Computational Chemistry Study of Solvents for Carbon Dioxide Absorption

Total Page:16

File Type:pdf, Size:1020Kb

Computational Chemistry Study of Solvents for Carbon Dioxide Absorption Computational Chemistry Study of Solvents for Carbon Dioxide Absorption Eirik Falck da Silva Doctoral Thesis Norwegian University of Science and Technology Fakultet for Naturvitenskap og Teknologi Institutt for Kjemisk Prosessteknologi Trondheim, August 2005 Contents List of Papers................................................................................................................5 Abstract.........................................................................................................................7 Acknowledgements ......................................................................................................9 1 Introduction........................................................................................................11 1.1 Purpose.................................................................................................... 11 1.2 Global Warming...................................................................................... 12 1.3 Mitigation................................................................................................ 13 1.3.1 Background ..................................................................................... 13 1.3.2 CO2 Capture and Storage ................................................................ 13 2 CO2 Absorption..................................................................................................17 2.1 Introduction............................................................................................. 17 2.2 Solvents................................................................................................... 19 2.3 Challenges............................................................................................... 20 2.4 Current Understanding of the CO2 Absorption Process.......................... 21 3 Computational Chemistry.................................................................................25 3.1 Introduction............................................................................................. 25 3.2 Quantum Mechanics ............................................................................... 26 3.2.1 Introduction..................................................................................... 26 3.2.2 The Born-Oppenheimer Approximation......................................... 28 3.2.3 Hartree-Fock Self-Consistent Field Method................................... 28 3.2.4 Post-HF Methods............................................................................ 28 3.2.5 Density Functional Theory.............................................................. 29 3.2.6 Basis Sets........................................................................................ 30 3.2.7 Basis Set Superposition Error ......................................................... 31 3.2.8 Temperature .................................................................................... 32 3.2.9 Performance .................................................................................... 32 3.3 Molecular Mechanics.............................................................................. 33 3.3.1 Introduction..................................................................................... 33 3.3.2 Force Field Parameterization .......................................................... 35 3.3.3 Atomic Charges...............................................................................36 3.3.4 Polarizable Force Fields.................................................................. 38 3.4 Simulations ............................................................................................. 39 3.4.1 Introduction..................................................................................... 39 3.4.2 Free Energy Perturbations............................................................... 41 3.5 QM/MM.................................................................................................. 43 3.6 Computational Chemistry and Experiment............................................. 43 3.7 Review of Computational Chemistry Work on CO2 Absorption............ 45 4 Modeling of Solvation Energy...........................................................................47 4.1 Introduction............................................................................................. 47 4.2 The liquid state........................................................................................ 48 1 4.3 Statistical Mechanics.............................................................................. 49 4.4 Models to Calculate the Free Energy of Solution................................... 52 4.4.1 Introduction..................................................................................... 52 4.4.2 Equation of State and Lattice Models............................................. 53 4.4.3 Continuum Models.......................................................................... 56 4.4.4 Molecular Simulation...................................................................... 62 4.4.5 RISM and RISM-SCF..................................................................... 63 4.4.6 Supermolecule Approach................................................................ 64 4.4.7 Hybrids of Computational Chemistry approaches.......................... 65 4.4.8 Descriptor Models........................................................................... 66 4.4.9 Other Models...................................................................................67 4.4.10 Hybridization of Gibbs Energy Models and Computational Chemistry Based Models ................................................................................ 68 4.5 Comparison of Methods to Calculate the Free Energy of Solution ........ 69 4.5.1 Methods........................................................................................... 69 4.5.2 The Basicity.................................................................................... 71 4.5.3 Amines ............................................................................................ 72 4.5.4 Results............................................................................................. 73 4.5.5 Conclusion ...................................................................................... 79 5 Reaction Mechanisms and Equilibrium...........................................................81 5.1 Introduction............................................................................................. 81 5.2 Reaction Mechanisms ............................................................................. 81 5.2.1 Introduction..................................................................................... 81 5.2.2 Bicarbonate Formation.................................................................... 82 5.2.3 Carbamate formation....................................................................... 84 5.2.4 Bases ............................................................................................... 87 5.2.5 Alcohol-Group Bonding to CO2 ..................................................... 87 5.2.6 Carbamate as Reaction Intermediate............................................... 88 5.2.7 Molecules with Multiple Amine Functionalities ............................ 89 5.2.8 Shuttle Mechanism.......................................................................... 91 5.2.9 Summary and Conclusion ............................................................... 92 5.3 Determining Equilibrium........................................................................ 94 5.3.1 Equilibrium and Kinetics................................................................ 94 5.3.2 Temperature Dependency of Equilibrium Constants...................... 95 5.3.3 Activity Coefficients....................................................................... 96 5.3.4 Process Energy Consumption ......................................................... 97 5.3.5 Summary ......................................................................................... 98 6 Other Solvent Properties...................................................................................99 6.1 Introduction............................................................................................. 99 6.2 Solubility in Water.................................................................................. 99 6.3 Solvent Degradation.............................................................................. 100 6.4 Corrosion............................................................................................... 101 2 6.5 Foaming ................................................................................................ 102 6.6 Toxicology ............................................................................................ 103 6.7 Cost ....................................................................................................... 103 6.8 Precipitations......................................................................................... 104 7 Present and Potential Solvents........................................................................105 7.1 Introduction........................................................................................... 105 7.2 Solvents in Use..................................................................................... 105 7.2.1 Ethanolamine ................................................................................ 105
Recommended publications
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
    processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi
    [Show full text]
  • Calculation of Effective Interaction Potentials From
    Methodologies of systematic structure-based coarse-graining Alexander Lyubartsev Division of Physical Chemistry Department of Material and Environmental Chemistry Stockholm University E-CAM workshop: State of the art in mesoscale and multiscale modeling Dublin 29-31 May 2017 Outline 1. Multiscale and coarse-grained simulations 2. Systematic structure-based coarse-graining by Inverse Monte Carlo 3. Examples - water and ions - lipid bilayers and lipid assemblies 4. Software - MagiC Example of systematic coarse-graining: DNA in Chromatin: presentation 30 May Computer modeling: from 1st principles to mesoscale Levels of molecular modeling: First-principles Atomistic Meso-scale (Quantum Classical Langevine/ BD, Mechanics) Molecular Dynamics DPD... nuclei electrons atoms coarse-grained biomolecules atoms molecules molecules soft matter 0.1 nm 1.0 nm 10 nm 100 nm 1 000 nm Larger scale more approximations Mesoscale Simulations Length scale: > 10 nm ( nanoscale: 10 - 1000 nm) Atomistic modeling is generally not possible box 10 nm - more than 105 atoms even if doable for 105 - 106 particles - do not forget about time scale! larger size : longer time for equilibration and reliable sampling 105 atoms - time scale should be above 1 ms = 1000 ns Need approximations - coarse-graining Coarse-graining – an example Original size – 2.4Mb Compressed to 24 Kb Levels of coarse- graining Level of coarse-graining can be different. For example, for a DMPC lipid: All-atom model United-atom Coarse-grained Coarse-grained 118 atoms model: 10 sites: 3 sites: 46 united atoms Martini model Cooke model more details - chemical specificity faster computations; larger systems Coarse-graining of solvent: 1) Explicit solvent: 2) Implicit solvent: One or several solvent molecules are No solvent particles but their effect is united in a single site.
    [Show full text]
  • Improved Prediction of Solvation Free Energies by Machine-Learning Polarizable Continuum Solvation Model
    Improved prediction of solvation free energies by machine-learning polarizable continuum solvation model Amin Alibakhshi1,*, Bernd Hartke1 Theoretical Chemistry, Institute for Physical Chemistry, Christian-Albrechts-University, Olshausenstr. 40, 24118 Kiel, Germany Corresponding Author’s email: [email protected] Abstract Theoretical estimation of solvation free energy by continuum solvation models, as a standard approach in computational chemistry, is extensively applied by a broad range of scientific disciplines. Nevertheless, the current widely accepted solvation models are either inaccurate in reproducing experimentally determined solvation free energies or require a number of macroscopic observables which are not always readily available. In the present study, we develop and introduce the Machine- Learning Polarizable Continuum solvation Model (ML-PCM) for a substantial improvement of the predictability of solvation free energy. The performance and reliability of the developed models are validated through a rigorous and demanding validation procedure. The ML-PCM models developed in the present study improve the accuracy of widely accepted continuum solvation models by almost one order of magnitude with almost no additional computational costs. A freely available software is developed and provided for a straightforward implementation of the new approach. Introduction Free energy of solvation is one of the key thermophysical properties in studying thermochemistry in solution, where the majority of real-life chemistry happens.
    [Show full text]
  • FORCE FIELDS for PROTEIN SIMULATIONS by JAY W. PONDER
    FORCE FIELDS FOR PROTEIN SIMULATIONS By JAY W. PONDER* AND DAVIDA. CASEt *Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 51. Louis, Missouri 63110, and tDepartment of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 I. Introduction. ...... .... ... .. ... .... .. .. ........ .. .... .... ........ ........ ..... .... 27 II. Protein Force Fields, 1980 to the Present.............................................. 30 A. The Am.ber Force Fields.............................................................. 30 B. The CHARMM Force Fields ..., ......... 35 C. The OPLS Force Fields............................................................... 38 D. Other Protein Force Fields ....... 39 E. Comparisons Am.ong Protein Force Fields ,... 41 III. Beyond Fixed Atomic Point-Charge Electrostatics.................................... 45 A. Limitations of Fixed Atomic Point-Charges ........ 46 B. Flexible Models for Static Charge Distributions.................................. 48 C. Including Environmental Effects via Polarization................................ 50 D. Consistent Treatment of Electrostatics............................................. 52 E. Current Status of Polarizable Force Fields........................................ 57 IV. Modeling the Solvent Environment .... 62 A. Explicit Water Models ....... 62 B. Continuum Solvent Models.......................................................... 64 C. Molecular Dynamics Simulations with the Generalized Born Model........
    [Show full text]
  • Calculation of Effective Interaction Potentials From
    Systematic Coarse-Graining of Molecular Models by the Inverse Monte Carlo: Theory, Practice and Software Alexander Lyubartsev Division of Physical Chemistry Department of Material and Environmental Chemistry Stockholm University Modeling Soft Matter: Linking Multiple Length and Time Scales Kavli Institute of Theoretical Physics, UCSB, Santa Barbara 4-8 June 2012 Soft Matter Simulations length model method time 1Å electron w.f + ab-initio 100 ps 1 nm nuclei BOMD, CPMD 10 nm atomistic classical MD 100 ns coarse-grained Langevine MD, 100 nm µ more DPD, etc 100 s coarse-grained µ 1 m continuous The problem: Larger scale ⇔ more approximations Coarse-graining – an example Original size - 900K Compressed to 24K Coares-graining: reduction degrees of freedom All-atom model Coarse-grained model Large-scale 118 atoms 10 sites simulations We need to: 1) Design Coarse-Grained mapping: specify the important degrees of freedom 2) For “important” degrees of freedom we need interaction potential Question: what is the interaction potential for the coarse-grained model? Formal solution: N-body mean force potential Original (FG = fine grained system) FG ( ) =θ( ) H r 1, r 2,... ,rn R j r1, ...r n n = 118 j = 1,...,10 Usually, centers of mass of selected molecular fragments Partition function : n =∫∏ (−β ( ))= Z dr i exp H FG r 1, ...,r n i=1 n N =∫∏ ∏ δ( −θ ( )) (−β ( ))= dr i dR j R j j r1, ...rn exp H FG r1, ... ,rn = i1 j 1 N =∫∏ (−β ( )) dR j exp H CG R1, ... , RN j =1 1 where β= k B T n N ( )=−1 ∫∏ ∏ δ( −θ ( )) (− ( )) H CG R1, ..., R N β ln dr i R j
    [Show full text]
  • Density Functional Theory for Protein Transfer Free Energy
    Density Functional Theory for Protein Transfer Free Energy Eric A Mills, and Steven S Plotkin∗ Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T1Z4 Canada E-mail: [email protected] Phone: 1 604-822-8813. Fax: 1 604-822-5324 arXiv:1310.1126v1 [q-bio.BM] 3 Oct 2013 ∗To whom correspondence should be addressed 1 Abstract We cast the problem of protein transfer free energy within the formalism of density func- tional theory (DFT), treating the protein as a source of external potential that acts upon the sol- vent. Solvent excluded volume, solvent-accessible surface area, and temperature-dependence of the transfer free energy all emerge naturally within this formalism, and may be compared with simplified “back of the envelope” models, which are also developed here. Depletion contributions to osmolyte induced stability range from 5-10kBT for typical protein lengths. The general DFT transfer theory developed here may be simplified to reproduce a Langmuir isotherm condensation mechanism on the protein surface in the limits of short-ranged inter- actions, and dilute solute. Extending the equation of state to higher solute densities results in non-monotonic behavior of the free energy driving protein or polymer collapse. Effective inter- action potentials between protein backbone or sidechains and TMAO are obtained, assuming a simple backbone/sidechain 2-bead model for the protein with an effective 6-12 potential with the osmolyte. The transfer free energy dg shows significant entropy: d(dg)=dT ≈ 20kB for a 100 residue protein. The application of DFT to effective solvent forces for use in implicit- solvent molecular dynamics is also developed.
    [Show full text]
  • Mai Muuttunut Pilit Muut Aidi Mini
    MAIMUUTTUNUT US009963689B2 PILIT MUUT AIDI MINI (12 ) United States Patent ( 10 ) Patent No. : US 9 ,963 , 689 B2 Doudna et al. ( 45) Date of Patent: May 8 , 2018 ( 54 ) CASI CRYSTALS AND METHODS OF USE FOREIGN PATENT DOCUMENTS THEREOF WO WO 2013 / 126794 AL 8 / 2013 ( 71 ) Applicant: The Regents of the University of wo WO 2013 / 142578 A19 / 2013 California , Oakland , CA (US ) WO WO 2013 / 176772 A1 11/ 2013 ( 72 ) Inventors : Jennifer A . Doudna , Oakland , CA OTHER PUBLICATIONS (US ) ; Samuel H . Sternberg , Oakland , McPherson , A . Current Approaches to Macromolecular Crystalli CA (US ) ; Martin Jinek , Oakland , CA zation . European Journal of Biochemistry . 1990 . vol . 189 , pp . (US ) ; Fuguo Jiang , Oakland , CA (US ); 1 - 23 . * Emine Kaya , Oakland , CA (US ) ; Kundrot, C . E . Which Strategy for a Protein Crystallization Project ? Cellular Molecular Life Science . 2004 . vol . 61, pp . 525 - 536 . * David W . Taylor, Jr. , Oakland , CA Benevenuti et al. , Crystallization of Soluble Proteins in Vapor (US ) Diffusion for X - ray Crystallography , Nature Protocols , published on - line Jun . 28 , 2007 , 2 ( 7 ) : 1633 - 1651. * ( 73 ) Assignee : THE REGENTS OF THE Cudney R . Protein Crystallization and Dumb Luck . The Rigaku UNIVERSITY OF CALIFORNIA , Journal. 1999 . vol. 16 , No . 1 , pp . 1 - 7 . * Drenth , “ Principles of Protein X - Ray Crystallography ” , 2nd Edi Oakland , CA (US ) tion , 1999 Springer - Verlag New York Inc ., Chapter 1 , p . 1 - 21. * Moon et al . , “ A synergistic approach to protein crystallization : ( * ) Notice : Subject to any disclaimer , the term of this Combination of a fixed -arm carrier with surface entropy reduction ” , patent is extended or adjusted under 35 Protein Science , 2010 , 19 : 901 -913 .
    [Show full text]
  • Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces
    Minerals 2014, 4, 345-387; doi:10.3390/min4020345 OPEN ACCESS minerals ISSN 2075-163X www.mdpi.com/journal/minerals Review Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces Krishnamoorthy Arumugam and Udo Becker * Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Avenue, 2534 C.C. Little, Ann Arbor, MI 48109-1005, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-734-615-6894; Fax: +1-734-763-4690. Received: 11 February 2014; in revised form: 3 April 2014 / Accepted: 13 April 2014 / Published: 24 April 2014 Abstract: Applications of redox processes range over a number of scientific fields. This review article summarizes the theory behind the calculation of redox potentials in solution for species such as organic compounds, inorganic complexes, actinides, battery materials, and mineral surface-bound-species. Different computational approaches to predict and determine redox potentials of electron transitions are discussed along with their respective pros and cons for the prediction of redox potentials. Subsequently, recommendations are made for certain necessary computational settings required for accurate calculation of redox potentials. This article reviews the importance of computational parameters, such as basis sets, density functional theory (DFT) functionals, and relativistic approaches and the role that physicochemical processes play on the shift of redox potentials, such as hydration or spin orbit coupling, and will aid in finding suitable combinations of approaches for different chemical and geochemical applications. Identifying cost-effective and credible computational approaches is essential to benchmark redox potential calculations against experiments.
    [Show full text]
  • M.Dynamix Studies of Solvation, Solubility and Permeability
    5 M.DynaMix Studies of Solvation, Solubility and Permeability Aatto Laaksonen1, Alexander Lyubartsev1 and Francesca Mocci1,2 1Stockholm University, Division of Physical Chemistry, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm 2Università di Cagliari, Dipartimento di Scienze Chimiche Cittadella Universitaria di Monserrato, Monserrato, Cagliari 1Sweden 2Italy 1. Introduction During the last four decades Molecular Dynamics (MD) simulations have developed to a powerful discipline and finally very close to the early vision from early 80’s that it would mature and become a computer laboratory to study molecular systems in conditions similar to that valid in experimental studies using instruments giving information about molecular structure, interactions and dynamics in condensed phases and at interfaces between different phases. Today MD simulations are more or less routinely used by many scientists originally educated and trained towards experimental work which later have found simulations (along with Quantum Chemistry and other Computational methods) as a powerful complement to their experimental studies to obtain molecular insight and thereby interpretation of their results. In this chapter we wish to introduce a powerful methodology to obtain detailed and accurate information about solvation and solubility of different categories of solute molecules and ions in water (and other solvents and phases including mixed solvents) and also about permeability and transport of solutes in different non-aqueous phases. Among the most challenging problems today are still the computations of the free energy and many to it related problems. The methodology used in our studies for free energy calculations is our Expanded Ensemble scheme recently implemented in a general MD simulation package called “M.DynaMix”.
    [Show full text]
  • Comparative Study of Implicit and Explicit Solvation Models for Probing Tryptophan Side Chain Packing in Proteins†
    828 Bull. Korean Chem. Soc. 2012, Vol. 33, No. 3 Changwon Yang and Youngshang Pak http://dx.doi.org/10.5012/bkcs.2012.33.3.828 Comparative Study of Implicit and Explicit Solvation Models for Probing Tryptophan Side Chain Packing in Proteins† Changwon Yang and Youngshang Pak* Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 609-735, Korea *E-mail: [email protected] Received November 10, 2011, Accepted December 29, 2011 We performed replica exchange molecular dynamics (REMD) simulations of the tripzip2 peptide (beta- hairpin) using the GB implicit and TI3P explicit solvation models. By comparing the resulting free energy surfaces of these two solvation model, we found that the GB solvation model produced a distorted free energy map, but the explicit solvation model yielded a reasonable free energy landscape with a precise location of the native structure in its global free energy minimum state. Our result showed that in particular, the GB solvation model failed to describe the tryptophan packing of trpzip2, leading to a distorted free energy landscape. When the GB solvation model is replaced with the explicit solvation model, the distortion of free energy shape disappears with the native-like structure in the lowest free energy minimum state and the experimentally observed tryptophan packing is precisely recovered. This finding indicates that the main source of this problem is due to artifact of the GB solvation model. Therefore, further efforts to refine this model are needed for better predictions of various aromatic side chain packing forms in proteins. Key Words : Replica exchange molecular dynamics simulation, Implicit solvation model, Tryptophan side chain packing, Protein folding Introduction develop a transferable all-atom protein force field with the GBSA model, so that free energy based native structure Developments of efficient simulation strategies in con- predictions of diverse structural motifs become feasible at junction with all-atom force fields have provided an the all-atom resolution.
    [Show full text]
  • Modification of the CHARMM Force Field for DMPC Lipid Bilayer
    Modification of the CHARMM Force Field for DMPC Lipid Bilayer CARL-JOHAN HÖGBERG,1 ALEXEI M. NIKITIN,1,2 ALEXANDER P. LYUBARTSEV1 1Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden 2Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia Received 23 August 2007; Revised 8 February 2008; Accepted 10 February 2008 DOI 10.1002/jcc.20974 Published online 29 May 2008 in Wiley InterScience (www.interscience.wiley.com). Abstract: The CHARMM force field for DMPC lipids was modified in order to improve agreement with experiment for a number of important properties of hydrated lipid bilayer. The modification consists in introduction of a scaling factor 0.83 for 1–4 electrostatic interactions (between atoms separated by three covalent bonds), which provides correct transgauche ratio in the alkane tails, and recalculation of the headgroup charges on the basis of HF/6-311(d,p) ab-initio computations. Both rigid TIP3P and flexible SPC water models were used with the new lipid model, showing similar results. The new model in a 75 ns simulation has shown a correct value of the area per lipid at zero surface tension, as well as good agreement with the experiment for the electron density, structure factor, and order parameters, including those in the headgroup part of lipids. © 2008 Wiley Periodicals, Inc. J Comput Chem 29: 2359–2369, 2008 Key words: molecular dynamics; lipid bilayers; force field; DMPC; hydration Introduction to be necessary in order to address such
    [Show full text]
  • Biomolecularelectrostaticsandsol
    Quarterly Reviews of Biophysics 45, 4 (2012), pp. 427–491. f Cambridge University Press 2012 427 doi:10.1017/S003358351200011X Printed in the United States of America Biomolecular electrostatics and solvation: a computational perspective Pengyu Ren1, Jaehun Chun2, Dennis G. Thomas2, Michael J. Schnieders1, Marcelo Marucho3, Jiajing Zhang1 and Nathan A. Baker2* 1 Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA 2 Pacific Northwest National Laboratory, Richland, WA 99352, USA 3 Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249, USA Abstract. An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view toward describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g. solvent structure, polarization, ion binding, and non-polar behavior) in order to provide a background to understand the different types of solvation models. 1.
    [Show full text]