The Astrophysical Journal, 782:31 (20pp), 2014 February 10 doi:10.1088/0004-637X/782/1/31 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TERRESTRIAL PLANET FORMATION IN A PROTOPLANETARY DISK WITH A LOCAL MASS DEPLETION: A SUCCESSFUL SCENARIO FOR THE FORMATION OF MARS A. Izidoro1,2,3, N. Haghighipour4,5,O.C.Winter1, and M. Tsuchida6 1 UNESP, Univ. Estadual Paulista - Grupo de Dinamicaˆ Orbital & Planetologia, Guaratingueta,´ CEP 12.516-410, Sao˜ Paulo, Brazil;
[email protected] 2 Capes Foundation, Ministry of Education of Brazil, Bras´ılia/DF 70040-020, Brazil 3 University of Nice-Sophia Antipolis, CNRS, Observatoire de la Coteˆ d’Azur, Laboratoire Lagrange, BP 4229, F-06304 Nice Cedex 4, France 4 Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, Honolulu, HI 96822, USA;
[email protected] 5 Institute for Astronomy and Astrophysics, University of Tubingen,¨ D-72076 Tubingen,¨ Germany 6 UNESP, Univ. Estadual Paulista, DCCE-IBILCE, Sao˜ Jose´ do Rio Preto, CEP 15.054-000, Sao˜ Paulo, Brazil Received 2012 August 1; accepted 2013 December 14; published 2014 January 23 ABSTRACT Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars’ semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location.