Dynamical Evolution of Planetary Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Constructing the Secular Architecture of the Solar System I: the Giant Planets
Astronomy & Astrophysics manuscript no. secular c ESO 2018 May 29, 2018 Constructing the secular architecture of the solar system I: The giant planets A. Morbidelli1, R. Brasser1, K. Tsiganis2, R. Gomes3, and H. F. Levison4 1 Dep. Cassiopee, University of Nice - Sophia Antipolis, CNRS, Observatoire de la Cˆote d’Azur; Nice, France 2 Department of Physics, Aristotle University of Thessaloniki; Thessaloniki, Greece 3 Observat´orio Nacional; Rio de Janeiro, RJ, Brasil 4 Southwest Research Institute; Boulder, CO, USA submitted: 13 July 2009; accepted: 31 August 2009 ABSTRACT Using numerical simulations, we show that smooth migration of the giant planets through a planetesimal disk leads to an orbital architecture that is inconsistent with the current one: the resulting eccentricities and inclinations of their orbits are too small. The crossing of mutual mean motion resonances by the planets would excite their orbital eccentricities but not their orbital inclinations. Moreover, the amplitudes of the eigenmodes characterising the current secular evolution of the eccentricities of Jupiter and Saturn would not be reproduced correctly; only one eigenmode is excited by resonance-crossing. We show that, at the very least, encounters between Saturn and one of the ice giants (Uranus or Neptune) need to have occurred, in order to reproduce the current secular properties of the giant planets, in particular the amplitude of the two strongest eigenmodes in the eccentricities of Jupiter and Saturn. Key words. Solar System: formation 1. Introduction Snellgrove (2001). The top panel shows the evolution of the semi major axes, where Saturn’ semi-major axis is depicted The formation and evolution of the solar system is a longstand- by the upper curve and that of Jupiter is the lower trajectory. -
Setting the Stage: Planet Formation and Volatile Delivery
Noname manuscript No. (will be inserted by the editor) Setting the Stage: Planet formation and Volatile Delivery Julia Venturini1 · Maria Paula Ronco2;3 · Octavio Miguel Guilera4;2;3 Received: date / Accepted: date Abstract The diversity in mass and composition of planetary atmospheres stems from the different building blocks present in protoplanetary discs and from the different physical and chemical processes that these experience during the planetary assembly and evolution. This review aims to summarise, in a nutshell, the key concepts and processes operating during planet formation, with a focus on the delivery of volatiles to the inner regions of the planetary system. 1 Protoplanetary discs: the birthplaces of planets Planets are formed as a byproduct of star formation. In star forming regions like the Orion Nebula or the Taurus Molecular Cloud, many discs are observed around young stars (Isella et al, 2009; Andrews et al, 2010, 2018a; Cieza et al, 2019). Discs form around new born stars as a natural consequence of the collapse of the molecular cloud, to conserve angular momentum. As in the interstellar medium, it is generally assumed that they contain typically 1% of their mass in the form of rocky or icy grains, known as dust; and 99% in the form of gas, which is basically H2 and He (see, e.g., Armitage, 2010). However, the dust-to-gas ratios are usually higher in discs (Ansdell et al, 2016). There is strong observational evidence supporting the fact that planets form within those discs (Bae et al, 2017; Dong et al, 2018; Teague et al, 2018; Pérez et al, 2019), which are accordingly called protoplanetary discs. -
Trans-Neptunian Objects a Brief History, Dynamical Structure, and Characteristics of Its Inhabitants
Trans-Neptunian Objects A Brief history, Dynamical Structure, and Characteristics of its Inhabitants John Stansberry Space Telescope Science Institute IAC Winter School 2016 IAC Winter School 2016 -- Kuiper Belt Overview -- J. Stansberry 1 The Solar System beyond Neptune: History • 1930: Pluto discovered – Photographic survey for Planet X • Directed by Percival Lowell (Lowell Observatory, Flagstaff, Arizona) • Efforts from 1905 – 1929 were fruitless • discovered by Clyde Tombaugh, Feb. 1930 (33 cm refractor) – Survey continued into 1943 • Kuiper, or Edgeworth-Kuiper, Belt? – 1950’s: Pluto represented (K.E.), or had scattered (G.K.) a primordial, population of small bodies – thus KBOs or EKBOs – J. Fernandez (1980, MNRAS 192) did pretty clearly predict something similar to the trans-Neptunian belt of objects – Trans-Neptunian Objects (TNOs), trans-Neptunian region best? – See http://www2.ess.ucla.edu/~jewitt/kb/gerard.html IAC Winter School 2016 -- Kuiper Belt Overview -- J. Stansberry 2 The Solar System beyond Neptune: History • 1978: Pluto’s moon, Charon, discovered – Photographic astrometry survey • 61” (155 cm) reflector • James Christy (Naval Observatory, Flagstaff) – Technologically, discovery was possible decades earlier • Saturation of Pluto images masked the presence of Charon • 1988: Discovery of Pluto’s atmosphere – Stellar occultation • Kuiper airborne observatory (KAO: 90 cm) + 7 sites • Measured atmospheric refractivity vs. height • Spectroscopy suggested N2 would dominate P(z), T(z) • 1992: Pluto’s orbit explained • Outward migration by Neptune results in capture into 3:2 resonance • Pluto’s inclination implies Neptune migrated outward ~5 AU IAC Winter School 2016 -- Kuiper Belt Overview -- J. Stansberry 3 The Solar System beyond Neptune: History • 1992: Discovery of 2nd TNO • 1976 – 92: Multiple dedicated surveys for small (mV > 20) TNOs • Fall 1992: Jewitt and Luu discover 1992 QB1 – Orbit confirmed as ~circular, trans-Neptunian in 1993 • 1993 – 4: 5 more TNOs discovered • c. -
Arxiv:2012.11628V3 [Astro-Ph.EP] 26 Jan 2021
manuscript submitted to JGR: Planets The Fundamental Connections Between the Solar System and Exoplanetary Science Stephen R. Kane1, Giada N. Arney2, Paul K. Byrne3, Paul A. Dalba1∗, Steven J. Desch4, Jonti Horner5, Noam R. Izenberg6, Kathleen E. Mandt6, Victoria S. Meadows7, Lynnae C. Quick8 1Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA 2Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 3Planetary Research Group, Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA 4School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA 5Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD 4350, Australia 6Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA 7Department of Astronomy, University of Washington, Seattle, WA 98195, USA 8Planetary Geology, Geophysics and Geochemistry Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Key Points: • Exoplanetary science is rapidly expanding towards characterization of atmospheres and interiors. • Planetary science has similarly undergone rapid expansion of understanding plan- etary processes and evolution. • Effective studies of exoplanets require models and in-situ data derived from plan- etary science observations and exploration. arXiv:2012.11628v4 [astro-ph.EP] 8 Aug 2021 ∗NSF Astronomy and Astrophysics Postdoctoral Fellow Corresponding author: Stephen R. Kane, [email protected] {1{ manuscript submitted to JGR: Planets Abstract Over the past several decades, thousands of planets have been discovered outside of our Solar System. These planets exhibit enormous diversity, and their large numbers provide a statistical opportunity to place our Solar System within the broader context of planetary structure, atmospheres, architectures, formation, and evolution. -
1 on the Origin of the Pluto System Robin M. Canup Southwest Research Institute Kaitlin M. Kratter University of Arizona Marc Ne
On the Origin of the Pluto System Robin M. Canup Southwest Research Institute Kaitlin M. Kratter University of Arizona Marc Neveu NASA Goddard Space Flight Center / University of Maryland The goal of this chapter is to review hypotheses for the origin of the Pluto system in light of observational constraints that have been considerably refined over the 85-year interval between the discovery of Pluto and its exploration by spacecraft. We focus on the giant impact hypothesis currently understood as the likeliest origin for the Pluto-Charon binary, and devote particular attention to new models of planet formation and migration in the outer Solar System. We discuss the origins conundrum posed by the system’s four small moons. We also elaborate on implications of these scenarios for the dynamical environment of the early transneptunian disk, the likelihood of finding a Pluto collisional family, and the origin of other binary systems in the Kuiper belt. Finally, we highlight outstanding open issues regarding the origin of the Pluto system and suggest areas of future progress. 1. INTRODUCTION For six decades following its discovery, Pluto was the only known Sun-orbiting world in the dynamical vicinity of Neptune. An early origin concept postulated that Neptune originally had two large moons – Pluto and Neptune’s current moon, Triton – and that a dynamical event had both reversed the sense of Triton’s orbit relative to Neptune’s rotation and ejected Pluto onto its current heliocentric orbit (Lyttleton, 1936). This scenario remained in contention following the discovery of Charon, as it was then established that Pluto’s mass was similar to that of a large giant planet moon (Christy and Harrington, 1978). -
Evidence from the Asteroid Belt for a Violent Past Evolution of Jupiter's Orbit
Evidence from the asteroid belt for a violent past evolution of Jupiter's orbit Alessandro Morbidelli Departement Cassiop´ee: Universite de Nice - Sophia Antipolis, Observatoire de la Cˆote d’Azur, CNRS 4, 06304 Nice, France Ramon Brasser Departement Cassiop´ee: Universite de Nice - Sophia Antipolis, Observatoire de la Cˆote d’Azur, CNRS 4, 06304 Nice, France Rodney Gomes Observatrio Nacional, Rua General Jos Cristino 77, CEP 20921-400, Rio de Janeiro, RJ, Brazil Harold F. Levison Southwest Research Institute, 1050 Walnut St, Suite 300, Boulder, CO 80302, USA and Kleomenis Tsiganis Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece Received by AJ, on may 24, 2010; accepted by AJ, on Sept 8, 2010 arXiv:1009.1521v1 [astro-ph.EP] 8 Sep 2010 –2– ABSTRACT We use the current orbital structure of large (> 50 km) asteroids in the main as- teroid belt to constrain the evolution of the giant planets when they migrated from their primordial orbits to their current ones. Minton & Malhotra (2009) showed that the orbital distribution of large asteroids in the main belt can be reproduced by an exponentially-decaying migration of the giant planets on a time scale of τ ∼ 0.5 My. However, self-consistent numerical simulations show that the planetesimal-driven mi- gration of the giant planets is inconsistent with an exponential change in their semi major axes on such a short time scale (Hahn & Malhotra, 1999). In fact, the typical time scale is τ ≥ 5 My. When giant planet migration on this time scale is appliedto the asteroid belt, the resulting orbital distribution is incompatible with the observed one. -
Capture of Irregular Satellites During Planetary Encounters
The Astronomical Journal, 133:1962Y1976, 2007 May # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. CAPTURE OF IRREGULAR SATELLITES DURING PLANETARY ENCOUNTERS David Nesvorny´,1 David Vokrouhlicky´,1,2 and Alessandro Morbidelli3 Received 2006 November 23; accepted 2007 January 17 ABSTRACT More than 90 irregular moons of the Jovian planets have recently been discovered. These moons are an enig- matic part of the solar system inventory. Their origin, which is intimately linked with the origin of the planets them- selves, has yet to be adequately explained. Here we investigate the possibility that the irregular moons were captured from the circumsolar planetesimal disk by three-body gravitational reactions. These reactions may have been a fre- quent occurrence during the time when the outer planets migrated within the planetesimal disk. We propose a new model for the origin of irregular satellites in which these objects are captured from the planetesimal disk during en- counters between the outer planets themselves in the model for outer planet migration advocated by Tsiganis and collaborators. Through a series of numerical simulations we show that nearby planetesimals can be deflected into planet-bound orbits during close encounters between planets, and that the overall efficiency of this capture process is large enough to produce populations of observed irregular satellites at Saturn, Uranus, and Neptune. The orbits of captured objects are broadly similar to those of known distant satellites. Jupiter, which typically does not have close encounters with other planets in the model of Tsiganis and coworkers, must have acquired its irregular satellites by a different mechanism. -
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C. -
Planetary Migration: What Does It Mean for Planet Formation?
ANRV374-EA37-14 ARI 23 March 2009 12:18 Planetary Migration: What Does It Mean for Planet Formation? John E. Chambers Carnegie Institution for Science, Washington, DC 20015; email: [email protected] Annu. Rev. Earth Planet. Sci. 2009. 37:321–44 Key Words First published online as a Review in Advance on extrasolar planet, protoplanetary disk, accretion, hot Jupiter, resonance January 22, 2009 The Annual Review of Earth and Planetary Sciences is Abstract online at earth.annualreviews.org by University of British Columbia Library on 12/29/09. For personal use only. Gravitational interactions between a planet and its protoplanetary disk This article’s doi: change the planet’s orbit, causing the planet to migrate toward or away 10.1146/annurev.earth.031208.100122 from its star. Migration rates are poorly constrained for low-mass bodies Annu. Rev. Earth Planet. Sci. 2009.37:321-344. Downloaded from arjournals.annualreviews.org Copyright c 2009 by Annual Reviews. ! but reasonably well understood for giant planets. In both cases, significant All rights reserved migration will affect the details and efficiency of planet formation. If the disk 0084-6597/09/0530-0321$20.00 is turbulent, density fluctuations will excite orbital eccentricities and cause orbits to undergo a random walk. Both processes are probably detrimental to planet formation. Planets that form early in the lifetime of a disk are likely to be lost, whereas late-forming planets will survive and may undergo little migration. Migration can explain the observed orbits and masses of extra- solar planets if giants form at different times and over a range of distances. -
Download This Article in PDF Format
A&A 564, A44 (2014) Astronomy DOI: 10.1051/0004-6361/201322041 & c ESO 2014 Astrophysics Dynamical formation of detached trans-Neptunian objects close to the 2:5 and 1:3 mean motion resonances with Neptune P. I. O. Brasil1,R.S.Gomes2, and J. S. Soares2 1 Instituto Nacional de Pesquisas Espaciais (INPE), ETE/DMC, Av. dos Astronautas, 1758 São José dos Campos, Brazil e-mail: [email protected] 2 Observatório Nacional (ON), GPA, Rua General José Cristino, 77, 20921-400 Rio de Janeiro, Brazil e-mail: [email protected] Received 7 June 2013 / Accepted 29 January 2014 ABSTRACT Aims. It is widely accepted that the past dynamical history of the solar system included a scattering of planetesimals from a primordial disk by the major planets. The primordial scattered population is likely the origin of the current scaterring disk and possibly the detached objects. In particular, an important argument has been presented for the case of 2004XR190 as having an origin in the primordial scattered disk through a mechanism including the 3:8 mean motion resonance (MMR) with Neptune. Here we aim at developing a similar study for the cases of the 1:3 and 2:5 resonances that are stronger than the 3:8 resonance. Methods. Through a semi-analytic approach of the Kozai resonance inside an MMR, we show phase diagrams (e,ω) that suggest the possibility of a scattered particle, after being captured in an MMR with Neptune, to become a detached object. We ran several numerical integrations with thousands of particles perturbed by the four major planets, and there are cases with and without Neptune’s residual migration. -
Scientific Goals for Exploration of the Outer Solar System
Scientific Goals for Exploration of the Outer Solar System Explore Outer Planet Systems and Ocean Worlds OPAG Report v. 28 August 2019 This is a living document and new revisions will be posted with the appropriate date stamp. Outline August 2019 Letter of Response to Dr. Glaze Request for Pre Decadal Big Questions............i, ii EXECUTIVE SUMMARY ......................................................................................................... 3 1.0 INTRODUCTION ................................................................................................................ 4 1.1 The Outer Solar System in Vision and Voyages ................................................................ 5 1.2 New Emphasis since the Decadal Survey: Exploring Ocean Worlds .................................. 8 2.0 GIANT PLANETS ............................................................................................................... 9 2.1 Jupiter and Saturn ........................................................................................................... 11 2.2 Uranus and Neptune ……………………………………………………………………… 15 3.0 GIANT PLANET MAGNETOSPHERES ........................................................................... 18 4.0 GIANT PLANET RING SYSTEMS ................................................................................... 22 5.0 GIANT PLANETS’ MOONS ............................................................................................. 25 5.1 Pristine/Primitive (Less Evolved?) Satellites’ Objectives ............................................... -
The Terrestrial Planets R
A&A 507, 1053–1065 (2009) Astronomy DOI: 10.1051/0004-6361/200912878 & c ESO 2009 Astrophysics Constructing the secular architecture of the solar system II: the terrestrial planets R. Brasser1, A. Morbidelli1,R.Gomes2,K.Tsiganis3, and H. F. Levison4 1 Dep. Cassiopee, University of Nice – Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, 06304 Nice, France e-mail: [email protected] 2 Observatório Nacional, Rio de Janeiro, RJ, Brazil 3 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece 4 Southwest Research Institute, Boulder, CO, USA Received 13 July 2009 / Accepted 31 August 2009 ABSTRACT We investigate the dynamical evolution of the terrestrial planets during the planetesimal-driven migration of the giant planets. A basic assumption of this work is that giant planet migration occurred after the completion of terrestrial planet formation, such as in the models that link the former to the origin of the late heavy bombardment. The divergent migration of Jupiter and Saturn causes the g5 eigenfrequency to cross resonances of the form g5 = gk with k ranging from 1 to 4. Consequently these secular resonances cause large-amplitude responses in the eccentricities of the terrestrial planets if the amplitude of the g5 mode in Jupiter is similar to the current one. We show that the resonances g5 = g4 and g5 = g3 do not pose a problem if Jupiter and Saturn have a fast approach and departure from their mutual 2:1 mean motion resonance. On the other hand, the resonance crossings g5 = g2 and g5 = g1 aremoreofa concern: they tend to yield a terrestrial system incompatible with the current one, with amplitudes of the g1 and g2 modes that are too large.