionary systematics in African gerbilline rodents of the genus Gerbilliscus: Inference from mitochondrial genes Paolo Colangelo a,¤, Laurent Granjon b,c, Peter J. Taylor d, Marco Corti a a Dipartimento di Biologia Animale e dell’Uomo, Università di Roma “La Sapienza”, Via Borelli 50, 00161 Roma, Italy b Centre de Biologie et Gestion des Populations (UMR 022 IRD), Campus international Agropolis de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France c Muséum National d’Histoire Naturelle, Département Systématique et Evolution, FRE 2695: Origine, structure et évolution de la Biodiversité (Mammifères & Oiseaux), 55 rue BuVon, 75 005 Paris, France d eThekwini Natural Science Museum, P.O. Box 4085, Durban 4001, South Africa Received 23 January 2006; revised 13 July 2006; accepted 3 October 2006 Available online 11 October 2006 Abstract Gerbilliscus has recently been proposed as an endemic African rodent genus distinct from the Asian Tatera. A molecular phylogeny of the genus, including nine species from southern, western and eastern Africa, is presented here based on the analysis of the cytochrome b and 16S mitochondrial genes. With an adequate taxonomic sampling over a wide geographic range, we here provide a clear picture of the phylogenetic relationships between species and species groups in this genus. Three distinct clades were resolved, corresponding to major geographical subdivisions: an eastern clade that possibly diverged Wrst, then a southern and a western clades which appeared later. We suggest two possible hypotheses concerning the dispersal of the genus across Africa, considering also the patterns of karyotypic variation.
    [Show full text]
  • Brown Rat Rattus Norvegicus
    brown rat Rattus norvegicus Kingdom: Animalia Division/Phylum: Chordata Class: Mammalia Order: Rodentia Family: Muridae ILLINOIS STATUS common, nonnative FEATURES The brown rat is large (head-body length seven to 10 inches, tail length five to eight inches) for a rat. It has a salt-and-pepper look with brown, black and gold hairs. There are darker hairs down the middle of the back. The belly fur is gray- or cream-colored. The feet have white fur. The ringed, scaly, one-colored tail is nearly hairless. BEHAVIORS The brown rat may be found statewide in Illinois. It lives in buildings, barns, houses, dumps and other areas associated with humans. This rodent will eat almost anything. It does eat food intended for human use and can contaminate food supplies. It is usually associated with poor sanitary conditions and livestock areas. This rat will carry food to its nest instead of eating it where the food is found. The brown rat is known to spread diseases. This nocturnal mammal is a good climber. It produces some sounds. Mating may occur at any time throughout the year. The average litter size is seven. Young are born helpless but develop rapidly. They are able to live on their own in about one month. Females begin reproducing at the age of about three months. If conditions are favorable, a female may reproduce once per month. The average life span of the brown rat is about one and one-half years. This species was introduced to the United States from Europe by humans. HABITATS Aquatic Habitats none Woodland Habitats none Prairie and Edge Habitats edge © Illinois Department of Natural Resources.
    [Show full text]
  • <I>Acomys Cahirinus</I>
    Journal of the American Association for Laboratory Animal Science Vol 55, No 1 Copyright 2016 January 2016 by the American Association for Laboratory Animal Science Pages 9–17 The Biology and Husbandry of the African Spiny Mouse (Acomys cahirinus) and the Research Uses of a Laboratory Colony Cheryl L Haughton,1,† Thomas R Gawriluk,2,† and Ashley W Seifert2,* African spiny mice (Acomys spp.) are unique precocial rodents that are found in Africa, the Middle East, and southern Asia. They exhibit several interesting life-history characteristics, including precocial development, communal breeding, and a suite of physiologic adaptations to desert life. In addition to these characteristics, African spiny mice are emerging as an important animal model for tissue regeneration research. Furthermore, their important phylogenetic position among murid rodents makes them an interesting model for evolution and development studies. Here we outline the necessary components for maintaining a successful captive breeding colony, including laboratory housing, husbandry, and health monitoring as- pects. We also review past and present studies focused on spiny mouse behavior, reproduction, and disease. Last, we briefly summarize various current biomedical research directions using captive-bred spiny mice. Rodents of the genus Acomys are collectively referred to as Taxonomy and Unique Properties ‘spiny mice’ due to the prominent spiny hairs that emerge Acomys spp. are members of the family Muridae, a taxonomic 57 from their dorsal skin. Acomys takes its name
    [Show full text]
  • Spiny Mice (Acomys) Exhibit Attenuated Hallmarks of Aging And
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083287; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 4 5 6 Title: Spiny mice (Acomys) exhibit attenuated hallmarks of aging and rapid cell turnover after UV 7 exposure in the skin epidermis 8 Authors: Wesley Wong1, Austin Kim1, Ashley W. Seifert2, Malcolm Maden3, and Justin D. Crane1 9 Affiliations: 1Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, 10 MA 02115, 2Department of Biology, University of Kentucky, Lexington, KY 40506, 3UF 11 Genetics Institute & Department of Biology, University of Florida, Gainesville, FL 32611 12 13 Keywords: Spiny mouse, skin, epidermis, UV radiation, aging 14 15 16 17 18 19 20 21 22 23 24 25 26 27 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083287; this version posted May 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 28 Abstract 29 The study of long-lived and regenerative animal models has revealed diverse protective responses 30 to stressors such as aging and tissue injury. Spiny mice (Acomys) are a unique mammalian model 31 of skin regeneration, but their response to other types of physiological skin damage have not been 32 investigated.
    [Show full text]
  • (Acomys Cahirinus) Betsy Peitz Biology Department, Case Western Reserve University, Cleveland, Ohio 44106, U.SA
    The oestrous cycle of the spiny mouse (Acomys cahirinus) Betsy Peitz Biology Department, Case Western Reserve University, Cleveland, Ohio 44106, U.SA. Summary. The oestrous cycle of the spiny mouse (Acomys cahirinus), as determined by vaginal smears, is 11\m=.\1\m=+-\1\m=.\9(s.d.) days (n = 110). The vaginal smears show cell patterns similar to those seen in the rat, but secretion of mucus is greater than in the rat. The average age at vaginal opening is 45 \m=+-\2\m=.\77(s.e.m.) days, but the first litter (sired by litter mates) did not occur until 103 \m=+-\4\m=.\04(s.e.m.) days. The decidual response to uterine trauma indicates that there is an active luteal phase. The ovaries are otherwise histologically similar to those of other murids. Introduction The spiny mouse (Acomys cahirinus) is a desert-dwelling murid rodent found in Egypt, Israel and other areas of the Middle East. They are nocturnal animals with peaks of activity at dawn and dusk (Bodenheimer, 1949). The species has frequently been used for studies of renal physiology because its kidneys are able to concentrate urine to 4-8 M and because it conserves plasma volume during dehydration (Shkolnik & Borut, 1969; Horowitz & Borut, 1970; Borut, Horowitz & Castel, 1972). They have also been used for studies of diabetes and obesity (Strasser, 1968; Hefti & Fluckiger, 1967; Pictet, Orci, Gonet, Rouiller & Renold, 1967; Gonet, Stauffacher, Pictet & Renold, 1965; Cameron, Stauffacher, Orci, Amherdt & Renold, 1972). Most of these studies on diabetes were carried out on colonies derived from one established in Basel (Young, 1976) but diabetes may not be widespread.
    [Show full text]
  • Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale.
    [Show full text]
  • Biosecurity Amendment (Schedules to Act) Regulation 2017 Under the Biosecurity Act 2015
    New South Wales Biosecurity Amendment (Schedules to Act) Regulation 2017 under the Biosecurity Act 2015 His Excellency the Governor, with the advice of the Executive Council, has made the following Regulation under the Biosecurity Act 2015. NIALL BLAIR, MLC Minister for Primary Industries Explanatory note The objects of this Regulation are: (a) to update the lists of pests and diseases of plants, pests and diseases of animals, diseases of aquatic animals, pest marine and freshwater finfish and pest marine invertebrates (set out in Part 1 of Schedule 2 to the Biosecurity Act 2015 (the Act)) that are prohibited matter throughout the State, and (b) to update the description (set out in Part 2 of Schedule 2 to the Act) of the part of the State in which Daktulosphaira vitifoliae (Grapevine phylloxera) is a prohibited matter, and (c) to include (in Schedule 3 to the Act) lists of non-indigenous amphibians, birds, mammals and reptiles in respect of which dealings are prohibited or permitted, and (d) to provide (in Schedule 4 to the Act) that certain dealings with bees and certain non-indigenous animals require biosecurity registration, and (e) to update savings and transitional provisions with respect to existing licences (in Schedule 7 to the Act). This Regulation is made under the Biosecurity Act 2015, including sections 27 (4), 151 (2), 153 (2) and 404 (the general regulation-making power) and clause 1 (1) and (5) of Schedule 7. Published LW 2 June 2017 (2017 No 230) Biosecurity Amendment (Schedules to Act) Regulation 2017 [NSW] Biosecurity Amendment (Schedules to Act) Regulation 2017 under the Biosecurity Act 2015 1 Name of Regulation This Regulation is the Biosecurity Amendment (Schedules to Act) Regulation 2017.
    [Show full text]
  • Repeated Evolution of Carnivory Among Indo-Australian Rodents
    ORIGINAL ARTICLE doi:10.1111/evo.12871 Repeated evolution of carnivory among Indo-Australian rodents Kevin C. Rowe,1,2 Anang S. Achmadi,3 and Jacob A. Esselstyn4,5 1Sciences Department, Museum Victoria, Melbourne, Australia 2E-mail: [email protected] 3Research Center for Biology, Museum Zoologicum Bogoriense, Cibinong, Jawa Barat, Indonesia 4Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge, Louisiana 70803 5Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 Received February 1, 2015 Accepted January 12, 2016 Convergent evolution, often observed in island archipelagos, provides compelling evidence for the importance of natural selection as a generator of species and ecological diversity. The Indo-Australian Archipelago (IAA) is the world’s largest island system and encompasses distinct biogeographic units, including the Asian (Sunda) and Australian (Sahul) continental shelves, which together bracket the oceanic archipelagos of the Philippines and Wallacea. Each of these biogeographic units houses numerous endemic rodents in the family Muridae. Carnivorous murids, that is those that feed on animals, have evolved independently in Sunda, Sulawesi (part of Wallacea), the Philippines, and Sahul, but the number of origins of carnivory among IAA murids is unknown. We conducted a comprehensive phylogenetic analysis of carnivorous murids of the IAA, combined with estimates of ancestral states for broad diet categories (herbivore, omnivore, and carnivore) and geographic ranges. These analyses demonstrate that carnivory evolved independently four times after overwater colonization, including in situ origins on the Philippines, Sulawesi, and Sahul. In each biogeographic unit the origin of carnivory was followed by evolution of more specialized carnivorous ecomorphs such as vermivores, insectivores, and amphibious rats.
    [Show full text]