Quick viewing(Text Mode)

Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment Volume 1: Main Report

Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment Volume 1: Main Report

Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment Volume 1: Main Report

Filed with the Nation Government

March 31st, 2021

KWREC KUUJJUARAAPIK HYBRID POWER PLANT PROJECT

Environmental and Social Impact Assessment: Volume 1

PESCA Environment March 31, 2021

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1

□ PRODUCTION TEAM

KWREC

President M. Matthew Mukash, B. A. Vice-President M. Anthony G Ittoshat Project Director M. Jean Schiettekatte, B. Eng. Renewable Energy Advisor M. Jimmy Royer, P. Eng. rtr't Consultation Advisor M. Sam W. Gull

TCI Group

Vice-President Renewable Energy Mme Anne Sabatié, P. Eng. and Special Projects

PESCA Environment

original version signed by Project Director Marjolaine Castonguay, biologist, M. Sc.

original version signed by Project Manager Matthieu Féret, biologist, M. Sc.

Research and Writing Josée-Anne Beauchesne, biologist François Allard, forest engineer Marie-Flore Castonguay, town planner Nathalie Leblanc, biologist, M. Sc.

Mapping and Modeling Chantale Landry, geomatics technician Jean-Pierre Castonguay, geographer and geomatician Daniel Audet, IT technician

Linguistic Revision (French version) Julie Côté, editor, B. A.

Collaboration in baseline studies

Étienne Leroux, engineer, Yves R. Hamel and associates inc.

Translated by YAB Management from the original version in French.

PESCA Environment i March 31, 2021

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1

□ TABLE OF CONTENT

1 CONTEXT ...... 1-1 1.1 Project developer ...... 1-1 1.1.1 Nimschu Iskudow Inc...... 1-1 1.1.2 Sakkuq Landholding Corporation of Kuujjuaraapik ...... 1-2 1.2 Other partners ...... 1-2 1.2.1 Ikayu Energy ...... 1-2 1.2.2 TCI Group ...... 1-3 1.3 Financial guarantees ...... 1-3 1.4 Consultant responsible for the environmental and social impact assessment ...... 1-3 1.5 Energy transition and renewable energies ...... 1-4 1.6 Rationale for the project ...... 1-5 1.7 Brief description of the project ...... 1-7 1.8 Alternatives to the project ...... 1-9 1.9 Development and related projects ...... 1-9

2 DESCRIPTION OF THE ENVIRONMENT ...... 2-1 2.1 Delimitation of the study area ...... 2-1 2.2 Description of the components of the physical environment...... 2-1 2.2.1 Soils ...... 2-1 2.2.1.1 Nature of soils and surface deposits ...... 2-1 2.2.1.2 Potentially contaminated areas ...... 2-2 2.2.2 Hydrography ...... 2-2 2.2.2.1 Surface water ...... 2-2 2.2.2.2 Groundwater ...... 2-3 2.2.2.3 Wetlands ...... 2-3 2.3 Description of the components of the biological environment...... 2-4 2.3.1 Plants and Vegetation ...... 2-4 2.3.1.1 Vegetation ...... 2-4 2.3.1.2 Floristic species with special status ...... 2-7 2.3.2 Wildlife species ...... 2-7 2.3.2.1 Avian fauna ...... 2-7 2.3.2.2 Bats ...... 2-9 2.3.2.3 Terrestrial mammals ...... 2-10 2.3.2.4 Fish ...... 2-15 2.3.2.5 Amphibians and reptiles ...... 2-16 2.3.2.6 Wildlife species with special status ...... 2-18 2.3.2.7 Wildlife habitats ...... 2-18 2.4 Description of the components of the human environment ...... 2-18 2.4.1 Socioeconomic context ...... 2-19 2.4.1.1 Cree community of Whapmagoostui ...... 2-19

PESCA Environment iii March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1

2.4.1.2 community of Kuujjuaraapik ...... 2-21 2.4.2 Land use ...... 2-22 2.4.2.1 Land tenure ...... 2-22 2.4.2.2 Recreational activities ...... 2-22 2.4.2.3 Spiritual and cultural activities ...... 2-23 2.4.2.4 Mineral ressource exploitation activities ...... 2-23 2.4.3 Public utility infrastuctures ...... 2-23 2.4.3.1 Air transport infrastuctures ...... 2-23 2.4.3.2 Maritime transport infrastuctures ...... 2-24 2.4.3.3 Power transmission lines ...... 2-24 2.4.4 Telecommunication systems ...... 2-24 2.4.4.1 Diffusion systems ...... 2-24 2.4.4.2 Navigational aid systems ...... 2-24 2.4.4.3 Mobile systems ...... 2-24 2.4.4.4 Microwave links ...... 2-25 2.4.4.5 Radar systems ...... 2-25 2.4.4.6 Seismological systems ...... 2-25 2.4.5 Soundscape ...... 2-25 2.4.5.1 Methodological approach ...... 2-25 2.4.5.2 Ambient noise level ...... 2-26 2.4.6 Landscape ...... 2-27 2.4.6.1 Landscape units ...... 2-28 2.4.6.2 Points of interest ...... 2-30 2.4.7 Archeological and cultural heritage ...... 2-31 2.4.7.1 Archeological heritage ...... 2-31 2.4.7.2 Cultural heritage ...... 2-31

3 PROJECT DESCRIPTION ...... 3-1 3.1 Variants ...... 3-1 3.2 Site selection ...... 3-2 3.3 Configuration parameters ...... 3-2 3.4 Implementation Phases ...... 3-3 3.4.1 Development phase ...... 3-3 3.4.2 Construction phase ...... 3-4 3.4.2.1 Vegetation clearing and site preparation ...... 3-4 3.4.2.2 Construction and improvement of roads and work areas ...... 3-5 3.4.2.3 Transport and traffic ...... 3-6 3.4.2.4 Equipment installation ...... 3-7 3.4.2.5 Restauration of work areas ...... 3-10 3.4.3 Operation phase ...... 3-10 3.4.3.1 Presence and operation of equipment ...... 3-10 3.4.3.2 Equipment and road maintenance ...... 3-10 3.4.4 Dismantling phase ...... 3-11 3.4.4.1 Dismantling of equipment ...... 3-11 3.4.4.2 Transport and traffic ...... 3-11 3.4.4.3 Restauration of work areas ...... 3-11

PESCA Environment iv March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1

3.5 Timeline ...... 3-11 3.6 Labor ...... 3-12 3.7 Project cost ...... 3-12

4 PUBLIC CONSULTATION PROCESS ...... 4-1 4.1 Approach ...... 4-1 4.2 Communication tools ...... 4-1 4.3 Approaches to Cree and Inuit communities ...... 4-2 4.4 Summary of stakes and interests of stakeholders in the field ...... 4-2 4.5 Main modifications to the project following public consultations ...... 4-2

5 IMPACT EVALUATION METHODOLOGY ...... 5-1 5.1 General methodology ...... 5-1 5.1.1 Step i : Assessment of potential interrelations ...... 5-3 5.1.1.1 Insignificant interrelation ...... 5-3 5.1.1.2 Significant interrelation ...... 5-3 5.1.2 Step ii : Assessment of the significance of the impact ...... 5-3 5.1.2.1 Value of the component ...... 5-4 5.1.2.2 Intensity of impact ...... 5-4 5.1.2.3 Magnitude of the impact ...... 5-4 5.1.2.4 Extent of the impact ...... 5-5 5.1.2.5 Duration of impact ...... 5-5 5.1.2.6 Frequency of the impact ...... 5-5 5.1.2.7 Importance of the impact ...... 5-5 5.1.3 Step iii : Assessment of residual impact ...... 5-7 5.2 Methods for assessing impacts on the landscape ...... 5-7 5.2.1 Assessment by lanscape units ...... 5-8 5.2.1.1 Step i : Delimitation and description of landscape units ...... 5-8 5.2.1.2 Step ii : Resistance assessment of landscape units ...... 5-8 5.2.1.3 Step iii : Assessment of the degree of perception of the equipment and infrastucture of the WKHPPP ...... 5-10 5.2.1.4 Step iv : Assessment of the importance of the visual impact on landscape units ...... 5-11 5.2.2 Global analysis ...... 5-11

6 ANALYSIS OF IMPACTS AND MITIGATION AND COMPENSATION MEASURES ...... 6-1 6.1 Assessment of potential interrelations between planned activities and environmental components ...... 6-1 6.1.1 Significant interrelations ...... 6-1 6.1.2 Insignificant interrelations ...... 6-1 6.1.3 No interrelation ...... 6-1 6.2 Value of the components of the environment ...... 6-5 6.3 Current measures ...... 6-6 6.3.1 Physical environment ...... 6-6

PESCA Environment v March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1

6.3.2 Biological environment ...... 6-6 6.3.3 Human environment...... 6-7 6.4 Impact on the physical environment ...... 6-7 6.4.1 Air ...... 6-7 6.4.1.1 Construction and dismantling phases ...... 6-7 6.4.1.2 Operation phase ...... 6-8 6.4.2 Soils ...... 6-9 6.4.3 Surface water ...... 6-9 6.4.4 Wetlands ...... 6-10 6.5 Impact on the biological environment ...... 6-11 6.5.1 Avian fauna ...... 6-11 6.5.1.1 Construction phase ...... 6-11 6.5.1.2 Operation phase ...... 6-12 6.5.2 Terrestrial mammals ...... 6-13 6.5.2.1 Construction phase ...... 6-13 6.5.2.2 Operation phase ...... 6-14 6.5.3 Fish ...... 6-15 6.5.4 Amphibians and reptiles ...... 6-15 6.5.5 Special-status wildlife species ...... 6-16 6.6 Impact on the human environment ...... 6-17 6.6.1 Socioeconomic context ...... 6-17 6.6.1.1 Construction phase ...... 6-17 6.6.1.2 Operation phase ...... 6-18 6.6.1.3 Dismantling phase ...... 6-19 6.6.2 Land use ...... 6-19 6.6.3 Soundscape ...... 6-21 6.6.3.1 Construction and dismantling phases ...... 6-21 6.6.3.2 Operation phase ...... 6-21 6.6.4 Landscape ...... 6-23 6.6.4.1 Resistance assessment of landscape units ...... 6-24 6.6.4.2 Degree of perception of infrastucture ...... 6-24 6.6.4.3 Assessment of visual impacts ...... 6-25 6.6.4.4 Mitigation measures ...... 6-26 6.6.4.5 Overall assessment of the visual impact of the project ...... 6-27 6.6.5 Archeological and cultural heritage ...... 6-27 6.7 Cumulative impacts ...... 6-28

7 ENVIRONMENTAL SURVEILLANCE ...... 7-1 7.1 Environmental surveillance programs ...... 7-1 7.1.1 Construction phase ...... 7-1 7.1.2 Operation phase ...... 7-2 7.1.3 Dismantling phase ...... 7-3

PESCA Environment vi March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1

7.2 Emergency measures plan in the event of an accident and/or failure ...... 7-3 7.2.1 Preventative measures and emergy procedures in case of an accident and/or failure ...... 7-3 7.2.2 Responsibilities ...... 7-7 7.2.3 Communication system in case of emergency ...... 7-7 7.2.3.1 Internal communication ...... 7-7 7.2.3.2 External communication ...... 7-7 7.2.4 Training ...... 7-8 7.2.5 Assessment after accident or incident ...... 7-8

8 ENVIRONMENTAL MONITORING ...... 8-1 8.1 Avian fauna ...... 8-1 8.2 Soundscape ...... 8-1

9 EFFECT OF THE ENVIRONMENT ...... 9-1 9.1 Extreme winds ...... 9-1 9.2 Ice ...... 9-1 9.3 Extreme temperatures ...... 9-1 9.4 Lightning ...... 9-2 9.5 Fire ...... 9-2 9.6 Permafrost ...... 9-2

10 BIBLIOGRAPHY ...... 10-1

11 APPENDICES ...... 11-1

PESCA Environment vii March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1

□ LIST OF TABLES

Table 1.1 Characteristics of the equipment at the Kuujjuaraapik power plant ...... 1-5 Table 1.2 2019-2029 forecast for the Kuujjuaraapik power plant ...... 1-6 Table 2.1 Surface deposits in the study area ...... 2-1 Table 2.2 Vegetation and land cover in the study area ...... 2-5 Table 2.3 Plant species recorded in the study area in 2012 and 2013 ...... 2-6 Table 2.4 Bat inventory sites in the study area in 2013 ...... 2-10 Table 2.5 Small and medium-sized terrestrial mammals potentially present in the study area ...... 2-13 Table 2.6 Micromammals potentially present in the study area ...... 2-14 Table 2.7 Fish species potentially present in the study area ...... 2-15 Table 2.8 Species of amphibians and reptiles potentially present in the study area ...... 2-17 Table 2.9 Special-status wildlife species potentially present in the study area ...... 2-18 Table 2.10 Main income and labor market indicators - Whapmagoostui, Kuujjuaraapik and province of , 2016 ...... 2-19 Table 2.11 Division of the labor force of the community of Whapmagoostui by industry, 2016 ...... 2-20 Table 2.12 Broadcasting stations on the outskirts of the study area ...... 2-24 Table 2.13 Location of the initial noise assessment points in 2013 ...... 2-25 Table 2.14 Results of the initial noise assessment in 2013 ...... 2-27 Table 2.15 Points of Interest in the Context of WKHPPP ...... 2-30 Table 3.1 Technical description of the project ...... 3-1 Table 3.2 Wind Turbine Configuration Parameters ...... 3-3 Table 3.3 Areas required for the construction of the WKHPPP ...... 3-4 Table 3.4 Main truck transports estimated for the construction phase ...... 3-6 Table 3.5 Data sheet of a Goldwind GW87 wind turbine ...... 3-7 Table 5.1 Assessment of the magnitude of the impact ...... 5-4 Table 5.2 Assessment of the significance of the impact ...... 5-6 Table 5.3 Matrix of significance of anticipated impact on a landscape unit ...... 5-9 Table 5.4 Matrix of the value assigned to a landscape unit ...... 5-9 Table 5.5 Resistance matrix of a landscape unit ...... 5-9 Table 5.6 Matrix of the importance of visual impact in the landscape unit ...... 5-11 Table 6.1 Matrix of interrelations between activities and environmental components ...... 6-2 Table 6.2 Explanation of insignificant interrelations between activities and environmental components ...... 6-3 Table 6.3 Value of the components of the environment ...... 6-5 Table 6.4 Noise level by category of receiving areas according to the noise instruction note ...... 6-22

PESCA Environment viii March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1

Table 6.5 Resistance of landscape units ...... 6-24 Table 6.6 Summary of the degrees of perception of the project ...... 6-25 Table 6.7 Summary of visual impacts per landscape unit ...... 6-25 Table 7.1 Prevention measures and emergency procedures according to the type of accident or failure ...... 7-4

□ LIST OF FIGURES

Figure 1.1 Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project ...... 1-8 Figure 2.1 Watercourse and lake present in the study area ...... 2-2 Figure 2.2 Boreholes detected in 2013 in the study area ...... 2-3 Figure 2.3 Riparian marshes present in the study area ...... 2-4 Figure 2.4 Isolated ponds present in the study area ...... 2-4 Figure 2.5 Spruce lichen forest ...... 2-5 Figure 2.6 AnaBat SD2 automated recording system - CH-03 inventory sites (left) and CH-04 (right) in 2013 ...... 2-10 Figure 2.7 Brook trout captured in 2012 ...... 2-16 Figure 2.8 Installation of a fyke net in 2012 ...... 2-16 Figure 2.9 Wood frog detected in 2013 ...... 2-17 Figure 2.10 Communities of Whapmagoostui and Kuujjuaraapik, at the mouth of the ...... 2-28 Figure 2.11 Hudson Plateau ...... 2-29 Figure 2.12 Hudsonian Cuestas ...... 2-30 Figure 3.1 Dimensions of a Goldwind GW87 wind turbine ...... 3-8 Figure 5.1 Impact assessment method ...... 5-2

□ LIST OF APPENDICES

Appendix A KWREC Corporate Structure Appendix B Resolutions and Letters of Support for the Project Appendix C Bird Inventory Report (2012-2013) Appendix D Identification of telecommunications systems Appendix E Report on Public Consultations

PESCA Environment ix March 31, 2021

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Context

1 Context

This study describes the Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project (WKHPPP) and its potential impacts on the environment and the social environment, in accordance with section III of chapter II of the Environment Quality Act (RLRQ, c. Q-2). Wind power projects are neither necessarily subject to the environmental and social impact assessment and review procedure applicable to James Bay and Northern Quebec, nor necessarily exempted. Given the nature of the project, the Evaluating Committee (COMEV) recommended following the procedure and producing an impact assessment.

The impact assessment is carried out in accordance with the Directive transmitted on October 29, 2020 by the Regional Administrator of the Cree Nation Government and considers the recommendations made by COMEV.

1.1 Project developer

The developer of the Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project (WKHPPP) is Kuujjuaraapik Whapmagoostui Renewable Energy Corporation, hereinafter referred to as "KWREC".

Person responsible for the impact assessment on behalf of KWREC:

M. Matthew Mukash President of KWREC C. P. 390, Whapmagoostui (Quebec) J0M 1G0 E-mail: [email protected] or [email protected] www.kwrec.ca

KWREC is the result of a unique and historic partnership between the Eeyou of Whapmagoostui and the Inuit of Kuujjuaraapik. This company, incorporated in 2020, guarantees fair representation (50-50) between the two communities. The corporate structure of this entity is illustrated in Appendix A and includes the partners described below.

1.1.1 Nimschu Iskudow Inc.

Nimschu Iskudow (which means "thunder and lightning" in Cree) is an entity incorporated in 2012 whose main business sectors are the production and distribution of electricity. This company is 85% owned by the Whapmagoostui First Nation and 15% by Tawich Development Corporation, the latter being owned by the First Nation. Since 2012, Nimschu Iskudow’s mission has been to research and develop hybrid projects that focus on renewable energy rather than the use of diesel to power the community of Whapmagoostui.

PESCA Environment 1-1 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Context

Nimschu Iskudow is responsible for finding alliances and strategic partners to secure the financing and professional resources necessary for the development of WKHPPP.

www.nimschu.com

1.1.2 Sakkuq Landholding Corporation of Kuujjuaraapik

The Sakkuq Landholding Corporation holds the property rights to Category I lands in Kuujjuaraapik as well as specific rights and responsibilities over Category II lands in Kuujjuaraapik. It is a non-profit organization incorporated under the James Bay and Northern Quebec Agreement and the Act respecting the land regime in the James Bay and New Quebec territories.

Between 2013 and 2018, the Sakkuq Landholding Corporation and Nimschu Iskudow discussed the feasibility of the hybrid power plant project. These discussions led to the signing in 2019 of a Memorandum of Understanding to concretize this approach and form a Steering Committee for the development of the project. The partnership between the Eeyou of Whapmagoostui and the Inuit of Kuujjuaraapik then materialized with the creation of KWREC in 2020.

www.nlhca.ca/-LHCs

1.2 Other partners

1.2.1 Ikayu Energy

Ikayu Energy's mission is to help Nunavik communities develop, build and manage their own renewable energy projects. Ikayu Energy is a company created in 2019 and owned by Ikayu Development Inc. and Tugliq Energy Co. Operation and maintenance of the project infrastructure will be entrusted to Ikayu Energy.

Ikayu Development is a company 100% owned by the Association of Nunavik Landholding Companies (ANLC), created to support the economic development of Nunavik communities through each landholding company.

Tugliq Energy specializes in renewable energy and micro-grid projects to replace fossil fuels. Tugliq Energy has been leading projects in the Canadian since 2015, including the Raglan I and Raglan II projects, in Nunavik.

PESCA Environment 1-2 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Context

1.2.2 TCI Group

TCI Group (Transelec/Common inc.) was selected by KWREC to build the power plant, including the turbines, the access roads and the interconnection lines.

TCI Group is a Canadian company of integrated services specializing in the construction, management and maintenance of network infrastructures, wind farms, power transmission lines, underground structures as well as in various civil and electrical works.

In the wind sector, the company has been involved in the design and construction of access roads, wind turbine foundations, transformer stations, distribution networks and transmission lines, as well as the installation of wind turbines, among others. Group TCI also acted as a general contractor for the construction of wind farms.

1.3 Financial guarantees

Various measures have been considered to guarantee the funds necessary to finance and set up any activities for environmental restoration, decontamination and dismantling of infrastructures. As such, the contract with TCI Group requires a guarantee for the construction period which will cover, among others, the implementation of environmental mitigation measures. The developer of the project will also hold insurance in this regard. Finally, an amount of $ 3M has been budgeted for the project in the event the infrastructure is dismantled at the end of the 25-year supply contract.

1.4 Consultant responsible for the environmental and social impact assessment

To carry out the environmental and social impact assessment, the developer retained the services of PESCA Environment.

The multidisciplinary team of more than 40 professionals has been providing environmental consulting services for 28 years and has carried out numerous environmental studies in the industrial and commercial sectors in various Canadian provinces. PESCA Environment has, since 2004, drafted 44 environmental impact assessments of wind and hydroelectric power generation projects.

PESCA Environment provides its customers with the versatility and availability of its team and diversified expertise applicable to all phases of a wind power project. In the development phase, its specialists carry out preliminary studies and analysis of configuration parameters, wildlife and plant inventories, noise assessments, landscape analyzes and visual simulations. During the construction phase, PESCA Environment assists the developer in the preparation of authorization and permit applications and provides environmental monitoring and soundscape monitoring services. During the operation phase, PESCA Environment carries out the environmental monitoring required by the government decree relating, for example, to birds and bats, the soundscape or the landscape. PESCA Environment professionals also

PESCA Environment 1-3 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Context

prepare communication plans and participate in public consultations and hearings of the Bureau d’audiences publiques sur l’environnement (BAPE) during the environmental analysis process of projects.

Contact person: M. Matthieu Féret, biologist, M. Sc., project manager 895, boulevard Perron Est, Carleton-sur-Mer (Quebec), G0C 1J0 Telephone : 418 364-3139 E-mail : [email protected] www.pescaenvironnement.com

1.5 Energy transition and renewable energies

At the global, Canadian and provincial levels, an energy transition has been launched in order to fight climate change by reducing the use of fossil fuels and greenhouse gas (GHG) emissions. In this context, the use of renewable energies is increasingly prioritized to produce energy, in particular electricity, especially considering that technological progress has made it possible to reduce the production costs of this type of energy and to install increasingly efficient equipment (REN21, 2020). From 1990 to 2018, the production of renewable energy in the world increased on average by 2.3% annually, this growth being increasingly significant since 2004 (IEA, 2020). The part of renewables in global electricity production was around 26% in 2018 (REN21, 2020).

By signing the Paris Agreement in 2015, made a commitment to reduce GHG emissions by 30% below 2005 levels by 2030. This goal involves reducing the carbon footprint and making an energy transition supported by regulations, programs and financial assistance in all sectors of the economy, including electricity, transportation, oil and gas, buildings, waste, agriculture and forestry (Conseil Génération Énergie, 2018).

Quebec is also committed to the fight against climate change by setting a target of reducing its GHG emissions by 37.5% by 2030, compared to their 1990 level (Gouvernement du Québec, 2020b). Replacing fossil fuels with clean, renewable electricity is one of the government's main tools to achieve this objective, particularly targeting the 22 off-grid networks not connected to the Hydro-Québec distribution network. According to Hydro-Québec's 2020-2024 Strategic Plan, the goal is that, by 2025, 70% of the energy supply of off-grid networks will come from renewable sources (Hydro-Québec, 2019).

The use of renewable energies represents an efficient and competitive way to reduce GHG emissions from energy production. The emissions generated by the wind power sector are among the lowest of the various forms of electricity production adopted by Hydro-Québec, which considers all the emissions of an energy system (CIRAIG, 2014; Hydro-Québec, 2019).

PESCA Environment 1-4 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Context

1.6 Rationale for the project

Chapter 10 of the La Grande Agreement (1986) provides for the provision of reliable electricity services to all Cree communities and the connection of Cree electrical installations to the Hydro-Québec network. This agreement includes, without deadline, the community of Whapmagoostui. In 2002, the Government of Quebec and the of Quebec signed the agreement concerning a new relationship between the Government of Quebec and the Crees of Quebec, during which the agreement relating to the Whapmagoostui transmission line was signed between Hydro-Québec, the Société d'Énergie de la Baie James and the Crees of Quebec. The latter reiterates the commitment to connect the community of Whapmagoostui to the Hydro-Québec network as soon as possible.

The communities of Whapmagoostui and Kuujjuaraapik are supplied with electricity through one of 22 off- grid networks not connected to the Hydro-Québec distribution network. Electricity is produced by a diesel power plant with an installed capacity of 3.41 MW. The main characteristics of the Kuujjuaraapik power plant are presented in Table 1.1.

Table 1.1 Characteristics of the equipment at the Kuujjuaraapik power plant

Equipment Value

Number of generators 3 Capacity per generator set (kW) 1,135 Total installed capacity (MW) 3.41 Guaranteed power (MW) 2.04 Guaranteed power (MW) including the mobile generator set 3.69 Peak power demand 2019-2020 (MW) 2.28 Energy produced in 2018 (GWh) 12.1 Number of subscriptions in 2018 721 Fuel type Arctic Diesel Average age of groups in 2018 (hours) 30 620 Yield in 2018 (kWh/litre) 3.76 Capacity Factor in 2018 (%) 40.5 Note: The capacity factor indicated differs from that provided by Hydro-Québec Distribution, because it was calculated using the annual production and the guaranteed power instead of the total installed capacity of the generators.

Source : (Hydro-Québec Distribution, 2019b)

PESCA Environment 1-5 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Context

Table 1.2 presents the forecasts from 2019 to 2029 for the Kuujjuaraapik plant.

Table 1.2 2019-2029 forecast for the Kuujjuaraapik power plant

Average Forecast 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 (%) Number of 619 637 654 671 689 706 723 740 756 772 788 2.4 residential subscriptions Energy sale 11.63 11.99 12.28 12.43 12.59 12.78 12.89 13.03 13.17 13.35 13.43 1.4 (GWh) Energy 12.58 13.00 13.28 13.48 13.65 13.86 13.98 14.13 14.28 14.47 14.57 1.5 requirements (GWh) Peak power 2.28 2.34 2.39 2.42 2.45 2.48 2.50 2.53 2.56 2.58 - 1.4 requirements (MW) Installed capacity 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 - (MW) Guaranteed 3.69 3.69 3.69 3.69 3.69 3.69 3.69 3.69 3.69 3.69 3.69 - capacity (MW) Power reserve 1.4 1.34 1.3 1.27 1.24 1.21 1.18 1.15 1.13 1.1 1.4 - (MW)

Source : (Hydro-Québec Distribution, 2019b)

The operation of diesel and oil-fired power plants is expensive due to the cost of fuel and supply. In addition, these power stations produce a significant portion of GHG emissions in the balance sheet. Hydro-Québec's 2020-2024 Strategic Plan includes the objective of converting off-grid systems to cleaner and more economical sources of energy by targeting that, by 2025, 70% of the energy supply of off-grid networks are of renewable origin (Hydro-Québec, 2019; Hydro-Québec Distribution, 2019a). The criteria established by Hydro-Québec to guide this transition are:

◦ Reduction of GHG emissions; ◦ Reliability of supply; ◦ Social and environmental acceptability; ◦ Reduction of supply costs.

The Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project (WKHPPP) is part of this transition initiated for the off-grid networks of Quebec, and particularly in Nunavik. The project was initiated in 2011 by the Whapmagoostui First Nation and a feasibility study was conducted in 2012. Different alternatives to diesel were analyzed in collaboration with Hydro-Québec, including biomass, solar energy and wind energy, the latter option having been retained. The existing thermal power plant will remain in operation to ensure the stability and control of the electricity supply to the communities. The goal is to produce 40 to 50% of electricity from wind power. With an output of 3.76 kWh/L, the Kuujjuaraapik power plant would have consumed approximately 3.2 million liters of diesel in 2018 and energy needs are increasing by approximately 1.5% per year (Hydro-Québec Distribution, 2019b). The project would therefore reduce diesel consumption by at least 1.45 million liters in the first year of operation in 2024 or 2025.

PESCA Environment 1-6 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Context

Climate change is particularly felt in the North. The power plant project, resulting from a unique partnership, represents an unprecedented mobilization of the communities of Whapmagoostui and Kuujjuaraapik to help mitigate the effects of these changes and could serve as an example for other communities in Nunavik. The Makivik Corporation was also involved in these discussions, which led to the creation of KWREC in 2020. Exchanges between the organizations involved are shown in Appendix B. Finally, discussions with local leaders of the Inuit community resulted in the participation of the Sakkuq Landholding Corporation of Kuujjuaraapik in KWREC (Appendix A). This model of participation of the landholding corporation as representative of the Inuit community was also retained in the Innavik hydroelectric project in .

This project is part of a common desire to provide clean and renewable energy, while maximizing economic benefits and job creation for local communities, while also participating in the reduction of GHG emissions.

1.7 Brief description of the project

The Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project (WKHPPP) is located at the southwestern end of Nunavik, on the edge of and near the mouth of the Great Whale River, on the outskirt of villages in the Whapmagoostui and Kuujjuaraapik communities (Figure 1.1). The project is mainly located on the Eeyou Istchee territory (category IA lands).

The WKHPPP, which will have an installed capacity of 3.0 MW of wind power, requires the installation of two wind turbines with a nominal capacity of 1.5 MW each. These wind turbines will be connected by a 25 kV interconnection line to a substation (to be built). A 4 kV interconnection line will link this substation to the existing power plant operated by Hydro-Québec Distribution. An access road will be built.

Construction is expected to begin as soon as possible in 2021 with energy delivery, at the latest, in December 2024. Construction is expected to generate around 30 jobs and 3 jobs will be created while the plant is in operation. Part of these jobs will be assigned to Cree and Inuit workers.

The wind farm will be owned by a joint equal partnership company between Crees and Inuit, the Kuujjuaraapik Whapmagoostui Renewable Energy Corporation (KWREC). It will sell the electricity produced to the public utility. A 25-year electricity purchase contract will be signed between Hydro- Québec Distribution and KWREC. Capital expenditures represent an estimated investment between $40 and 44 million.

Discussions between Hydro-Québec Distribution and KWREC began in November 2019 in order to define the characteristics required by the project and to secure the terms of the power purchase agreement. These discussions have continued since, and it is expected that this agreement will be established shortly and be submitted to the Régie de l'énergie du Québec for approval before the end of 2021.

PESCA Environment 1-7 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Context

Figure 1.1 Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project

PESCA Environment 1-8 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Context

1.8 Alternatives to the project

The main alternative to the project would be a connection to the Hydro-Québec distribution network. The La Grande Agreement (1986) - signed on November 6, 1986 by the Crees, Hydro-Québec and the Société d'Énergie de la Baie James (SEBJ) - provided for the connection to the integrated network of the Cree communities of Whapmagoostui, , Wemindji, and Oujé-Bougoumou. To date, only the community of Whapmagoostui is not connected. On February 7, 2002, the Crees, Hydro-Québec and SEBJ signed an agreement providing for the connection of Whapmagoostui to the integrated network when the community would be connected to the Quebec road network (Hydro-Québec, 2002). These facilities will not be built in the short or medium term.

Since 2011, the communities of Whapmagoostui and Kuujjuaraapik, in collaboration with Hydro-Québec, have studied various alternatives to diesel during the development phase of the project. Wind energy was chosen because of the available resource, environmental and socio-economic contexts and because it is a mature and appropriate technology to reduce the use of fossil energy. The configuration presented in this study constitutes an optimized version of the project, considering environmental and technical parameters as well as the interests of stakeholders and the community.

The initial project included three potential locations for the development of wind turbines. Preliminary meetings and discussions with certain interest groups, including hunters, have raised concerns related to one of these locations (T1). The latter was not retained in the layout presented in this study.

1.9 Development and related projects

A subsequent phase could be developed in the context of research and development activities following the commissioning of the power plant, always with the objective of reducing the use of fossil fuels and GHG emissions.

PESCA Environment 1-9 March 31, 2021

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

2 Description of the environment

This section describes the physical, biological and human characteristics of the environment in which the project is located. This description is based on information and data from various sources cited directly in the text, or from inventories and surveys conducted by the developer on the site.

2.1 Delimitation of the study area

The study area relating to this impact assessment covers 4,679.9 ha (46.8 km²). It is located in Nunavik, at the mouth of the Great Whale River, on the east coast of Hudson Bay. It encompasses all the project's infrastructure, as well as the northern village of Kuujjuaraapik and the Cree village of Whapmagoostui. The environmental components are mainly described according to this study area. The relief consists of rocky outcrops with a maximum altitude of 235 m crossed by valleys. Sand dunes are also present along the bay.

2.2 Description of the components of the physical environment

2.2.1 Soils

2.2.1.1 Nature of soils and surface deposits

Surface deposits are the foundation on which ecosystem components are built. They condition the distribution and growth of vegetation as well as the nature of human activities. Surface deposits were created during the last glaciations, under the action of erosion of glaciers and sedimentation generated by wind, water and gravity. In the territory of the study area, surface deposits mainly consist of bedrock (Table 2.1).

Table 2.1 Surface deposits in the study area

Area Proportion Type of deposits (ha) (%) Coastal deposits 443.3 9.5 Marine deposits 572.9 12.2 Bedrock 3,173.3 67.8 Anthropogenic deposits 105.7 2.3 Not applicable (water and anthropogenic) 384.6 8.2 Total 4,679.9 100.0

Source : Dépôts de surface du Nord québecois (Gouvernement du Québec, 2020a)

PESCA Environment 2-1 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

2.2.1.2 Potentially contaminated areas

The Contaminated Land Directory includes eight files corresponding to six sites on the territory of the village of Kuujjuaraapik (MELCC, 2020a). The Directory of Soils and Industrial Residue Deposits identifies a site for dumping barrels of abandoned petroleum products on the territory of the village of Kuujjuaraapik (MELCC, 2020b). In 2013, during a field visit by PESCA Environment, rehabilitation work was underway at this disposal site.

The federal contaminated sites inventory identifies five contaminated sites, including one in common with the provincial inventory, as well as one potentially contaminated site on the territory of the village of Kuujjuaraapik. This inventory includes contaminated sites in the custody of departments, agencies and consolidated Crown corporations as well as non-federal contaminated sites for which the has accepted financial responsibilities (Secretariat du Conseil du Trésor du Canada, [nd]).

2.2.2 Hydrography

2.2.2.1 Surface water

The study area drains over two thirds of its surface area (67.9%), towards Hudson Bay and over one third (32.1%), towards the Great Whale River (Volume 2, Map 1).

In the study area, due to the granite substrate, the water flow surface is sometimes diffuse, which creates a complex hydrographic network. Generally, water flows through a succession of water bodies totaling 120.3 ha (Figure 2.1). The largest lake in the study area covers an area of 8.16 ha (Volume 2, Map 1).

Figure 2.1 Watercourse and lake present in the study area

PESCA Environment 2-2 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

2.2.2.2 Groundwater

The Hydrogeological Information System (HIS) database does not list any boreholes in the study area (MELCC, 2020f). The HIS constitutes a summary and non-exhaustive inventory of wells and boreholes that have been carried out in Quebec since 1967.

During field visits carried out by PESCA Environment in 2013, thirteen boreholes were detected in the study area (figure 2.2; Volume 2, Map 3). These are mainly boreholes carried out during drinking water research projects for the local population (personal communication, M. Claude Tremblay, Centre d'études nordiques, 2013).

Figure 2.2 Boreholes detected in 2013 in the study area

2.2.2.3 Wetlands

The following data sources were consulted to describe the presence of potential wetlands in the study area:

◦ Ducks Unlimited Canada regional wetland conservation plan for the North-of-Quebec administrative region (Canards Illimités Canada, 2009); ◦ Quebec government's 2019 mapping of potential wetlands (CMHPQ) (Gouvernement du Québec, 2020a); ◦ Topographic data of Canada (CanVec) from Natural Resources Canada (Ressources Naturelles, 2013); ◦ Quebec government topographic maps of native villages in the north at 1/2000 scale (Gouvernement du Québec, 2020a).

In addition, there are the wetlands identified during field inventories carried out by PESCA Environment, mainly riparian marshes dominated by herbaceous plants and shrubs (Figure 2.3). Due to natural depressions in the granite substrate, numerous ponds isolated from the hydrographic network and fed by are present in the study area (Figure 2.4).

PESCA Environment 2-3 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

According to the field inventories and the databases consulted, the wetlands in the study area cover 57.4 ha, or 1.2% of the area (Volume 2, Map 1).

Figure 2.3 Riparian marshes present in the study area

Figure 2.4 Isolated ponds present in the study area

2.3 Description of the components of the biological environment

2.3.1 Plants and Vegetation

2.3.1.1 Vegetation

The study area is in the boreal vegetation zone, taiga subzone, bioclimatic domain of the spruce-lichen forest (MFFP, 2019). The forest landscape is distinguished by its lichen mats punctuated by black spruce stands (Figure 2.5). Balsam fir and jack pine reach the northern limit of their range in this bioclimatic domain (MFFP, 2019).

PESCA Environment 2-4 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

Figure 2.5 Spruce lichen forest

The types of vegetation in the study area are described using digital data from the vegetation mapping of northern Quebec from the Government of Quebec (2020a). Vegetation cover occupies 88.4% of the study area (Table 2.2 and Volume 2, Map 2).

Table 2.2 Vegetation and land cover in the study area

Area Proportion Vegetation type Description (ha) (%) Shrubs Including low (0.3 to 2 m) and tall (> 2 m) shrubs 52.2 1.1 Burn - 17.3 0.4 Subarctic heath Including subarctic heath with 30 to 70 shrubs dominated 1,974.2 42.2 by bedrock Tundra Upright shrub tundra dominated by bedrock 318.0 6.8 Coniferous forest with lichens Coniferous forest with lichens 10 to 40 % density 464.3 9.9 Coniferous forest with lichens Coniferous forest with lichens and mosses 10 to 25 % 453.6 9.7 and mosses density Coniferous forest with Coniferous forest with deciduous shrubs 10 to 40 % 582.3 12.4 deciduous shrubs density Coniferous moss forest Coniferous moss forest 25 to 40 % density 251.7 5.4 Peat bog Structured minerotrophic bog 23.7 0.5 Vegetation subtotal - 4,137.4 88.4 Other land cover Rock outcrop - 25.9 0.6 Anthropic - 264.2 5.6 Waterbody - 120.3 2.6 Bare area - 132.0 2.8 Subtotal of other land cover - 542.5 11.6 Total - 4,679.9 100.0

Source : Végétation du Nord québecois (Gouvernement du Québec, 2020a)

PESCA Environment 2-5 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

In 2012 and 2013, PESCA Environment carried out inventories in plots spread over the study area (Volume 2, Map 2). The presence of 48 plant species was confirmed (Table 2.3). No special status plant species have been identified.

Table 2.3 Plant species recorded in the study area in 2012 and 2013

Common name Latin name

Tree stratum White spruce Picea glauca Black spruce Picea mariana Tamarack Larix laricina Trembling aspen Populus tremuloiodes Jack pine Pinus divaricata Balsam fir Abies balsamea Shrub stratum Lingonberry Vaccinium uliginosum Lingonberry (wild) Vaccinium vitis-idaea subsp. minus Glaucous andromeda Andromeda glaucophylla Crisp alder Alnus crispa Dwarf birch Betula glandulosa Alpine bearberry Arctostaphylos alpina Crowberry Empetrum nigrum Wild raspberry Rubus odorate Common junniper Juniperus communis Lapland rhododendron Rhododendron lapponicum Reticulated willow Salix reticulata tea Rhododendron groenlandicum Herbacious stratum Blackish achillea Achillea nigrescens Cow parsnip Heracleum maximum Round-leaved bellflower Campanula rotundifolia Cloudberry Rubus Chamaemorus Sand elymus Elymus arenarius Narrow-leaved fireweed Epilobium angustifolium Broadleaf fireweed Chamerion latifolium Sea pea Lathyrus maritimus Honckenye purslane Honckenya peploides Cottongrass Eriophorum angustifolium Linnaea borealis Linnaea borealis Lycopod innovative Lycopodium annotinum Swamp parnassia Parnassia palustris Superbe bluegrass Poa eminens Sea parsley Ligusticum scoticum Cinqfoil anserine Potentilla Anserina Tridentate cinqfoil Potentilla tridentata Northern four-stroke Cornus canadensis Rhinanthe borealis Rhinanthus borealis Eastern saxifrage Saxifraga oppositifolia Paniculated saxifrage Saxifraga paniculata

PESCA Environment 2-6 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

Common name Latin name Spiranthe de Romanzoff Spiranthes Romanzoffiana Cespitose trichophore Trichophorum caespitosum Many-rayed goldenrod Solidago multiradiata Moss-lichen stratum Crunchy cladonia Cladonia crispata Star cladonia Cladonia stellaris Cladonia mitis Cladonia mitis Cladonia daisy Cladonia bellidiflora Arctic nephroma Nephroma arcticum Lapland Ophiaparme Ophioparma lapponica

2.3.1.2 Floristic species with special status

The Quebec government's Act Respecting Threatened or Vulnerable Species (RLRQ c E-12.01) aims to protect species whose situation is precarious (MELCC, 2020c). This Law recognizes two statuses: threatened species and vulnerable species. Section 9 of the Act also allows the Quebec government to establish a preventive list of species likely to be designated threatened or vulnerable (LDTV). All these species are listed by the Data Center on Natural Heritage of Quebec (CDPNQ).

The Committee on the Status of Endangered Wildlife in Canada (COSEWIC) assesses the situation at the federal level and determines the status of species according to the following categories: endangered, threatened, special concern and not at risk. The official list of species protected by the Government of Canada is included in Schedule 1 of the Species at Risk Act (Gouvernement du Canada, 2020).

The CDPNQ database includes occurrences of two plant species likely to be designated threatened or vulnerable in and near the study area (CDPNQ, 2021): fireweed (Epilobium saximontanum) and botrychus ascendens (Botrychium ascendens). These are historical records noted along the Great Whale River and Hudson Bay. These species are unlikely to be present in the study area.

According to the ranges and habitats of plants present in Quebec and listed in the Public Register of Species at Risk, no plant species at risk at the federal level is potentially present in the study area (Gouvernement du Canada, 2020).

2.3.2 Wildlife species

2.3.2.1 Avian fauna

The developer carried out ornithological inventories in 2012 and 2013 in order to document the use of the study area by birds and to verify the presence of special status species. The full report is available in Appendix C.

Observers on the ground in 2012 and 2013 recorded a total of 64 species of birds. The majority of these species are migrant breeders in Quebec, i.e. all or most of the individuals winter outside the Quebec portion of the nesting area (Robert et al., 2019).

PESCA Environment 2-7 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

Raptor migration was monitored from three observation points distributed throughout the study area (Volume 2, Map 2). Raptors rarely fly over the study area during the migration period. No raptor migration corridor has been identified there. The average abundance index is 0.9 observation/h during spring and fall migrations. The most common species has been the rough-legged hawk.

The most abundant passerine species were the horned lark, the white-throated sparrow, the common redpoll and the white-crowned sparrow.

Waterfowl were scarce in the study area during the nesting period. The Canada goose was the most abundant species, mainly during spring and fall migrations. Indices of nesting (presence of pairs) have been reported for the northern shoveler, greater scaup and green-winged teal. According to information from traditional knowledge, waterfowls, mainly the Canada geese, occasionally fly in the fall, over the hill where wind turbines are planned, to use the wetlands on its outskirts. In the spring, the geese would very seldom fly over this sector, going instead over the habitats located along the Great Whale River.

The presence of three special-status species has been confirmed during the migration period: the golden eagle, the peregrine falcon and the rusty blackbird. In addition, the short-eared owl is potentially present in the study area (CDPNQ, 2020).

The golden eagle, a migratory breeder, hunts in large open spaces such as marshes, grasslands and in the tundra, avoiding areas of continuous forest. It usually frequents mountainous regions dotted with rocky and steep slopes. It nests on the ledge of rocky and steep cliffs and sometimes in trees (MFFP, 2016- 2020b). The golden eagle is a species designated vulnerable in Quebec and not at risk in Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020b).

The peregrine falcon, a migrant breeder, usually builds its nest on the side of a cliff, near a body of water. It also happens to use human-made structures such as bridges, buildings, electricity pylons or telecommunications towers. In southern Quebec, peregrine falcon nesting has been confirmed in most regions. The presence of this species is well established in the St. Lawrence Lowlands as well as near the cliffs along the Ottawa River, Saint-Maurice and Saguenay (Robert et al., 2019). In Nunavik, the breeding range of the northern population includes the entire northern coast in which the Ungava Bay watershed represents an important area (Équipe de restauration des oiseaux de proie du Québec, 2018). The peregrine falcon is a species designated vulnerable in Quebec (MFFP, 2016-2020b). It is currently listed as Special Concern in Canada under the Species at Risk Act, but this status is under review for change to Not at Risk following COSEWIC recommendations (Gouvernement du Canada, 2020).

The Short-eared Owl is a relatively nomadic, migratory raptor that moves according to the availability of small mammals, which are its main food source. Unlike other owls, short-eared owls often hunt during the day or at dusk. In Quebec, the short-eared owl can be observed over almost the entire territory (MFFP, 2016-2020b). Recent data indicate that most individuals of this species nest in Nunavik (Robert et al., 2019). The short-eared owl is mostly found in open environments such as marshes, wasteland, peatlands, wet meadows and arctic tundra (MFFP, 2016-2020b; Robert et al., 2019). It builds its nest on the ground, in an open environment under the camouflage of tall herbaceous plants. The short-eared owl is a species likely to be designated threatened or vulnerable in Quebec and of special concern in Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020b).

PESCA Environment 2-8 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

The rusty blackbird, a migrant breeder, is widely associated with wetlands such as marshes and bogs during the breeding season. It nests in dense stands of young conifers but can sometimes use snags or shrubs (Gauthier & Aubry, 1995). The rusty blackbird is a species likely to be designated threatened or vulnerable in Quebec and of special concern in Canada (Gouvernement du Canada, 2020; MFFP, 2016- 2020b).

An Important Bird Area (IBA), which encompasses the Great Whale River and its tributaries, partly overlaps the study area (Volume 2, Map 2). This 1,989 km2 area stretches from Bienville Lake to the mouth of the river in Hudson Bay and includes nesting sites for Harlequin Ducks (BirdLife International 2020). This species is designated vulnerable in Quebec and of special concern in Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020b) and is not likely to frequent the study area.

2.3.2.2 Bats

Eight species of bats belonging to the Vespertilionidae family are present in Quebec. Bats hunt and roam mainly in clear and open spaces, such as rivers, lakes, logging areas and fields, as well as on the outskirts of inhabited areas. During the day, they return to their summer roost, a structure or cavity that can be of natural or of man-made origin. They can also live in trees, hidden in the foliage. They are active from spring to fall, and then migrate south (migratory species) or move to their hibernaculum (resident species). In the case of resident bats, hibernaculum and summer sites can be several hundred kilometers apart (Prescott & Richard, 2013; Van Zyll de Jong, 1985).

Based on the species distribution and previous inventory data, none of these species are likely to be found in the study area (Jutras et al., 2012; Prescott & Richard, 2013). The study area is located north of their distribution ranges. In addition, participants in the consultation process indicated that they had never seen bats in the study area, with the exception of one elder who saw them once during one summer.

An inventory was carried out by PESCA Environment in the study area in August 2013 using the fixed acoustic inventory technique recommended in the Protocol for acoustic inventories of bats in the context of wind turbine installation projects in Quebec (MRNF, 2008). Four automated bat vocalization recording systems were distributed throughout the study area targeting suitable habitats for these species (Table 2.4 and Volume 2, Map 2). The devices used were AnaBat SD2, consisting of a microphone picking up high frequency sounds installed on a control module and stored on memory cards. The detection devices were programmed to operate from evening to morning, or from 30 minutes after sunset until dawn. In order to optimize the recording of the vocalizations of bats, they were installed in height to point in an angle of 15 ° from the horizon (figure 2.6).

PESCA Environment 2-9 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

Table 2.4 Bat inventory sites in the study area in 2013

Geographical coordinates Inventory date Recording Inventory (NAD83 UTM18) Habitat Time Site (h) X (m) Y (m) Start End

CH-01 Intermittent stream 325533 6129007 2013-08-16 2013-08-28 73.4 CH-02 Permanent 330941 6136427 2013-08-17 2013-08-28 80.0 watercourse CH-03 Wetland 328965 6130336 2013-08-17 2013-08-28 66.7 CH-04 Lake 327732 6133715 2013-08-21 2013-08-28 53.4

Figure 2.6 AnaBat SD2 automated recording system - CH-03 inventory sites (left) and CH-04 (right) in 2013

A portable weather station has been installed at inventory sites CH-01 and CH-02. Data on local meteorological conditions made it possible to verify that the inventory was carried out under conditions favorable to the detection of bats, on nights without precipitation and when the wind speed was lower, at 20 km / h.

A total of 273.5 hours of recording at the four inventory sites were performed. No vocalizations or full bat calls were detected during the inventory. Four sounds that may resemble fragments of calls were recorded during the night of August 17-18, 2013 at site CH-01 on the periphery of the community. However, these sounds do not confirm the presence of bats, especially since no similar sound has been detected at any other time at this station, or elsewhere in the territory.

2.3.2.3 Terrestrial mammals

Large mammals

Five large species are potentially present in the study area: muskox, woodland caribou (forest-dwelling and migratory ecotypes), moose, black bear and polar bear (MFFP, 2016-2020a; Prescott & Richard, 2013).

PESCA Environment 2-10 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

Muskox

Muskox were introduced in Quebec near for breeding purpose in 1967 (Jean et al., 2006). In summer, muskox seek out wetlands, riparian vegetation and willow groves. In winter, it frequents windswept areas with shallow snow and grasses and shrubs. Its habitat is characterized by an alternation of plateau elevation less than 250 m and open, well-drained coastal plains (Le Henaff, 1986). The population reached just over 4,400 individuals in 2019, the majority in eastern Ungava Bay and around 100 on the Hudson Bay coast (Gingras, 2019). While muskox could potentially be present in the study area, information obtained from participants in consultation activities suggests that its presence is rather anecdotal.

Woodland caribou (forest-dwelling ecotype)

The woodland caribou, forest-dwelling ecotype, lives mainly in the bioclimatic domains of the spruce- lichen-moss forest. The study area is at the northern limit of its range (Équipe de restauration du caribou forestier du Québec, 2013b). Very few woodland caribou are observed north of the 54th parallel (Szor & Gingras, 2020).

Hunting, predation by gray wolves and black bears, and logging are threats to woodland caribou. In the North-of-Quebec region, an agreement between the Crees and the Joint Hunting, Fishing and Trapping Committee (CCCPP) proposes to refrain from hunting woodland caribou (Équipe de restauration du caribou forestier du Québec, 2013a). The woodland caribou is a species designated vulnerable in Quebec. This population is part of the boreal woodland caribou population, designated threatened in Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020b).

Depending on the season, woodland caribou move widely, tending to congregate during winter, often near sites rich in terrestrial lichens. In the spring, they disperse in coniferous forests and peat bogs. They remain isolated during the calving period and summer and regroup again in the fall for reproduction (Courtois et al., 2003; Équipe de restauration du caribou forestier du Québec, 2013a; Jolicoeur et al., 2005).

In 2013, the woodland caribou population in Quebec was estimated at between 5,980 and 8,570 individuals divided into several herds over an area of approximately 644,000 km2 between the 49th and 55th parallels (Taillon et al., 2016). In 2020, the population in the James Bay and Rupert and La Grande rivers sectors was estimated at about 798 for a density of 0.55 caribou / 100 km2 (Szor & Gingras, 2020).

Woodland caribou (migratory ecotype)

The woodland caribou of the migratory ecotype, roam in herds of several thousand individuals, hundreds of kilometers between the boreal forest and the tundra depending on the season. The Rivière aux Feuilles herd frequents the northwestern part of North-of-Quebec (Taillon et al., 2016).

At the end of April, the migratory caribou of the Rivière aux Feuilles herd leave their wintering grounds, located between and the reservoirs of the La Grande complex, to reach their calving grounds in northern Quebec. This is the spring migration. Calving occurs in early June. After calving, from July to September, caribou frequent their summer range where they move around the tundra in search of food. Towards the end of September, it begins its fall migration towards its wintering area in the south

PESCA Environment 2-11 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

(Taillon, 2010; Taillon et al., 2016). In autumn and winter, it frequents the spruce-lichen forest of the Great Whale River, among others (Payette et al., 2002). Information obtained from participants in consultation activities suggests that migratory caribous are present in the study area regularly, but not every year, from late fall to early spring.

An aerial inventory of the Rivière aux Feuilles herd carried out in 2011 estimated the population at around 430,000 individuals. The population of this herd is declining; an estimate made in 2015 put the population at 320,000 individuals (Taillon et al., 2016). In November 2018, the Ministry of Forests, Wildlife and Parks (MFFP) released a demographic update, estimating the size of the Rivière aux Feuilles herd at 187,000 caribou (MFFP, 2018).

Moose

Moose are adapted to the climatic conditions of Quebec and to its harsh winters. The study area is located northwest of hunting zone 22 where the habitat area for moose is estimated at 204,142 km2 and the density of moose at 0.5 individual / 10 km2 (Lefort & Massé, 2015). Depending on the season, moose frequent mixed coniferous and deciduous forests and in particular fir and white or yellow birch forests. Its feeding area consists of thinning, burned and regenerating cutting areas (Lefort & Massé, 2015; Samson et al., 2002). Young deciduous or mixed forests where shrubs are abundant are a food source for moose, which consume 18 to 25 kg of twigs (winter and summer) or leaves and aquatic plants (summer) daily (Potvin et al., 2006). The area of the moose's home ranges between 20 and 100 km2 and is directly linked to the heterogeneity of the territory (Samson et al., 2002). Information obtained from participants in consultation activities confirms that moose are occasionally present in the study area.

Black bear

Black bears feed on plants, wild fruits, insects and can sometimes attack young moose and caribou (Samson 1996). In winter, black bears hibernate in their den, which is often shallow (<1.5 m) and dug under a stump or tree trunk (Samson 1995). Field inventories carried out by PESCA Environnement in 2012 and 2013 confirmed the presence of black bears in the study area. Information obtained from participants in consultation activities confirms that black bears are present in the study area.

Polar bear

Polar bears from the southern Hudson Bay population are likely to frequent the study area (COSEPAC, 2018). The type and distribution of ice in Hudson Bay, where it accesses its primary prey, seals, are the primary factors determining the quality of habitat and distribution of polar bears. Polar bears in the southern Hudson Bay population are forced to return to the mainland during the ice-free months (COSEPAC, 2018). The polar bear is a species designated as vulnerable in Quebec and of special concern in Canada. Information obtained from participants in consultation activities confirms that polar bears are rare in the study area.

Other mammals

The study area presents diversified habitats for 18 species of small and medium-sized mammals, according to trapping statistics from the fur-bearing animal management unit (UGAF) 95 and data on the distribution of species (table 2.5).

PESCA Environment 2-12 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

Table 2.5 Small and medium-sized terrestrial mammals potentially present in the study area

Species Habitat Home range area (km2) Carnivore Least weasel Marshy areas, wet meadows, fields and brush. 0.01 Wolverine Variety of ecological zones of different elevations, wooded or not. Female : 50 to 400 Habitats where it can find abundant carrion for food. Male : 230 to more than 1,500 Ermine Disturbed areas, scrub, peat bogs and meadows dotted with bushes. Less than 0.4 Gray wolf Wide variety of habitats: mixed forest, boreal forest. Very variable. can go up to 10 000 River otter Lakes, rivers, marshes and sea bays. 1 to 40 km of shores Canada lynx Coniferous forests, swamps and brush where there is an abundance of 11 to 50. sometimes more hare. than 200 American marten Mature predominantly coniferous forests. The woody debris in these Female : 3 to 6 stands provide prime sites for foraging and the establishment of sub- Male : 20 to 30 snow dens. Red fox Varied habitats: fields bordered by shrub hedges, bushes, wooded 3 to 30 islets, edges of large forests. Arctic fox Alpine and arctic tundra, along shorelines, on ice 2 to 30 Mink Along rivers and lakes in the forest, in scrub and in inhabited areas. 1 to 5 km of shores

Lagomorph Snowshoe hare Environments where young conifers grow: areas of regrowth, thickets, 0.02 to 0.16 brush, clearings and edges of watercourses. Arctic hare Tundra, rocky slope beyond the tree line, in winter it frequents wooded 0.006 to 0.16 areas. Rodent American beaver Plans and streams of wooded areas. 2.6 to 5.2 Red squirrel Varied habitats: coniferous, mixed forests, maple groves. 0.01 to 0.02 Northern flying squirrel Dense and mature coniferous or mixed forests including birch and 0.008 to 0.012 poplar. Groundhog Sandy and well-drained land, fields, rocky rugged terrain, woodland Immediate vicinity of its den edges, sparse forests. Porcupine Varied habitats: mature forests, small woodlands, coniferous and 0.02 to 0.59 deciduous groves, rocky slopes and scree. Muskrat Swamps, streams, rivers, ponds, lakes and drainage canals. 0.03 to 0.07 around its den

Sources : (COSEPAC, 2014; MFFP, 2016-2020b; Morin et al., 2005; Nadeau et al., 1995; Ouellet, 1986; Prescott & Richard, 2013; Société de la faune et des parcs, 2003)

Among the species potentially present in the study area, two have a special status: the least weasel and the wolverine. The least weasel is the smallest carnivore in North America. This northern species is found, but rarely abundant, from Alaska to Labrador. In the southern part of its range, the least weasel frequents open areas such as prairies, wet meadows, swamps, stream banks and brush. Further north, it frequents tundra and coniferous forest (MFFP, 2016-2020b; Prescott & Richard, 2013). The least weasel is a species likely to be designated threatened or vulnerable in Quebec and has no status in Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020b).

PESCA Environment 2-13 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

The wolverine is a medium-sized carnivore, and the largest land mustelid. Its current presence in Quebec is uncertain and has been for several decades. Opportunistic and capable of traveling long distances, it adapts its diet according to its availability and the seasons. Its prey includes small mammals and ground- nesting birds. Large ungulate species are its main source of carrion in winter (COSEPAC 2014; MFFP 2016-2020b). The wolverine is a threatened species in Quebec and of special concern in Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020b).

Micromammals

Micromammals include voles, mice, moles and shrews. They are an essential link in the food chain because they represent an important part of the diet of many carnivorous mammals or birds of prey (Desrosiers et al., 2002).

The habitats used by micromammals are varied and their distribution can be large or limited (Desrosiers et al., 2002). Data from the Atlas of micromammals of Quebec and data on the distribution of species make it possible to determine the potential presence of 11 species of micromammals in the study area (Table 2.6). None of these species have a special status (Gouvernement du Canada, 2020; MFFP, 2016-2020b).

During field surveys carried out by PESCA Environment in 2013, the presence of deer mouse and Gapper's red-backed vole was confirmed in the study area.

Table 2.6 Micromammals potentially present in the study area

Specie Habitat

Insectivorous Star-nosed mole Wetlands and riparian areas with loose soil, forests, fields. Masked shrew Varied habitats: mature coniferous or deciduous forests, scrub, pastures; prefers riparian and wet environments (marshes, peat bogs, etc.). Water shrew Mature coniferous or mixed forests near streams, swamps and scrub. Pygmy shrew Varied habitats near a water source: deciduous and coniferous forests, thickets, grassy regions, clearings, peat bogs, swamps and marshes. Rodent Gapper's Red-backed Vole Mature coniferous, mixed or deciduous forests near streams, swamps and peatlands; woodlands strewn with fallen trees and forest edges. Western heather vole Diversified habitats: clearings dotted with scrub and ericaceous plants; Grassy undergrowth of coniferous forests near mountain peaks. Dry land or near waterways. Meadow vole Wet and grassy meadows; meadows, clearings, wasteland near a water source; marshes and salt marshes. Vole-boreal lemming Sphagnum peat bogs, humid coniferous forests, wet tundra meadows. Ungava Lemming Arid land covered with liches in the tundra. Field jumping mouse Moist meadows strewn with bushes, banks of rivers and swamps, fields, groves of alders and willows; edges of coniferous and deciduous forests. Deer mouse Coniferous, mixed or deciduous forests, well-drained meadows where the vegetation cover is dense. Sources : (Desrosiers et al., 2002; Prescott & Richard, 2013)

PESCA Environment 2-14 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

2.3.2.4 Fish

Data on the distribution of freshwater species (living in freshwater) allow us to determine the potential presence of 17 species in the lakes and rivers of the study area (Table 2.7).

Table 2.7 Fish species potentially present in the study area

Specie Habitat Salmonid Lake whitefish At all the depths of the northern lakes. Coastal brackish waters of Hudson Bay and large rivers. Round whitefish Deep lakes, large rivers and sometimes brackish water. Arctic char (anadromous Estuaries and coastal regions for food; lakes and rivers to breed. subgroup) Brook trout Streams, rivers and lakes with cool, clear and well oxygenated waters. Lake trout Lakes, rivers and sometimes brackish water in northern regions. Other family Mottled sculpin Cold water streams and rivers, gravel or rock substrate. Slimy sculpin Moderate streams, cold water lake, gravel or rock substrate. Lake Cisco North of its range: brackish waters of coastal regions, lakes and large rivers. Walleye Shallow waters of lakes and large rivers. Basins at the foot of rapids and areas of moderate current. Threespine stickleback Lakes, rivers, streams and brackish waters of estuaries and coastal regions. Associated with the presence of vegetation. Ninespine stickleback Grassy coastline of lakes, intertidal marshes and coastal marine waters. Northern pike Shallow, densely vegetated waters of slow rivers, warm, grassy bays of lakes. Burbot Cold and deep waters of lakes and large rivers. Lake chub Lakes, streams and rivers with sandy or rocky bottoms. White sucker Varied habitats: streams, rivers, ponds and lakes. Longnose sucker Clear and cold waters. At all depths in northern latitudes. Longnose dace Large streams and rivers of cool, clear or cloudy water, strong current, gravel or rock substrate.

Sources : (Bernatchez & Giroux, 2012)

During field surveys carried out by PESCA Environment in 2012, the presence of brook trout was confirmed in the study area (figure 2.7). The fish inventory was carried out at three stations (two lakes and one permanently flowing stream) using two bait traps and a fyke net between September 30 and October 4, 2012 (figure 2.8 and Volume 2, Map 2). In total, a fishing effort of 96 hours was carried out.

PESCA Environment 2-15 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

Figure 2.7 Brook trout captured in 2012

Figure 2.8 Installation of a fyke net in 2012

2.3.2.5 Amphibians and reptiles

Amphibians include frogs, tree frogs, toads, salamanders and newts while reptiles include turtles and snakes. The study area includes terrestrial and aquatic habitats favorable to these animals. Thus, 6 of the 21 species of amphibians and one of the 17 species of reptiles present in Quebec are potentially present there (Table 2.8).

PESCA Environment 2-16 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

Table 2.8 Species of amphibians and reptiles potentially present in the study area

Specie Habitat Amphibian American toad Diversified terrestrial habitats: forests, wastelands, peat bogs, gardens; certain dry environments such as fields and quarries, damp shelters with loose soil for burrowing. Wood frog Terrestrial habitats, mainly forests, but also wet fields and bogs. Mink frog Aquatic habitats where the water is permanent and fresh such as lakes, swamps, ponds and bogs; hibernates at the bottom of the water. Northern leopard frog Open habitats such as marshes bordering lakes and rivers, ponds, bogs and fields; hibernates at the bottom of lakes, rivers and ponds where there is current. Northern spring peeper Forests, wasteland, cattail ponds, swamps and bogs; climbs trees and shrubs; hibernates in forest litter, under a rotten trunk or fallen bark. Blue-spotted salamander Forests, woodlands, ecotones and peatlands; near breeding ponds; remains buried under tree trunks and rocks or in the ground; hibernates in the ground. Reptile Common garter snake Various habitats disturbed or not: open environments, forests, ponds, lake and riverbanks, buildings; hibernates in crevices in the ground, under stones, in burrows and wells.

Sources : (Desroches & Rodrigue, 2004; Société d'histoire naturelle de la vallée du Saint-Laurent, [s.d.]; Société de la faune et des parcs, 2003)

An inventory was carried out in August 2013 by PESCA Environment in certain stretches of watercourse in the study area. Any incidental detection during this displacement was also noted. The inventory confirmed the presence of two species of amphibians common in Quebec: the wood frog (Rana sylvatica; Figure 2.9) and the American toad (Bufo americanus). No special status species were detected during the inventory (Gouvernement du Canada, 2020; MFFP, 2016-2020b).

Figure 2.9 Wood frog detected in 2013

PESCA Environment 2-17 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

2.3.2.6 Wildlife species with special status

As mentioned in the previous sections, eight special-status wildlife species are likely to be present in the study area.

Table 2.9 Special-status wildlife species potentially present in the study area

Status CDPNQ Study Area2 Specie 1 Federal Provincial (mention ) (presence) Avian fauna Golden eagle Not at risk Vulnerable No Yes Peregrine falcon -- Vulnerable No Yes Short-eared owl Special concern LDTV No No Rusty blackbird Special concern LDTV No Yes Terrestrial mammals Least weasel -- LDTV4 No Und.5 Wolverine (eastern population) Special concern Threatened No Und. Caribou (forest-dwelling ecotype) Threatened Vulnerable No Und. Polar bear Special concern Vulnerable No Und. 1 Species with special status recorded in the digital database of the Data Center on Natural Heritage of Quebec on the territory corresponding to the study area. 2 Special status species whose presence was confirmed during the wildlife inventory in 2012 and 2013 in the context of the project. 3 -- : No recognized status for the species. 4 LDTV : species likely to be designated threatened or vulnerable in Quebec. 5 Und. : undetermined. No inventory has been carried out in the context of the project for the species.

Sources : (CDPNQ, 2020; Gouvernement du Canada, 2020; MFFP, 2016-2020a)

2.3.2.7 Wildlife habitats

No existing or proposed protected area, either an exceptional forest ecosystem, a biological refuge, a wildlife habitat or a wildlife site of interest, is present in the study area. As indicated in section 2.3.2.1, an Important Bird Area (IBA) associated with the Great Whale River and its tributaries partially overlaps the study area (Volume 2, Map 2).

2.4 Description of the components of the human environment

The communities of Whapmagoostui and Kuujjuaraapik coexist just north of the 55th parallel, bordering Hudson Bay. Kuujjuaraapik is the southernmost of the northern Inuit villages of Nunavik, while Whapmagoostui is the northernmost Cree community in the Eeyou Istchee territory.

PESCA Environment 2-18 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

2.4.1 Socioeconomic context

2.4.1.1 Cree community of Whapmagoostui

The Cree community of Whapmagoostui occupies the eastern portion of the village, bordering the Great Whale River, and numbered 984 inhabitants in 2016. The main languages spoken in this community are English and Cree (Statistique Canada, 2020). Although located in the territory served by the Kativik Regional Government (KRG), Whapmagoostui is under the jurisdiction of the Grand Council of the Crees (Eeyou Istchee) and the Cree Nation Government.

Administrative framework

The community of Whapmagoostui is managed by a Chief, a Vice-chief and a Band Council made up of seven Counselors (Whapmagoostui First Nation, [n.d.]). The community is part of the North-of-Quebec census division and the provincial electoral district of Ungava.

Socioeconomic context

In 2016, Whapmagoostui's unemployment rate was 14.0% and Quebec's was 7.2%. The community's activity rate was 7.4% higher than that of Quebec (Statistique Canada, 2020). The median income of residents of Whapmagoostui was $ 1,103 lower than the Quebec average. According to the 2016 census, the number of economically active persons aged 15 and over with an income was estimated at 615 individuals (Table 2.10).

Table 2.10 Main income and labor market indicators - Whapmagoostui, Kuujjuaraapik and province of Quebec, 2016

Province Characteristics Whapmagoostui Kuujjuaraapik of Quebec Unemployment rate (%) 14.0 18.6 7.2 Activity rate (%) 71.5 62.8 64.1 People aged 15 and over with income 615 450 6,417,615 Median total income of people aged 15 and over ($) 31,872 26,976 32,975 Composition of total income (%) Earnings as a percentage of income 68.0 76.5 84.4 Government transfers as a percentage of income 31.8 22.9 15.6 Note : Occasional discrepancies in the data presented for a community are due to a method applied to census data by in order to protect the privacy of Canadians.

Source : (Statistique Canada, 2020)

In the context of Statistics Canada's census, the term “industry” refers to the general nature of the activity of the establishment where the person works; in the case of Whapmagoostui, it is mainly health care and social assistance, public administration and educational services (Table 2.11).

PESCA Environment 2-19 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

Table 2.11 Division of the labor force of the community of Whapmagoostui by industry, 2016

Industry Whapmagoostui Kuujjuaraapik Public administrations 100 50 Agriculture, forestry, fishing and hunting 10 0 Arts, entertainment and recreation 30 15 Other services (except public administrations) 15 10 Retail business 35 25 Wholesale 0 10 Construction 10 10 Mining, quarrying, and oil and gas extraction 0 15 Manufacturing 0 10 Information industry and cultural industry 10 10 Administrative services, support services, waste management services and 10 0 remediation services Educational services 70 50 Accommodation and food services 10 25 Real estate and rental and leasing services 10 0 Public services 0 10 Health care and social assistance 130 50 Transport and storage 20 15 Not applicable 15 15 Note : Occasional discrepancies in the data presented for a community are due to a method applied to census data by Statistics Canada in order to protect the privacy of Canadians.

Source : (Statistique Canada, 2020)

Community and institutional infrastucture and services

Whapmagoostui has a police force and a public security service responsible for the fire service (Whapmagoostui First Nation, [n.d.]). The community of Whapmagoostui has an Awash Estchees Child Care Center, a clinic and home help services. Badabin Eeyou School elementary and secondary school is part of the and has 260 students. Teaching is provided by 11 educators and 29 teachers (CSC, [n.d.]). Adult education is also offered by Sabtuan Adult Education Services (SAES). Other facilities include the Tommy Masty Memorial Hall, a sports complex (including the arena) and the Nordic Studies Center research complex (CEN, 2020; Whapmagoostui First Nation, [n.d.]).

Tourism

The tourism industry plays an important role in the economy of Whapmagoostui. A non-exhaustive list of the sites and tourist attractions listed (Whapmagoostui First Nation, [n.d.]) is presented below: ◦ The Whapmagoostui Rapids; ◦ Manitounauk Sound; ◦ Inukshuk; ◦ The Cultural Camp; ◦ St. Edmund’s Anglican Church Museum; ◦ Austin Airways Plane Crash Site.

PESCA Environment 2-20 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

2.4.1.2 Inuit community of Kuujjuaraapik

The Inuit community of Kuujjuaraapik occupies the western portion of the village, bordering Hudson Bay, and had a population of 686 in 2016 (Statistique Canada, 2020). They mainly speak and English, and for some, Cree or French. The community is served by the Kativik Regional Government (KRG) and is part of the administrative region of North-of-Quebec.

Administrative framework

Kuujjuaraapik is a northern village in Nunavik. It is managed by a Mayor and six Counselors. The regional Counselor and the Secretary-Treasurer complete the Municipal Administration (MAMH, [s.d.]). This community is part of the North-of-Quebec census division and the provincial electoral district of Ungava.

Socioeconomic context

In 2016, Kuujjuaraapik's unemployment rate was 18.6%. The community's activity rate was 1.3% lower than that of Quebec (Statistique Canada, 2020). The median income of the inhabitants of Kuujjuaraapik was $ 5,999 lower than the Quebec average. According to the 2016 census, the number of active people aged 15 and over with an income is estimated at 450 individuals (Table 2.10). Health care and social assistance, public administration and educational services were the main employment sectors in Kuujjuaraapik in 2016 (Table 2.11).

Community and institutional infrastructure and services

Kuujjuaraapik has a Public Security department responsible for the fire department (ARK, 2019b). The CLSC at the Inuulitsivik health center in Kuujjuaraapik has three nurses and a doctor on site (Centre de santé Inuulitisivik, 2011-2019). The Asimauttaq school in Kuujjuaraapik is part of the and has 179 students and 23 teachers (Kativik Ilisarniliriniq, 2020).

The Kuujjuaraapik cooperative, member of the Fédération des coopératives du Nouveau-Québec, offers services to members of both communities: retail sale, distribution of petroleum products, cable distribution, hotels and adventure tourism (FCNQ, 2018). It is the only cooperative of the Federation to be represented by one person from each community. A Northern Store grocery store is also present. Other facilities include various administrative offices, a cultural center, a sports complex, a swimming pool and the airport.

Tourism

A non-exhaustive list of sites and tourist attractions listed in the community of Kuujjuaraapik is presented below (Makivik Corporation, 2019): ◦ Manitounuk Islands; ◦ Amitapanuch Falls; ◦ The old church; ◦ Asimauttaq School.

The Whale Post Cooperative hotel is available to travelers (FCNQ, 2018).

PESCA Environment 2-21 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

2.4.2 Land use

2.4.2.1 Land tenure

The study area is located on Category I lands of Kuujjuaraapik (14.8 km2, or 31.6%) and on Category IA lands of the Whapmagoostui First Nation (32.0 km2, or 68.4 %; Volume 2, Map 3).

2.4.2.2 Recreational activities

The information presented in this section comes from sources cited in the text and enhanced from interviews conducted by the project developer during his public consultation process. These interviews were carried out with young people, women's groups, elders, hunters and trappers, both Cree and Inuit. Surveys were also made available to the population. Details of these interviews are provided in section 4.

Hunting, fishing and trapping

The study area is frequented by Cree and Inuit hunters. The main target species are Canada goose, caribou, ptarmigan, snow goose, moose and black bear. Waterfowl (geese) hunting generally takes place on the outskirts of wetlands. Moreover, interviews with the local population confirmed that goose hunting areas are located to the northwest and southeast of the hill where the wind turbines are planned. A ptarmigan hunting area is located north of the existing path, near the water bodies.

It appears that in addition to caribou, some species are declining in the area, including the snow goose, ptarmigan and grouse (Cree Nation of Whapmagoostui 2019). Moose, black bears and wolves are on the increase.

The use of the study area for fishing or trapping activities appears to be limited. Some survey respondents indicated that foxes and hares were trapped. Several participants in the consultation activities indicated that they occasionally fish in the study area, especially during the fall and winter.

Berry picking and plant gathering

The study area is used by the local population for picking berries, medicinal plants, wood and boughs. Several participants in the consultation process indicated that they used the territory traditionally in late August and September to pick blackberries and crowberries, blueberries, redberries, cloudberries and Labrador tea. Lime grass is also gathered traditionally. Areas used for picking are also used as picnic areas.

Encampments

Different camps are spread across the study area, outside the village. An aerial image analysis was carried out in order to identify them, particularly targeting the area planned for the implementation of the project. Participants in the consultation process confirmed that the study area was frequented by users of these camps.

PESCA Environment 2-22 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

All-terrain vehicle (ATV)

No quad club affiliated with the Fédération québécoise des clubs quads is present in the study area (FQCQ, [n.d.]). However, there are several trails there. These trails provide access to the camps and give access to the territory (Whapmagoostui First Nation, [n.d.]).

Snowmobile

No snowmobile trail affiliated with the Fédération des clubs de motoneigistes du Québec crosses the study area. The closest federated trails are located south of Radisson, 170 km south of the study area (FCMQ, 2020). However, the study area has several snowmobile trails that provide access to the territory (Whapmagoostui First Nation, [n.d.]). Some participants in the consultation process confirmed that they travel the territory by snowmobile.

Canoe and kayak

There is an undeveloped canoe route on the Great Whale River. This route originates near Caniapiscau Reservoir and empties into Hudson Bay. The Great Whale River is a course considered very difficult (Canot Kayak Qc, [n.d.]).

2.4.2.3 Spiritual and cultural activities

Participants in the consultation process indicated that gatherings are traditionally held to celebrate Sundance Grounds in the south of the study area, east of the camps. These gatherings take place once a year, usually during the first week of July. In addition, several participants in the consultation process confirmed that they frequent the study area to enjoy the landscape.

2.4.2.4 Mineral ressource exploitation activities

An active mining title (exclusive lease) covering an area of 2.1 ha held by the Ministère des Transports du Québec (MTQ) is located in the village of Whapmagoostui (Volume 2, Map 3).

Six surface mineral extraction sites, three of which are open with conditions, are within the study area. Two of these sites are owned by the MTQ for the extraction of gravel and crushed stone. The third is held by the village of Kuujjuaraapik and is aimed at gravel extraction (Volume 2, Map 3).

2.4.3 Public utility infrastuctures

2.4.3.1 Air transport infrastuctures

The Kativik Regional Government's (KRG) transportation service is responsible for the management, operation and maintenance of the 13 community airports in the Nunavik region, including the Kuujjuaraapik airport, located in the territory of the study area (ARK, 2019a; Transports Québec, 2020). This airport is served by the airlines and Air Creebec, which provide a regular connection.

PESCA Environment 2-23 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

2.4.3.2 Maritime transport infrastuctures

The territory of the communities of Whapmagoostui and Kuujjuaraapik has infrastructure to facilitate maritime transport: a cargo unloading area, an access ramp and a breakwater.

2.4.3.3 Power transmission lines

The communities of Whapmagoostui and Kuujjuaraapik are supplied with electricity through an off-grid network not connected to the Hydro-Québec distribution network. Electricity is produced by a diesel power plant with an installed capacity of 3.41 MW. In 2018, this network served 721 subscribers, including 602 residents (Hydro-Québec Distribution, 2019b). The Fédération des coopératives du Nouveau-Québec is the diesel supplier for the plant.

2.4.4 Telecommunication systems

The telecommunication systems were identified in a preliminary study carried out by YRH, a broadcasting and telecommunications consultant in 2020. This baseline study is attached in Appendix D.

2.4.4.1 Diffusion systems

Broadcasting systems include broadcasting stations and radio stations (AM and FM). No theoretical protected broadcasting service outline (digital or analog) covers, in whole or in part, the area targeted for the installation of wind turbines. Four broadcasting stations are present on the outskirts of the study area, two community stations, one Inuit and the other Cree, as well as the public stations of CBC / Radio- Canada (Table 2.12).

Table 2.12 Broadcasting stations on the outskirts of the study area

Frequency Station (MHz) Location Owner VF2438 Kuujjuaraapik 94.1 Kuujjuaraapik Taqramiut Nipingat inc. CKRQ-FM Whapmagoostui/P. Bale 96.5 Whapmagoostui Whapmagoostui Aeyouch Telec. Ass. CFFB-FM-4 Kuujjuaraapik 103.5 Kuujjuaraapik CBC/ Radio-Canada CBFG-FM-2 Kuujjuaraapik 105.1 Kuujjuaraapik CBC/ Radio-Canada

2.4.4.2 Navigational aid systems

VOR systems (VHF Omnidirectional Range) and ILS / Localizer systems (Instrument Landing System) are mainly associated with airports. A land use proposal was sent to NAV Canada, who responded that they had no objections to the project.

2.4.4.3 Mobile systems

A mobile communication system is in the study area (Volume 2, Map 3). It is associated with Laval University. This is a mobile system without a repeater.

PESCA Environment 2-24 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

2.4.4.4 Microwave links

Point-to-point microwave telecommunications systems are used to link broadcast sites to their studios (radio and television broadcasting) as well as for a multitude of other applications such as radio telephony and military or security communications. Two point-to-point links, involving three microwave sites, cross the study area (Volume 2, Map 3). This is a network operated by Bell Canada.

2.4.4.5 Radar systems

No NAV Canada weather or air navigation radar stations were detected within 50 and 80 km, respectively, of the study area.

2.4.4.6 Seismological systems

A seismological station of the Canadian National Seismological Network is in the northern village of Kuujjuaraapik (Volume 2, Map 3).

2.4.5 Soundscape

2.4.5.1 Methodological approach

The characterization of the ambient soundscape was carried out by PESCA Environment between August 16 and 25, 2013. This study was carried out in accordance with the measurement criteria required in the context of wind power projects in Quebec and in the instruction note on noise (MELCC, 2020e). The location of the three initial noise assessment points was determined by considering the position of the planned infrastructures, the access roads that will be used and the position of the various potential receptors near these infrastructures and roads. The objective was to determine the initial noise level at these assessment points (Table 2.13 and Volume 2, Map 3).

Table 2.13 Location of the initial noise assessment points in 2013

Coordinates Evaluation Description of (UTM NAD 83 Zone 18) points receptor Localisation X Y SON-01 Nordic study Cree village of Whapmagoostui 325533 6129007 center SON-02 Encampment Category IA (Cree) territory along the road leading to the 328401 6130367 proposed wind turbine sites, near the camp located closest to these sites. SON-03 Encampment Category I (Inuit) territory along the road leading to the 330350 6137041 TNO Hudson Bay, near a camp.

On each of the measurement sites, the sound level meter was positioned between the projected noise source and the building. The sound level meter was installed at a height of 1.5 m, more than 3 m from any surface that could reflect noise and from any traffic lane, in accordance with the instruction note on noise.

Data relating to the initial LAeq, 5s sound level were recorded at each evaluation point over a period

PESCA Environment 2-25 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

varying from one to three days between August 16 and 25, 2013. A logarithmic average was calculated

from the LAeq,1s in order to obtain the LAr,1h for each complete hour of data.

The sound surveys were carried out with compliant Class 1 devices and in weather conditions favorable to taking measurements according to the requirements of the instruction note on noise. The sound level meters were calibrated before and after each series of measurements using a class 1 standard source.

A Vantage Vue weather station (Davis Instruments) with data logger chip located 1.5m away, at the same height as the sound level meter, was used to collect the weather data. According to the Noise Instruction Note, a noise measurement data is considered acceptable if, during recording:

◦ The wind speed did not exceed 20 km / h (5.5 m / s) at the location of the instrument;

◦ The humidity level did not exceed 90 %; ◦ The pavement was dry and there was no precipitation;

◦ The ambient temperature remained within the tolerance limits of the equipment in operation, between -10 ° C and 50 ° C.

2.4.5.2 Ambient noise level

For each measurement day, the minimum and maximum LAeq,1h sound levels for the day period (7 a.m. to

7 p.m.) and night (7 p.m. to 7 a.m.) were extracted from the data collected. The LAeq,average for each measurement period was also calculated (Table 2.14).

The minimum sound level on a 1-hour basis varied between 23.4 and 44.4 dBA during the day and between 18.8 and 35.1 dBA at night. The maximum sound level on a 1-hour basis varied between 38.5 and 57.4 dBA during the day and between 28.6 and 49.6 dBA at night.

The initial noise sources were diverse and varied depending on the point of assessment. Wind, noise from various vehicles, gunshots, barking and bird calls, among other things, caused noises in excess of 50 dBA.

PESCA Environment 2-26 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

Table 2.14 Results of the initial noise assessment in 2013

Evaluation Start End LAeq,1h (dBA) LAeq,average Period Duration point Date Time Date Time Min. Max. (dBA) SON-01 Night 2013-08-16 21 h 20 2013-08-17 07 h 00 09 h 40 34.8 45.5 41.3 Day 2013-08-17 07 h 00 2013-08-17 19 h 00 09 h 00 41.7 57.4 50.1 Night 2013-08-17 19 h 00 2013-08-18 07 h 00 10 h 00 34.3 40.4 37.7 Day 2013-08-18 07 h 00 2013-08-18 19 h 00 11 h 00 37.1 45.5 40.6 Night 2013-08-18 19 h 00 2013-08-19 07 h 00 12 h 00 32.7 48.6 39.8 Day 2013-08-19 07 h 00 2013-08-19 19 h 00 12 h 00 33.9 49.3 41.8 Night 2013-08-19 19 h 00 2013-08-20 07 h 00 12 h 00 35.1 49.6 40.7 Day 2013-08-20 07 h 00 2013-08-20 11 h 05 04 h 05 44.4 52.8 49.1 SON-02 Day 2013-08-21 10 h 00 2013-08-21 19 h 00 09 h 00 33.2 42.9 39.4 Night 2013-08-21 19 h 00 2013-08-22 07 h 00 03 h 00 34.1 39.9 37.2 Day 2013-08-22 07 h 00 2013-08-22 19 h 00 10 h 00 32.9 43.1 40.5 Night 2013-08-22 19 h 00 2013-08-23 07 h 00 12 h 00 18.8 28.6 23.1 Day 2013-08-23 07 h 00 2013-08-23 16 h 25 09 h 25 23.4 41.3 34.5 SON-03 Day 2013-08-24 11 h 18 2013-08-24 19 h 00 07 h 42 34.3 38.5 36.8 Night 2013-08-24 19 h 00 2013-08-25 07 h 00 12 h 00 29.0 38.6 32.9 Day 2013-08-25 07 h 00 2013-08-25 15 h 10 08 h 10 35.7 39.0 37.7

2.4.6 Landscape

The landscape study area is defined according to the areas of influence suggested in the Guide for carrying out a landscape integration and harmonization study - Wind farm installation project on public land (MRNF, 2005). Thus, the study area includes:

◦ The area of strong influence covering a radius of approximately ten times the total height of the wind turbines; ◦ The average area of influence corresponding to a radius of approximately one hundred times the total height of the wind turbines; ◦ The area of weak influence comprising the sectors within which the wind turbines remain visible. Limit established beyond 17 km in the Study on the cumulative impacts of wind turbines on landscapes (MRNF, 2009); ◦ Areas of regional interest valued for their landscapes, located outside the areas of influence.

WKHPPP is located at the southwest end of Nunavik, on the edge of Hudson Bay. The study area encompasses the villages of Whapmagoostui and Kuujjuaraapik on the border of the taiga and the tundra. These two villages are built on a sandy spit at the mouth of the Great Whale River (Figure 2.10).

PESCA Environment 2-27 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

Source : (Université de Montréal, 2007) Figure 2.10 Communities of Whapmagoostui and Kuujjuaraapik, at the mouth of the Great Whale River

Oriented east-west, the Great Whale River delimits the forest ecotones of the taiga (boreal forest), which lies to the south, and the forest tundra which gradually dominates the landscape to the north. The vegetation type in the study area is coastal tundric forest.

The site for the wind turbines will be located on a hill located in the western portion of the study area (Volume 2, Map 1).

2.4.6.1 Landscape units

The study area has landscapes representative of two of Quebec's natural regions (MLCP, 1986):

◦ The Hudson Plateau (natural region B37), which occupies almost the entire study area; ◦ The Hudson's Cuestas (Natural Region B38), encompassing the Manitounuk Islands, which rise along the coast of Hudson Bay.

The Hudson Plateau

The Hudson region is described as a rugged plateau whose relief is conditioned by the geological structure and, to a lesser extent, by surface deposits. The plateau, characterized by faults and breaks created by erosion and streams, slopes east to west towards Hudson Bay (MELCC, 2020d).

The average altitude of the Hudson Plateau oscillates around 300 m. Overall, the plateau is not rugged compared to other regions of the Canadian Shield, such as the Torngat Mountains, the Hudson Strait coast and the Laurentians with deep valleys.

PESCA Environment 2-28 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

On the scale of the study area, the regularity of the rocky surfaces, the average altitude and the slight difference in level between the top and the base of the relief, of about 125 m, are representative characteristics of the Hudson Plateau (figure 2.11).

The highest peaks in the study area reach about 235 m altitude. The planned site of the wind turbines, which is in this more rugged area, is visible as far as Hudson Bay and from the villages of Whapmagoostui and Kuujjuaraapik (Volume 2, Map 1).

Source : PESCA Environnement Figure 2.11 Hudson Plateau

The Hudsonian Cuestas

The study area is on the edge of the Hudson's Cuestas Natural Region. The cuestas stretch for approximately 650 km along the eastern shore of Hudson Bay, between Kuujjuaraapik and Inukjuak (MLCP, 1986).

The Hudsonian Cuestas, encompassing the Manitounuk Islands, rise along the coast of Hudson Bay (Figure 2.12). The backs of these cuestas, facing out to sea (to the west) are characterized by rocky beaches while their fronts, which face the mainland (to the east), are made up of cliffs (CEN, 2020). On land, they fade and disappear near Kuujjuaraapik and Whapmagoostui.

In the northern part of the study area, the coastal sector differs from the Hudson Plateau due to the presence of the Hudson Cuestas escarpments.

Natural regions constitute a geographical space, determined according to the combination of biophysical characteristics (relief, vegetation cover, water bodies, type of soil).

PESCA Environment 2-29 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

The analysis of the landscapes of the study area considers the visual framework of the environment which generally results from the topography and the vegetation cover of the landscape as well as the mode of organization and use of the space.

Source : PESCA Environnement Figure 2.12 Hudsonian Cuestas

2.4.6.2 Points of interest

The inventory on the field, the description of the natural regions and the study of the organization and land use made it possible to identify points of view of interest.

In general, a point of interest must meet one or the other of the following criteria: relatively high observer density, significant recreational tourism activities or significant visitation rate. In addition, it must offer an open view of the landscape.

The points of view of interest are presented in Table 2.15 as well as in Volume 2 (Map 3 and Visual Simulations 1 to 6).

Table 2.15 Points of Interest in the Context of WKHPPP

Points of interest Visual simulation 1 – Meeting place - Mouth of the Great Whale River VS1 2 – Talinniq Avenue – Whapmagoostui / Kuujjuaraapik VS2 3 – Airport path – Kuujjuaraapik VS3 4 – Meeting place - Beach on the shore of Hudson Bay VS4 5 – 13 km northbound trail along Hudson Bay VS5 6 – Access path to the site of the wind turbines VS6

PESCA Environment 2-30 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Description of the environment

2.4.7 Archeological and cultural heritage

2.4.7.1 Archeological heritage

The description of the archaeological heritage of the study area comes from research carried out in the 1960s to 1980s, particularly in the context of Hydro-Québec's Grande-Baleine hydroelectric project (Archéotec, 1979, 1990, 2009; Avataq Cultural Institute, 1990). The study areas defined by previous archaeological research partly cover the project study area as well as the surrounding area.

Native American and Inuit prehistoric, historical and contemporary sites have been identified in the study area. The occupation of ancestral populations was possible following the retreat of the Tyrrell Sea in parts of the bay (Archéotec, 2009). The oldest known prehistoric site in the vicinity of the study area is a pre- Dorset site dating from around 3,700 years old and located in a boulder field near Poste-de-la-Baleine (Archéotec, 1990). Prehistoric traces of occupation of Palaeo- origin in the Kuujjuaraapik region are dated between 1500 BC and 900 years AD. (Avataq Cultural Institute, 1990). The oldest traces of the occupation of Amerindian populations date from 3,500 to 3,000 years ago, mostly inland, particularly in the region of Lake Caniapiscau and the Laforge River (Archéotec, 1990, 2009).

The archaeological potential appears higher along the coast of Hudson Bay and the shores of the Great Whale River than inland, due to the processes of natural movements, the occupation of this territory being associated with the hunting of waterfowl, fishing in estuaries, hunting marine mammals and setting up trading posts from the end of the 18th century (Archéotec, 1990).

A Hudson's Bay Company trading post was built in 1790 at the mouth of the Great Whale River (Archéotec, 1990). This post gave birth to Poste-de-la-baleine, a village renamed in 1980 to become those of Kuujjuaraapik and Whapmagoostui.

Contemporary sites discovered in the study area include settlements and developments after 1950. Archaeological sites are associated with hunting activities in the region. Evidence of contemporary occupation such as metal fox traps, a sled, and callers have been observed (Avataq Cultural Institute, 1990). The settlement of the Amerindians in the region became more marked from 1950, for the development of a military base (Archéotec, 2009). For the majority of participants in the consultation process, the archaeological potential of the study area rests on the presence of these ancient camps, evidence of historical use of the territory.

2.4.7.2 Cultural heritage

The description of the cultural heritage of the study area comes from interviews conducted by the project developer during his public consultation process. These interviews were carried out with young people, women's groups, elders, hunters and trappers, both Cree and Inuit. Details relating to these interviews are provided in section 4. In addition, the Quebec Cultural Heritage Directory and the Historic Sites and Monuments Board of Canada were consulted (MCC, 2013-2020; Parcs Canada, 2020).

A diamond point from the territory of the study area (Kuujjuaraapik) is listed in the Quebec Cultural Heritage Directory (site GhGk-63, catalog no. 600). This point is a cultural and archaeological asset resulting from Inuit heritage. The diamond point is an object linked to hunting which dates from the classical Dorset period (2,200 to 1,500 years before today). Shaped in chert using tools, this object was used as a knife or spear point (MCC, 2013-2020).

PESCA Environment 2-31 March 31, 2021

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Project description

3 Project description

The Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project (WKHPPP) proposes to install two wind turbines with a nominal capacity of 1.5 MW each for a total capacity of 3.0 MW. They will be connected to a substation via a 25 kV overhead interconnection line and then to the Hydro-Québec power station via a 4 kV overhead interconnection line (Table 3.1). The project also includes the installation of a wind measurement mast, the laying out of a control and maintenance center and the development of access roads to the wind turbines, of which 2.2 km are to be built (Volume 2, Map 4).

Table 3.1 Technical description of the project

Characteristic Value

Wind turbine model Goldwind GW87 Power of wind turbines 1.5 MW Number of wind turbines 2 Total height of the wind turbine 118.5 m Wind measurement mast height 75 m Length of existing paths used 6.9 km Length of new roads to be built 2.2 km Length of the 25 kV interconnection line 6.8 km Length of the 4 kV interconnection line 0.4 km Location of infrastructure Whapmagoostui, Kuujjuaraapik Land tenure Category IA (Cree) and I (Inuit) lands Main land uses Recreational and traditional activities, hunting, trapping, berry picking

The wind turbines will be installed on top of a hill in the southeast portion of the study area, on Category IA (Cree) land.

In addition to the ongoing development phase, the project is divided into three phases: construction, operation and decommissioning. The start of construction activities is scheduled for 2021 at the earliest and commercial commissioning, at the latest, in December 2024.

3.1 Variants

In its 2020-2029 supply plan for off-grid systems, Hydro-Québec forecasts an increase in energy and power requirements of approximately 1.5% annually at the Kuujjuaraapik power plant (Hydro-Québec Distribution, 2019b). The hybrid power plant project results from this need for power while reducing fossil fuel consumption by promoting renewable energies. The development of the project considered these parameters and the concerns raised by the stakeholders, organizations and authorities encountered. This

PESCA Environment 3-1 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Project description

whole approach has led to an optimized power supply project to the communities of Whapmagoostui and Kuujjuaraapik, that combines the creation of local jobs and the supply of renewable energy.

The initial project included three potential locations for the installation of wind turbines. Preliminary meetings and discussions with some interest groups, including local hunters, have raised concerns related to one of these locations (T1). The latter was not retained in the layout presented in this study but remains an alternative solution in the event of an adjustment to the project before its construction (Volume 2, Map 4).

3.2 Site selection

The site for the project was selected based on the following criteria:

◦ The quality of the wind energy potential; ◦ The need to increase the power of the Kuujjuaraapik power plant;

◦ The social acceptability of the project; ◦ The absence of permanent residences in the area planned for the installation of the wind turbines; ◦ The reduction of negative impacts on the environment and the social environment.

In 2004, Hydro-Québec undertook to measure the wind resource in the villages of Nunavik with the best potential according to the risk associated with the investments required to start pilot projects. Four villages were targeted: Kuujjuaraapik, Inukjuak, and (Hydro-Québec, 2008). The Kuujjuaraapik – Whapmagoostui sector benefited from anemometric surveys between 2004 and 2006. The territory corresponding to the site of the wind turbines was chosen because of its geographical location on the uncrowded peaks of Whapmagoostui.

3.3 Configuration parameters

Positioning of the wind turbines was carried out considering a set of criteria aimed at optimizing energy production and reducing or eliminating anticipated impacts on the biophysical and social environment. The main elements considered when configuring wind turbines are:

◦ The area's wind energy potential; ◦ Environmental parameters (physical, biological and human); ◦ Technical parameters related to the proximity of wind turbines to each other; ◦ The technical and economic criteria linked to the construction of their access.

Several environmental elements are associated with a protective perimeter or a setback area relative to the installation of wind turbines. These configuration parameters allow a harmonious integration of wind turbines into the environment. All these protective perimeters served as guides for the development of the

PESCA Environment 3-2 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Project description

project. The wind turbines will be installed outside of these perimeters and respect the prescribed setbacks (Table 3.2).

The final configuration must also provide for a minimum distance between the wind turbines. This distance varies depending on the topography of the site, the direction and strength of the prevailing winds and the expected yield losses due to the wake effect.

Table 3.2 Wind Turbine Configuration Parameters

Middle element Regulations Distance (m) Physical Permanent stream and lake PPRLPI 10-15 Intermittent stream PPRLPI 10-15 Riparian wetland PPRLPI 10-15 Isolated wetland n.a. Avoid if possible Slope greater than 15% n.a. Avoid Biological Wildlife habitat LCMVF Avoid Stand of interest n.a. Avoid Human Houses, chalets, camps n.a. 500 Area used for hunting n.a. Avoid Urban area n.a. 1,000 Notes : Distance applicable to the work area. PPRLPI : Protection policy for Lakeshores, Riverbanks, Littoral Zones and floodplains (RLRQ c. Q-2, r. 35) LCMVF : Act respecting the conservation and development of wildlife (RLRQ, c. C-61.1) n.a. : not applicable (does not result from any regulation)

3.4 Implementation Phases

3.4.1 Development phase

The development phase of the project includes all the stages preceding the start of construction of the WKHPPP. This includes, but is not limited to, obtaining permits and authorizations and obtaining the necessary land rights from ministerial and municipal authorities as well as the band council for the construction of the related infrastructures. Geotechnical drilling and surveying work as well as other engineering studies may be required at this stage. Information and consultation activities for stakeholders and users of the territory also take place during this phase.

The main activities of the development phase will include:

◦ Securing land; ◦ Installation of a wind measurement mast; ◦ Surveying for technical descriptions and for applications of authorizations and permits;

PESCA Environment 3-3 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Project description

◦ Carrying out an environmental and social impact assessment; ◦ Consultation of the public and local communities; ◦ Preparation of authorization and permit applications.

3.4.2 Construction phase

3.4.2.1 Vegetation clearing and site preparation

Vegetation clearing and other related activities such as blasting will be necessary to widen or build the roads, develop the 25 kV interconnection line, clear the work areas of the wind turbines and the wind measuring mast. All authorizations will be obtained from the authorities concerned prior to this work, from the Whapmagoostui First Nation and the Cree Nation Government.

The construction of WKHPPP represents a total footprint of 20.9 ha (Table 3.3).

Table 3.3 Areas required for the construction of the WKHPPP

Length Area Work area and paths (km) (ha) Wind turbines (2) - 2.0 Wind measuring mast (1) - 2.0 Substation and acess - 0.7 Living quarters for workers (Camp) - 0.2 Control and maintenance center - 0.1 New road to be built 2.2 3.9 Existing roads to be improved 6.9 0.1 25 kV interconnection line 6.8 11.6 4 kV interconnection line 0.4 0.4 Total - 20.9 Note : Right-of-way of 20 m. In the case of existing roads, the area indicated corresponds to the required widenings.

The roads will be built in a right-of-way 20 m wide and a running surface of 7 m. In some places, the right- of-way width may be greater than 20 m, for example in portions requiring significant backfilling in order to stabilize the embankment or at road intersections in order to promote user safety.

The 25 kV line will be built along the access road to the wind turbines. As the final location of the posts has not been determined, a 20 m wide corridor from the driving surface was considered in this study to include this equipment (posts and anchors). Clearing will be required in this corridor, both to install the line and to ensure sufficient clearance between the lines and the vegetation. The 4 kV line will be built along the existing streets of Whapmagoostui and Kuujjuaraapik; no clearing is planned.

The temporary work area required at each wind turbine installation site will cover a maximum of 1 ha (100 m x 100 m). The temporary work area required for the installation of the wind measuring mast will cover a maximum of 2 ha (140 m x 140 m). The control and maintenance center will cover an area of approximately 0.1 ha. All temporary work areas will be restored after construction work, with the exception

PESCA Environment 3-4 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Project description

of part of the wind turbine work areas, which will be maintained during the operation phase (section 3.4.2.5).

Different work areas will be necessary during the construction phase: site offices, living quarters for workers. The preliminary areas are shown on Map 4 (Volume 2).

At this stage of the project, the proponent plans to use rocks and gravels that will be extracted during blasting related to the construction of the new roads and sites of the wind turbines. This material will be crushed on site and then used as layout for the driving surface of access roads and work area at each wind turbine installation site. Authorization and permit applications will be submitted to the authorities concerned when the chosen option is confirmed.

3.4.2.2 Construction and improvement of roads and work areas

Acess Roads

Priority will be given to the use of existing paths to access the sites of the wind turbines. Of the 9.1 km of paths that will be used, 6.9 km already exist (Volume 2, Map 4).

The access roads to the wind turbines will have the following characteristics:

◦ 7 m wide driving surface;

◦ Radius of curvature allowing the passage of trucks transporting wind turbine components; ◦ Respect of maximum slopes for the transport of these components.

In general, construction of the paths includes the following stages:

◦ Stripping of part of the cleared areas for road allowance; ◦ Shaping of paths and ditches; ◦ Compaction of driving surface;

◦ Installation of watercourse crossings; ◦ Stabilization of slopes.

Depending on the condition of existing roads, improvement work may vary from simple grading to localized widening of the road surface and correction of certain curves to improve road allowance.

Calculation of volumes for cuttings and backfill will be carried out before the start of construction work. The same is true for determining storage locations for excess material.

Blasting activities will be required for the construction and improvement of roads. The developer or general contractor will obtain all permits required for handling and storage of explosives. Measures will be applied during blasting activities to limit projection of rocks and other debris, triggering of landslides or damage to buildings.

PESCA Environment 3-5 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Project description

Watercourse crossings

According to the databases consulted and validations carried out in the field in 2020, 10 watercourse crossings could be present along the access road to the wind turbines (Volume 2, Map 4). The roads to be built have been planned in such a way as to limit the number of watercourse crossings; three crossings will have to be built. The others are located along existing paths. The watercourse crossings will be installed in accordance with the main standards of the Regulation respecting the sustainable development of forests in the domain of the State (CQLR c. A-18.1, r. 0.01) as well as the Best practices for the design and installation of culverts less than 25 meters (Pêches et Océans Canada, 2010).

Work areas for the installation of wind turbines

Each work area for the installation of a wind turbine will include an access road between the path and the actual site of construction of the wind turbine and a perfectly flat work area of approximately 800 m² for the installation of the platform for the lifting crane.

3.4.2.3 Transport and traffic

The construction phase will require the transport by boat and truck of wind turbine components (towers, blades, nacelles), as well as the transport of heavy machinery (cranes, graders, mechanical shovels, bulldozers, road rollers) and materials and equipment necessary for carrying out these activities. The existing docking and disembarking area will be used (Volume 2, Map 4).

The workers will circulate daily, mainly by pickup trucks and vans. Table 3.4 details transport activities to which are added the movement of heavy machinery and the transport of materials and equipment.

Table 3.4 Main truck transports estimated for the construction phase

Approximate Component Quantity Load per truck number of trips

Wind turbine (2) Blade 6 2 blades 3 Tower (4 sections) 8 1 tower section 8 Nacelle 2 1 nacelle 2 Hub and cone 2 1 hub and 1 cone 2 Transformer 2 1 transformer 2 Concrete for foundations 800 m3 8 m3 100 Total - - 117

Concrete mixers will circulate between a temporary concrete manufacturing site and the work areas. The preparation of concrete will require the transport of aggregates. Sand and gravel needed for concrete, road construction and repair will come from borrow pits located near the wind turbines and material extracted during blasting. The developer or the general contractor will first obtain authorizations from the authorities for the use of these borrow pits. The developer is studying the possibility of opting for a foundation designed like spider legs (called "spider") with filling of rocks. If this type of foundation is chosen, the development of a temporary concrete manufacturing site would not be required.

PESCA Environment 3-6 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Project description

During the peak period of the construction phase, up to 30 workers will circulate on the site daily.

3.4.2.4 Equipment installation

Wind turbine foundation

The foundation of a wind turbine supports the weight of the wind turbine and the loads induced by the wind in the ground. It must be adapted to the site and the characteristics of the soil. The foundations will be circular, 13 m in diameter and approximately 3 m deep, and will be anchored into the rock with threaded rods. Formwork and steel reinforcement will be assembled for each foundation, then filled with concrete. As mentioned in the previous section, the developer is studying the possibility of opting for a spider foundation with filling of rocks, which would limit the amount of concrete required.

Wind turbines

A Goldwind GW87 wind turbine consists of the following components: a tower, at the top of which is a nacelle; an alternator, attached to the nacelle; a rotor (three blades attached to a hub, which is attached to the alternator); a voltage transformer. The tower is fixed to the concrete foundation. The main characteristics of this wind turbine are presented in Table 3.5 and Figure 3.1.

Table 3.5 Data sheet of a Goldwind GW87 wind turbine

Characteristic Value Nominal power 1.5 MW Hub height 75 m Total height of wind turbine 118.5 m Length of each blade 42.1 m Rotor diameter (blades and hub) 87 m Number of blades 3 Swept area 5,890 m² Rotation speed 16.6-17.3 revolutions/minute Cut-in wind speed 3 m/s (10.8 km/h) Cut-out wind speed 22 m/s (79.2 km/h)

Source : (Goldwind, [s.d.])

PESCA Environment 3-7 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Project description

4

1

3 2 5

6

42.1 m

1 : Pale (Blade) 2 : Moyeu (Hub) 3 : Alternateur (Generator) 4 : Anémomètres (Wind Measurement Equipment) 5 : Nacelle (Nacelle) 75.0 m 6 : Tour (Tower)

Source : Illustration adaptée (Goldwind, [s.d.]) Figure 3.1 Dimensions of a Goldwind GW87 wind turbine

PESCA Environment 3-8 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Project description

Lifting and assembling wind turbine components will require the use of cranes, which must be stabilized on a perfectly level lifting platform. The blades will be assembled to the hub in a work area located next to the tower. The complete rotor, including the hub and the three blades, will then be hoisted and fixed to the nacelle. The tower is made up of four steel sections.

The nacelle, located at the top of the tower, is made of an aluminum-based composite material. The nacelle includes the generator that produces electricity, the nacelle orientation system, the blade tilt system and the braking system:

◦ The energy produced by the generator is sent to a voltage transformer at the base of each wind turbine. This increases the low electrical voltage emitted by the generator (690 V) to medium electrical voltage (25 kV); ◦ The nacelle orientation and blade tilt systems optimize the conversion of mechanical wind energy into electrical energy. An anemometer installed on the nacelle to measure the wind emits signals which are routed to the control panel so that the rotor is always positioned facing the wind. The platform can rotate 360 °, clockwise and counterclockwise; ◦ The wind turbine's braking system is also connected to the control panel and allows regulation of the rotation of the rotor, especially during strong gusts of wind. The shutdown system is activated at wind speeds greater than 22 m / s.

The Goldwind GW87 wind turbine uses Permanent Magnet Direct Drive Synchronous Generator technology, a gearless design. This technology increases the efficiency and reliability of the equipment, while reducing its noise emissions.

Lighting will be installed in accordance with Transport Canada requirements. The number and type of beacons to be installed will be confirmed by Transport Canada at a later date.

Interconnection lines and substation

The 25 kV interconnection line will carry the electricity produced by the wind turbines to the village. This overhead line installed on wooden poles will run along the access road from the wind turbines until the intersection with Nunavik Road, then will follow this road to reach the substation (Volume 2, Map 4). Guyed anchors will be used along the interconnection lines, and additional poles will be installed as reinforcements on the other side of the road. The substation area will be approximately 3,000 m2 and will include two step-down transformers from 25 kV to 4 kV. These transformers will be installed in geomembrane retention basins in order to contain any spill.

The 4 kV interconnection line will be built between the project substation and the Hydro-Québec Power Station, along existing streets. This overhead line will be installed on wooden poles.

Control and maintenance center

A control and maintenance center will be set up at the outskirt of the village of Whapmagoostui (Volume 2, Map 4).

PESCA Environment 3-9 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Project description

3.4.2.5 Restauration of work areas

Once construction of the WKHPPP is completed, the temporary work and storage areas will be leveled and restored with soil and gravel. In the case of wind turbines, the working surfaces corresponding to the foundations, transformers and crane platforms, or approximately 1,000 m² per wind turbine location, will be maintained during the operation phase of the WKHPPP.

3.4.3 Operation phase

The operation of the WKHPPP includes the transport and movement of workers as well as the works and maintenance ensuring the operation of the equipment.

3.4.3.1 Presence and operation of equipment

The wind turbines will operate throughout the operational phase of the WKHPPP. Monitoring and control of the wind turbines will be carried out remotely in a semi-automated manner through a permanent SCADA remote control system. This system makes possible the complete or partial control of the installation and the operational parameterization of the wind turbines. It regulates, among other things, the production regime and carries out any emergency stop, if necessary. All the functions of the wind turbines will be controlled by a controller equipped with a microprocessor which will supervise their operation according to several environmental, electrical and mechanical parameters.

The wind turbine is equipped with a braking system allowing it to come to a complete stop in the event of a problem. When a component of the system is malfunctioning, a safety brake allows the rotor to stop. Eventually, the intervention of an operator may become necessary to restart the wind turbine or repair or perform a field inspection.

3.4.3.2 Equipment and road maintenance

The equipment maintenance program aims to prevent and reduce the occurrence of mechanical or electronical problems that may arise during its operation phase. The project is located in an isolated northern region and the equipment has been chosen accordingly. Tugliq Energy, partner of Ikayu Energy, participated in the selection process because of its expertise and experience in operating wind turbines in Nunavik with the Raglan I and Raglan II projects.

Full maintenance of the wind turbines will be carried out twice a year, requiring their individual shutdown for about 40 hours in total per year. A maintenance schedule will keep production downtime as low as possible. Maintenance activities include: lubricating parts, tightening nuts and bolts, changing hydraulic filters, analyzing lubricants and performing routine tests associated with various components, as well as a preventive analysis of the data collected.

Lubricating oils and greases will be checked twice a year during regular inspection schedules and measured by the SCADA system. Small amount of oil is used in GW87 wind turbines due to the absence of a gearbox, which limits the amounts to be handled when servicing or replacing. At the start of the operational phase, maintenance of the wind turbines will be carried out by the wind turbine manufacturer, in compliance with the service agreements and the conditions related to the turbines warranty. The

PESCA Environment 3-10 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Project description

operator will ensure maintenance of the wind turbines between the visits by the manufacturer and thereafter.

During the operation phase, technicians and operators of the WKHPPP will use the access road to the wind turbines. These roads will be maintained, if necessary, for example by grading. In winter, access to the wind turbines will be by snowmobile. Snow removal from the roads could be considered if a major intervention required the use of heavy equipment.

3.4.4 Dismantling phase

3.4.4.1 Dismantling of equipment

The dismantling of the equipment will be carried out in accordance with the directives and regulations in force during the dismantling phase. Wind turbines and power lines will be dismantled and transported off site. The concrete bases of the wind turbines will be leveled to a depth of one meter and then covered with soil and gravel unless stated differently by regulations or standards of a competent authority. The hazardous materials contained in certain equipment will be transported to the places provided for this purpose.

3.4.4.2 Transport and traffic

The dismantling phase will require truck transport of heavy machinery and materials to be removed from the site. During this phase, a daily movement of workers is to be expected on the access road to the site of the wind turbines.

3.4.4.3 Restauration of work areas

Wind turbine temporary work areas will be leveled and restored with soil and gravel. The restoration method will be adapted to the northern context of the site. Initial vegetal areas will be seeded in order to allow vegetation to recover. Seeding offers a revival of herbaceous vegetation while awaiting the regrowth of shrub vegetation.

3.5 Timeline

Some construction or road repair and site preparation work could begin as soon as possible in 2021, while most construction activities will take place during the year 2022. The commissioning of the WKHPPP is scheduled at the latest in December 2024.

PESCA Environment 3-11 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Project description

3.6 Labor

During the peak period of the construction phase, around 30 people will work on the site. The operation and maintenance of the project infrastructure will be entrusted to Ikayu Energy. Three jobs will be created during the operation of the plant. Some of the jobs will be occupied by Crees and Inuit.

3.7 Project cost

The wind farm will be jointly owned by a Cree and Inuit equal partnership company, named Kuujjuaraapik Whapmagoostui Renewable Energy Corporation (KWREC). KWREC will sell the electricity produced to Hydro-Quebec, the public service. A 25-year electricity purchase contract will be signed between Hydro- Quebec Distribution and KWREC. Capital expenditures represent an estimated investment between $40 to 44 million.

PESCA Environment 3-12 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Public consultation process

4 Public consultation process

4.1 Approach

From the initial planning stages of the project, the developer carries out consultation meetings and the continuous transfer of information with community representatives and community stakeholders and users. These initiatives are aligned with the recommendations of the James Bay Advisory Committee for the Environment (CCEBJ, 2019) and aims to:

◦ Present the project to ensure understanding and to inform the public; ◦ Determine the interests of stakeholders and the public and the issues associated with carrying out the project; ◦ Adapt, if possible, the project in order to harmonize its integration with the current activities of the territory and to promote its acceptability with the communities, managers and land users;

◦ Collect information relating to local and traditional knowledge.

Following this approach, contact was established with the community from the development phase of the project. This communication will be maintained during the subsequent phases of construction, operation and decommissioning of the WKHPPP. Local and traditional knowledge has been integrated directly into the different sections of this study. The public consultation was coordinated and carried out by a team made up entirely of Cree and Inuit stakeholders. This includes, among other things, creating the website and social media sites, creating videos, preparing consultation material (survey and others), carrying out consultations (workshops and assemblies) and preparing reports.

4.2 Communication tools

The developer has put in place the following means of communication to communicate with the public:

◦ Newsletters; ◦ Brochures and flyers; ◦ Web site (http://kwrec.ca); ◦ Local radio announcements and interviews; ◦ Facebook page (https://www.facebook.com/KWREC); ◦ PowerPoint Presentation; ◦ Video.

Details of these communication tools are provided in Appendix E.

PESCA Environment 4-1 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Public consultation process

4.3 Approaches to Cree and Inuit communities

The developer organized meetings with groups concerned by the project in the communities of Whapmagoostui and Kuujjuaraapik. These meetings took different forms: workshops in small groups (youth, women, men, business sector); general assembly; on-line sessions. Details of these steps are presented in Appendix E.

4.4 Summary of stakes and interests of stakeholders in the field

The main components of the community that are the subject of questions or interests expressed during the consultation activities are presented below. This list is not exhaustive, and its order of presentation does not reflect the relative importance of the components listed:

◦ Impacts of the project on environment, health, wildlife and migratory birds, particularly geese;

◦ Impacts of the project on traditional activities, particularly hunting; ◦ Interest in reducing diesel consumption while ensuring the reliability of electricity supply; ◦ Preferred alternative rather than building a dam on the Great Whale River;

◦ Sound impact of wind turbines; ◦ Training opportunities for youth; ◦ Benefits for the communities of Whapmagoostui and Kuujjuaraapik and economic spinoffs;

◦ Selection of a technology adapted to northern climate and repercussions of strong winds, ice and mist on wind turbines; ◦ Safety and emergency plan in the event of an incident (fire or falling ice);

◦ Management of residual wastes.

4.5 Main modifications to the project following public consultations

Comments received during the public consultations were analyzed and, where possible without affecting the viability of the project, modifications were made:

◦ The initial project included three potential locations for the development of wind turbines. Preliminary meetings and discussions with certain interest groups, including hunters, have raised concerns related to one of these locations (T1). The latter was not retained in the layout presented in this study. ◦ The developer will study the possibility of installing a fence and appropriate signage on the periphery of the wind turbines sites for reasons of safety and protection in relation with possible ice fall; ◦ The developer has undertaken to follow up with hunters in the fall period in order to assess and detect any impact on this activity. In the event of a significant impact, the developer is committed to putting in place mitigation or compensation measures in collaboration with hunters.

PESCA Environment 4-2 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Impact evaluation methodology

5 Impact evaluation methodology

5.1 General methodology

The purpose of the impact assessment is to identify and qualify the impacts that the WKHPPP could have on the biophysical and social environments and to prevent and mitigate them by integrating these aspects of the project at its conception.

The impact assessment methodology is based on analysis of the interrelations between components of the environment likely to be modified and the planned activities, which constitute the sources of impacts. The method is divided into three steps (figure 5.1):

i. Assessment of the potential interrelations between the components of the environment and the planned activities;

ii. Assessment of the significance of the impact;

iii. Assessment of the significance of the residual impact following the application of mitigation measures and determination, if necessary, of compensation measures.

Cumulative impacts are then assessed by combining the anticipated residual impacts of the WKHPPP and the impacts of other past, current or planned activities.

The significance of the impact is assessed using a matrix method based on various criteria such as the value given to the component of the environment, then its intensity, magnitude, extent, duration and frequency of impact. Each criterion is evaluated in a matrix according to predefined categories or levels. In addition, each matrix is balanced, that is, each of the results has as many possibilities to occur as the others.

The assessment of impacts on landscapes is carried out using a method specific to this area, presented in section 5.2.

The impact assessment is carried out in accordance with the Directive for the Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project transmitted on October 29, 2020 by the regional administrator of the Cree Nation Government.

PESCA Environment 5-1 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Impact evaluation methodology

Step i Assessment of potential interrelations

Step ii Assessment of the importance of the impact

Step iii Assessment of the significance of the residual impact

Figure 5.1 Impact assessment method

PESCA Environment 5-2 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Impact evaluation methodology

5.1.1 Step i : Assessment of potential interrelations

The first step in the analysis is to assess the potential interrelations between the components of the environment and the planned activities.

The components of the environment include the physical, biological and human elements that could be modified. All activities in the construction, operation and dismantling phases represent potential sources of impact.

A summary analysis of the potential impacts makes it possible to determine the insignificant or significant nature of the interrelations.

5.1.1.1 Insignificant interrelation

An interrelation is classified as insignificant when the potential impact is judged to be nil or negligible, in other words, when the activity does not result in any modification or results in a negligible modification of the component of the environment.

5.1.1.2 Significant interrelation

An interrelation is considered significant if the potential impact of the activity on the component is considered significant or if uncertainty persists. The interrelations deemed significant are subject to a detailed impact assessment according to the second and third stages of the process.

5.1.2 Step ii : Assessment of the significance of the impact

The second step consists in evaluating the potential impacts in relation to the significant interrelations. The analysis is based on a matrix method which draws on current practices.

Several environmental impact studies presented to the Bureau d’audiences publiques sur l’environnement (BAPE) were consulted, including those produced by Hydro-Québec and various wind energy developers. The method adopted (Figure 5.1) proposes an assessment of the significance of the impact, positive or negative, which considers the following criteria:

◦ Value of the component; ◦ Intensity of the impact; ◦ Magnitude of the impact (arising from the value of the component and the intensity of the impact); ◦ Extent of the impact; ◦ Duration of the impact; ◦ Frequency of the impact.

PESCA Environment 5-3 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Impact evaluation methodology

5.1.2.1 Value of the component

The value of a component of the environment is determined considering the interest aroused by this component, according to its intrinsic role in the ecosystem (determined among other things by its scarcity or abundance), according to its social role (economic valuation, cultural, recreational or other) and according to the legal and regulatory aspects governing its protection and enhancement. The value is qualified as being high, medium, or low.

High Component subject to legal or regulatory protection and / or greatly valued by the majority of stakeholders in the field.

Medium Component moderately valued by community stakeholders and whose protection or maintenance is not considered a priority.

Low Component arousing little interest from community stakeholders.

The value is established by considering the concerns and interests expressed by stakeholders in the field and the public during consultation sessions held in the field as well as the concerns and interests raised by the resource persons of the ministries concerned.

5.1.2.2 Intensity of impact

The intensity of the impact is assessed according to the degree of anticipated modification of a component during a project activity. Intensity considers the potency level of the activity and the ability of the component to return to its initial state after the change. The modification can be positive if it improves the component or its quality, or negative if it degrades it. The intensity is rated as strong, medium or weak.

Strong Modification that changes the affected component, its quality or its use in a significant or even irreversible way.

Medium Reversible modification of the component, its quality or its use.

Weak Little noticeable modification of the component and its quality or which has little influence on its use.

5.1.2.3 Magnitude of the impact

The magnitude of the impact depends on the value of the environmental component and the intensity of the impact. The results resulting from this association are presented in the matrix of table 5.1. The magnitude can be strong, medium or weak.

Table 5.1 Assessment of the magnitude of the impact Intensity of impact Value of the component Strong Medium Weak High Strong Strong Medium Medium Strong Medium Weak Low Medium Weak Weak

PESCA Environment 5-4 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Impact evaluation methodology

5.1.2.4 Extent of the impact

The extent of an impact expresses its range or spatial radiation in terms of distance or area. The extent can be regional, local or punctual.

Regional Impact beyond the host territory of the project.

Local Impact limited to the host territory of the project.

Punctual Impact limited near equipment, work areas or paths of the WKHPPP.

5.1.2.5 Duration of impact

Duration refers to the period of time during which the impact is felt on the component of the environment. The duration can be permanent or temporary.

Permanent Impact felt throughout the lifetime of the operation phase.

Temporary Impact felt for a short period of time. This period usually corresponds to the duration of an activity in the construction phase. An impact is also considered temporary when its effect is felt over a period that may exceed the duration of the source of impact without reaching the entire lifetime of the WKHPPP.

5.1.2.6 Frequency of the impact

Frequency refers to the intermittent or continuous nature of an impact.

Continuous Impact felt continuously.

Intermittent Impact felt discontinuously.

5.1.2.7 Importance of the impact

The importance of the impact depends on its magnitude, extent, duration and frequency. The significance of the impact can be strong, medium or weak according to the matrix in Table 5.2 and can be positive or negative.

PESCA Environment 5-5 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Impact evaluation methodology

Table 5.2 Assessment of the significance of the impact

Magnitude Extent Duration Frequency Importance Strong Regional Permanent Continuous High Intermittent High Temporary Continuous High Intermittent High Local Permanent Continuous High Intermittent High Temporary Continuous High Intermittent Medium Punctual Permanent Continuous High Intermittent Medium Temporary Continuous Medium Intermittent Weak Medium Regional Permanent Continuous High Intermittent High Temporary Continuous High Intermittent Medium Local Permanent Continuous Medium Intermittent Medium Temporary Continuous Medium Intermittent Medium Punctual Permanent Continuous Medium Intermittent Weak Temporary Continuous Weak Intermittent Weak Weak Regional Permanent Continuous High Intermittent Medium Temporary Continuous Medium Intermittent Weak Local Permanent Continuous Medium Intermittent Weak Temporary Continuous Weak Intermittent Weak Punctual Permanent Continuous Weak Intermittent Weak Temporary Continuous Weak Intermittent Weak

PESCA Environment 5-6 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Impact evaluation methodology

5.1.3 Step iii : Assessment of residual impact

The third and final step in the impact assessment process is to determine the significance of the residual impact on the environmental component. The residual impact is that which persists following the application, if necessary, of a specific mitigation measure.

There are two types of mitigation measures applied in a project: current and specific. These measures are taken by the project developer in order to eliminate or minimize the impact on a component of the environment.

Current measures Applicable to any project of a similar nature and generally deriving from laws, regulations, reference guides, standards or best management practices. This type of measure is planned from the design of the project and helps to reduce the impact to a minimum.

Specific measures Specific to the environment and to the project, developed when an impact of medium or high importance is anticipated.

When an impact is assessed as being of low importance, among other things because of the current measures planned from the design of the project, the residual impact is insignificant, and no specific mitigation measures are necessary. When a medium or high impact is anticipated despite current measures, specific mitigation measures should be considered. Depending on the effectiveness of the mitigation measure, the residual impact will be judged to be significant or not significant.

When a significant residual impact persists and specific mitigation measures are insufficient, a compensation measure may be considered.

Compensation measures A measure to compensate for the loss of integrity, quality or usability of a persistent component after the application of one or more mitigation measures.

5.2 Methods for assessing impacts on the landscape

The impacts on the landscape are assessed using a specific method which draws on existing methods, including:

◦ Guide for carrying out a landscape integration and harmonization study - Wind farm installation project on public land (MRNF, 2005); ◦ Environmental assessment method - Lines and substations - The landscape (Hydro-Québec, 1992); ◦ Guide to integrating wind turbines into the territory - Towards new landscapes (MAMR, 2007).

The impact is assessed on each of the landscape units, then globally.

PESCA Environment 5-7 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Impact evaluation methodology

5.2.1 Assessment by lanscape units

The landscape impact assessment method, based on landscape units defined in the study area, includes four steps:

i. Delimitation and description of landscape units;

ii. Resistance assessment of landscape units;

iii. Assessment of the degree of perception of components and infrastructure of the WKHPPP;

iv. Assessment of the significance of the visual impact on landscape units.

5.2.1.1 Step i : Delimitation and description of landscape units

A landscape unit represents a geographical space defined by a mode of use and organization of the territory as well as by the limits of the visual framework offered. These limits are determined by the biophysical (topography, plant cover, water bodies, type of soil) and anthropogenic (human components, land use, infrastructure, agglomeration) characteristics. The landscape study describes each landscape unit and photographs illustrate them.

5.2.1.2 Step ii : Resistance assessment of landscape units

In order to determine opposition to modifications generated by the WKHPPP on the landscape unit, the level of resistance is established according to the importance of the anticipated impact on the landscape unit and the value of this unit.

Significance of anticipated impact

The magnitude of the anticipated impact depends on the ability of the landscape to accommodate new equipment and infrastructure while preserving its own character. It is assessed based on two parameters: absorption capacity and insertion capacity.

Absorption capacity Predisposition of a landscape unit to conceal the planned equipment and infrastructure. The absorption capacity refers to the degree of openness of the visual fields offered inside the unit and to the configuration of the environment (topography, forest cover, presence of built structures) which could influence the degree of perception of the equipment and infrastructure. The absorption capacity can be weak, medium or strong.

Insertion capacity Physio-spatial compatibility (contrast in character and scale) between the dominant character of a landscape unit and the equipment and infrastructure. The insertion capacity can be weak, medium or strong.

For each landscape unit, the magnitude of the anticipated impact can be weak, medium or strong (Table 5.3).

PESCA Environment 5-8 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Impact evaluation methodology

Table 5.3 Matrix of significance of anticipated impact on a landscape unit

Insertion capacity Absorption capacity Weak Medium Strong Weak Strong Medium Medium Medium Medium Medium Weak Strong Medium Weak Weak

Landscape unit value

The value placed on a landscape is based on two elements: its intrinsic quality and its valuation (Table 5.4).

Intrinsic quality Aesthetic, visual or symbolic quality considering the notions of uniqueness, concordance, harmony and integrity of the unity of the landscape. It can be large, medium or weak.

Valuation Promotion by specialists, community managers or authorities, considering the type of activity practiced within this landscape, the interest shown by the user and the importance of maintaining the quality of these activities in the middle. The valuation can result in legal protection or be high, medium or low. Table 5.4 Matrix of the value assigned to a landscape unit Valuation Intrinsic quality Legal High Medium Low Large Legal High Medium Medium Medium Legal Medium Medium Low Weak Legal Medium Low Very low

Resistance of a landscape unit

The resistance associated with a landscape unit is established by the combination of the magnitude of the anticipated impact and the value of this unit (Table 5.5). The resistance can correspond to a legal constraint or be evaluated from very strong to very weak.

Table 5.5 Resistance matrix of a landscape unit

Significance of Landscape unit value anticipated impact Legal Strong Medium Weak Very weak Strong Constraint Very strong Strong Medium Weak Medium Constraint Strong Medium Weak Very weak Weak Constraint Medium Weak Very weak Very weak

PESCA Environment 5-9 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Impact evaluation methodology

5.2.1.3 Step iii : Assessment of the degree of perception of the equipment and infrastucture of the WKHPPP

The degree of perception of the equipment and infrastructure of the WKHPPP reflects the visual relationship between the observer and the landscape. The degree of perception is evaluated from strong to zero, depending on the visibility of the wind turbines or other equipment from the frequented sites of the territory.

At this stage, the sites most likely to be frequented are designated as "points of interest" and are illustrated with photographs. A mapping of the visibility zones as well as visual simulations carried out from points of interest make it possible to assess the degree of perception of the planned equipment and infrastructure, according to three parameters:

Visual exposure of observers Depending on the configuration of the visual field (panoramic, open, filtered, directed or closed views) and the positioning of the equipment or infrastructure visible within the visual field (foreground, intermediate plane and background).

Observer sensitivity Depending on their type of locomotion, the type of activity they practice and their interest in the landscape, and depending on whether they are mobile (motorists, snowmobilers, ATVs), occasional (hunters, hikers, campers, seasonal vacationers) or permanent (residents).

Radiation Regional, local or ad hoc depending on the portion of the population that will be exposed to the equipment and infrastructure of the WKHPPP.

Mapping of visibility zones

The mapping of the visibility zones represents a global portrait of the visibility of the project. The mapping illustrates the number of wind turbine nacelles visible from different sectors of the landscape study area. Its cartography also makes it possible to group the sectors of perception according to the number of visible structures. This mapping is carried out using ArcGIS 10.3.1 software and the Spatial Analyst extension. It is generated from a digital terrain model derived from topographic data of Canada (CanVec), at a scale of 1: 50,000, and design parameters of the turbines (positioning of the towers, height of the nacelles). The point of perception by the observer is established at a height of 1.6 m from the ground, the contour lines are equidistant to 10 m and no natural or man-made obstacles are considered.

The digital model overestimates the visibility of the project since the trees, buildings and any other obstacle that may restrict the openness and depth of views are not taken into account; only the relief of the terrain is used. Additionally, the software assigns a 360˚ field of view from the vantage point and analyzes any wind turbine positioned in a direct line of sight with the vantage point as visible, even if the turbines are at a distance that would make it invisible to the naked eye. This distance established in the study on the cumulative impacts of wind turbines on landscapes is more than 17 km (MRNF, 2009).

PESCA Environment 5-10 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Impact evaluation methodology

Visual simulation on photographic montage

In order to illustrate the integration of the project's wind turbines into the landscape, photographic montages were made from panoramic photographs taken in the field, using the Windpro wind farm simulation software and its Photomontage module. This software models the relief from the available contour lines. The wind turbines are illustrated using a database included in the software which includes different models of wind turbines with their technical specifications (tower, height of the nacelle, diameter of the blade sweep, color). In addition, the geographic coordinates of each photographic site allow the pictures to be located on a map. The photomontage thus constitutes a simulation of the presence of wind turbines in the real panorama, according to their characteristics and their planned locations.

5.2.1.4 Step iv : Assessment of the importance of the visual impact on landscape units

The assessment of the importance of the visual impact on landscape unit results from the combination of the resistance of the landscape unit and the degree of perception of the equipment and infrastructure of the WKHPPP (Table 5.6). The significance of the visual impact is rated from major to nil.

Table 5.6 Matrix of the importance of visual impact in the landscape unit

Degree of perception Resistance Strong Medium Weak Very weak Nil Very strong Major Major Medium Minor Nil Strong Major Major Medium Minor Nil Medium Major Medium Minor Minor to nil Nil Weak Medium Minor Minor to nil Minor to nil Nil Very weak Minor Minor to nil Minor to nil Minor to nil Nil

5.2.2 Global analysis

In addition to the assessment steps per landscape unit, the analysis of the overall visual impact of the WKHPPP includes cumulative impacts with past, current or planned activities such as wind farms, telecommunications towers or forestry activities in the same territory or nearby.

PESCA Environment 5-11 March 31, 2021

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

6 Analysis of impacts and mitigation and compensation measures

This section deals with the environmental and social impact assessment related to the construction, operation and dismantling of the Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project (WKHPPP). The method used for this assessment is described in section 5. It begins with the identification of the potential interrelations between the activities and the components of the environment. The significance of the potential and then residual impacts is then assessed.

6.1 Assessment of potential interrelations between planned activities and environmental components

The activities of the construction, operation and dismantling phases of the WKHPPP (section 3) could modify or have an impact on the components of the physical, biological or human environments of the host environment (section 2). Table 6.1 presents the potential interrelations between these activities and these components. These interrelations are significant or not. It is possible that an activity is not interrelated with a given component.

6.1.1 Significant interrelations

A significant interrelation corresponds to a potential impact deemed not to be negligible and requiring a more detailed assessment of its significance. The significant interrelations listed in Table 6.1 are subject to an impact assessment using the matrix method described in section 5. This assessment is presented in sections 6.4 to 6.6 and allows the significance of the impacts to be defined.

6.1.2 Insignificant interrelations

An insignificant interrelation corresponds to a potential impact judged to be nil or negligible. In the case of an insignificant interrelation, the nature of the activity will have no impact or will have a negligible impact on the environmental component, or else the application of best management practices (current mitigation measures) will make it possible to eliminate or significantly reduce the impact. Table 6.2 summarizes the potential insignificant interrelations between the activities and the components of the environment.

6.1.3 No interrelation

No potential impact is expected since the activity and the component will not be interrelated.

PESCA Environment 6-1 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

Table 6.1 Matrix of interrelations between activities and environmental components

Physical environment Biological environment Human environment

Phases and activities rcheological and ir vian fauna mphibians and reptiles A A A A cultural heritage heritage cultural Soils water Surface Groundwater Wetlands Vegetation species with Floristic special status Bats Terrestrial mammals Fish Special-status wildlife species context Socioeconomic Land use Public utility infrastuctures Telecommunication systems Soundscape Landscape Construction

Vegetation clearing and site preparation

Construction and improvement of paths and work areas

Transport and traffic

Equipment installation

Restoration of work areas

Operation

Presence and operation of equipment

Maintenance of equipment and paths

Dismantling

Equipment dismantling

Transport and traffic

Restoration of work areas

Note : When an activity and a component have more than one type of interrelation, the most significant interrelation is shown in the table.

Significant interrelation Insignificant interrelation

No interrelation

PESCA Environment 6-2 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

Table 6.2 Explanation of insignificant interrelations between activities and environmental components

Components Phase Activity Nature of interrelation Assessment of interrelation Physical environment Air Operation Maintenance of equipment and Dust and GHG emissions Transportation and traffic activities will be limited to travel of roads employees and suppliers. Current mitigation measures are planned, such as limiting the speed on the roads and the use of dust suppressants. Soils Operation Maintenance of equipment and Hazardous material spill risk Preventive measures to avoid this type of spill are described roads in section 7. Dismantling Equipment dismantling Modification of soil Work will be carried out in work areas and existing roads Restoration of work areas characteristics modified during the construction phase. Surface water Operation Maintenance of equipment and Contamination or sediment Work will be limited to work areas and roads. Preventive roads input into watercourses measures will be planned to avoid the risk of a spill, as will measures to be taken in an emergency. Dismantling Equipment dismantling Sediment input Work will be limited to work areas and existing roads. No new Restoration of work areas watercourse crossing installation is planned. Biological environment Vegetation Construction Vegetation clearing and site Habitat modification The use of existing roads helped limit the required clearing preparation and the footprint of the project. The wind turbines will be located on rocky outcrops bare of tree vegetation and where shrub and herbaceous vegetation is sparse. Avian fauna Construction Vegetation clearing and site Habitat modification The use of existing roads helped limit the required clearing preparation and the footprint of the project. The wind turbines will be located on rocky outcrops bare of tree vegetation and where shrub and herbaceous vegetation is sparse. Terrestrial mammals Construction Vegetation clearing and site Habitat modification The use of existing roads helped limit the required clearing preparation and the footprint of the project. The wind turbines will be located on rocky outcrops bare of tree vegetation and where shrub and herbaceous vegetation is sparse. Special-status wildlife Construction and Vegetation clearing and site Modification of the habitat, The use of existing roads helped limit the required clearing species dismantling preparation disturbance by activities and the footprint of the project. The wind turbines will be Construction and improvement located on rocky outcrops bare of tree vegetation and where of work areas shrub and herbaceous vegetation is sparse. Few individuals are likely to frequent the areas developed for the project. No critical habitat for special-status wildlife species is found in the work areas provided for in the project.

PESCA Environment 6-3 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

Components Phase Activity Nature of interrelation Assessment of interrelation Human environment Land use Operation Presence and operation of Limitation of access to the Access to the territory will be possible at all times. The equipment territory movement of workers and the maintenance of equipment will Maintenance of equipment and not limit the accessibility and use of the territory. paths Public utility infrastructures Construction Transport and traffic Traffic disruption Transport activities will comply with the regulations in force and security measures will be put in place if necessary. Public utility infrastructures Dismantling Transport and traffic Traffic disruption The regulations in force for non-standard transport, if any, and the safety measures to be applied will be observed. Telecommunication systems Operation Presence and operation of Potential interference on There are no stations near the wind turbines (Appendix D). equipment television and radio No interference with broadcast or broadcast systems is broadcasting systems expected. Potential interference on a No VOR / DME station was detected near the wind turbines. radar and navigation aid No weather radar station was detected within 50 km of the system wind turbines. No NAV Canada air navigation radar stations were detected within 80 km of the turbines. NAV Canada has no objection to the installation of wind turbines of the WKHPPP (Appendix D). Potential interference on Two Bell Canada point-to-point microwave links cross the microwave links study area (Volume 2, Map 3 and Appendix D). A wind turbine (T3a) is in the consultation area relating to this link. Steps have been taken with the operator of this link. According to the expert in charge at Bell Canada, the beam is located above the T3a wind turbine. The vertical clearance is sufficient not to anticipate any problem with this microwave link (V. Popescu, Senior Advisor, Bell Canada, February 19, 2021). Potential interference to A mobile system is located near the T1 wind turbine, not mobile radio stations selected by the developer. No interference with this mobile system is expected (Appendix D)

PESCA Environment 6-4 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

6.2 Value of the components of the environment

The value given to a component of the environment influences the evaluation of the impact. Table 6.3 presents the value attributed to each component of the physical, biological and human environments for which a significant interrelation has been identified.

Table 6.3 Value of the components of the environment

Components Comment Value

Physical environment Air Good air quality is essential for a healthy environment. The territory where the project Medium will be implemented is an inhabited northern environment. Soils Soils help maintain ecosystems and, by their nature, allow certain land uses. Low Surface water Surface water plays a major role in the maintenance of aquatic ecosystems and can be High linked, in some cases, to the supply of drinking water. Surface waters are protected by laws and regulations. Wetlands Wetlands help maintain ecosystems in which they play an important ecological role. High They are protected by policies and laws. Biological environment Avian fauna The economic value and interest in avian fauna vary among bird families. For example, Medium waterfowl are of recreational and traditional interest in hunting. Terrestrial mammals Terrestrial mammals are of ecological importance. Many, like micromammals, are little Medium known and little valued by the population. Others have significant economic, recreational and cultural value, primarily large mammals and furbearing animals. Fish The economic value of fish and the interest in them vary depending on the species. Medium Certain species occupy an important place in the diet of local communities. Fish habitat is also protected. Amphibians and These species constitute ecological indicators. They have low economic value and Medium reptiles arouse little interest among the general population. Special-status wildlife Special-status wildlife species, due to the precariousness of their situation, are the High species subject of legal protection or special attention from the ministries. Human environment Socio-economic This component is valued by the population and its representatives, who want their High context community to benefit from various social and economic benefits. Land use Land use refers to frequentation of the land for mining, recreational, hunting, trapping High and berry-picking activities. The study area is frequented by members of local communities. Soundscape The sound environment is a component linked to the quality of life and valued by the Medium users of the territory. Landscape The landscape is valued by the users of the territory. In the Whapmagoostui and Medium Kuujjuaraapik region, the landscape is influenced by human activity. Archeological and Specialists as well as aboriginal communities show a strong interest. When an element Medium cultural heritage of the archaeological heritage is discovered, it can be registered in an inventory kept by the Ministry of Culture and Communications (MCC) and depending on its nature and the interest one shows in it, it can be added as an object of legal protection (individual protection, classified or declared heritage site or classified heritage building).

PESCA Environment 6-5 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

6.3 Current measures

From the conception of his project, the developer has incorporated best industry mitigation and management practices to reduce the potential impact of the WKHPPP on the physical and the social environments. These current measures are presented below.

6.3.1 Physical environment

◦ Design layout of the roads to limit the number of watercourse crossings and to avoid wetlands.

◦ Perform a field validation before any work to reduce areas to be used to a minimum.

◦ Observe vehicle speed limits and reduce speed in areas near populated areas.

◦ Use dust suppressants (water or other products recognized by the MELCC) to limit dust emissions, particularly in dry weather and near dwellings.

◦ As far as possible, carry out construction work on watercourse crossings on sites considered to be very good fish habitat between June 30 and August 1st to limit impact on salmonid reproduction.

◦ Follow main standards prescribed in the Regulation respecting the sustainable development of forests in the domain of the State (RSDF) during construction and improvement of roads and watercourse crossings and during stabilization embankments.

◦ Avoid traveling with machinery and vehicles outside roads and work areas provided for in the project.

◦ Handle, transport and store hazardous materials in compliance with regulations.

◦ Use material resulting from stripping activities as backfill, filling or finishing material during other work or during site reclamation.

◦ If necessary, use devices to limit dispersion of sediment outside the work area: anti-sediment dike, sedimentation basin or diversion channels.

◦ Equip heavy machinery with spill response kits.

◦ Regularly inspect heavy machinery to ensure it is in good working order.

◦ Avoid washing vehicles and machinery within 60 m of lakes and streams.

◦ If needed, level work areas and road rights-of-way when work is completed.

◦ Manage used oils and greases in accordance with regulations in place.

6.3.2 Biological environment

◦ Use existing roads as much as possible in order to reduce the areas to be cleared.

◦ Characterize the watercourses during a site visit before the start of construction work in order to verify the presence of spawning grounds and protect them if necessary.

◦ If possible, avoid the installation of a culvert less than 50 m upstream of a spawning ground.

◦ Restore temporary areas that will have been used during construction.

PESCA Environment 6-6 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

◦ As far as possible, carry out work in or near water (riverbanks) in July in order to protect salmonids. If this restriction period cannot be respected, additional mitigation measures will be provided during work (e.g.: use of cofferdams, filter membranes or culverts under backfill, as the case may be).

◦ To reduce the risk of introducing invasive alien plant species, clean excavating machinery coming from outside the community, before entering the territory.

6.3.3 Human environment

◦ Establish a monitoring committee with stakeholders and users of the area during construction and operation phases.

◦ Establish a transport plan for wind turbine components and comply with applicable regulations for non-standard transport.

◦ Install signage on the site for access roads and work areas.

◦ If an archaeological property or site is discovered during work, immediately stop work on this site, notify the Ministry of Culture and Communications (MCC) and the Aanischaaukamikw Cree Cultural Institute without delay and wait for their instructions before continuing work there.

◦ Monitor the noise environment during the construction phase and comply with sound levels recommended by the MELCC for construction sites.

◦ Rehabilitate existing roads in case of breakdown related to the realization of the project.

◦ Evacuate unused materials and debris off the site for recycling, recovery or, as a last resort, discarded in authorized locations.

◦ Design the lighting for wind turbines according to Transport Canada requirements.

◦ Comply with health and safety standards applicable on a site in a northern environment.

◦ Make information on the project available to the population via a website.

6.4 Impact on the physical environment

6.4.1 Air

6.4.1.1 Construction and dismantling phases

During the construction and dismantling phases, transport and traffic can cause dust to rise on the access roads. This dust could make driving conditions difficult or dangerous, alter the air quality around roads and cause damage to infrastructure and the local community.

Current mitigation measures will be applied to limit dust uplift, such as reducing traffic speed and using dust suppressants, especially in dry weather and near homes and camps. This dust uplift will be of low intensity. Considering the best management practices (current mitigation measures) that will be applied, the significance of impact of dust lift on air quality will be low. In the dismantling phase, the intensity will be lower than in the construction phase, given the reduced number of trucks (no road construction).

PESCA Environment 6-7 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

IMPACT ASSESSMENT DUST UPLIFT Phases Construction and dismantling Component Air Activity Transport and traffic Value Medium Intensity Weak Magnitude Weak Extent Punctual Duration Temporary Frequency Intermittent Importance Weak Specific measure - Residual impact Insignificant

6.4.1.2 Operation phase

During the operation phase, the project will have a positive impact on air quality by reducing diesel consumption at the Kuujjuaraapik thermal power plant and reducing GHG emissions. The wind turbines will produce around 40 to 50 percent of the electricity needed to power the communities of Kuujjuaraapik and Whapmagoostui.

From the first year of operation of the WKHPPP (scheduled for 2024 or 2025), annual diesel consumption would be reduced by at least 1.45 million liters. By considering the emission factors of the Regulation respecting mandatory declaration of certain emissions of contaminants into the atmosphere (RLRQ, c. Q- 2, r. 15) as well as the global warming potential for GHGs (ECCC, 2019), the project would help reduce GHG emissions by around 4,000 metric tonnes of CO2 equivalent (t CO2 equivalent) each year. By way of comparison, this represents the equivalent of the annual emissions of 1,270 personal vehicles in Quebec. For a span of 25 years of operation, the GHG emissions avoided through the implementation of the project are estimated to be approximately 100,000 t eq. CO2.

The significance of the impact on air quality will be high and positive in nature. The residual impact will be significant and positive.

IMPACT ASSESSMENT REDUCTION OF GHG EMISSIONS Phase Operation Component Air Activity Presence and operation of equipment Value Medium Intensity Medium Magnitude Medium Extent Regional Duration Permanent Frequency Continuous Importance High (positive) Specific measure - Residual impact Significant (positive)

PESCA Environment 6-8 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

6.4.2 Soils

Activities of the construction phase may modify the nature and characteristics of the soil on areas necessary for the realization of the project. The passage of machinery on work areas and paths may compact the soil and lead to the formation of ruts constituting preferential flow channels for runoff water. However, the impacts will be low since much of the work to be carried out will be done on already disturbed soils (anthropogenic) and on rocky substrate.

The slopes and radii of curvature of the paths will meet the requirements for transporting wind turbine components. Stabilization of the embankments along the roads will be carried out based on main standards prescribed in the RADF. Validations on the ground before construction will make it possible to plan the roads accordingly.

The intensity of impact on soils will be low given the limited work areas, measures to stabilize road slopes and measures to restore sites. The significance of impact on soils during construction phase will be low. The residual impact will be insignificant.

IMPACT ASSESSMENT MODIFICATION TO THE CHARACTERISTICS OF THE SOIL Phase Construction Component Soil Activities Vegetation clearing and site preparation; construction and improvement of paths and work areas; transport and traffic; installation of equipment; restoration of work areas Value Weak Intensity Weak Magnitude Weak Extent Punctual Duration Permanent Frequency Continuous Importance Weak Specific measure - Residual impact Insignificant

6.4.3 Surface water

The construction of roads and installation of culverts could lead to a modification of the flow of surface water and addition of sediment to the waterways. In order to minimize this potential impact during the construction phase, the roads have been planned to maximize the use of existing roads and reduce the number of new watercourse crossings. According to the databases consulted and validations carried out in the field in 2020, 10 watercourse crossings would be present along the access roads to the wind turbines and three crossings will have to be built along the roads to be constructed (Volume 2, Map 4). An assessment of existing watercourse crossings will be carried out in the field to determine if an upgrade is required. The watercourse crossings will be installed based on the main RADF standards and the Good Practices document for the design and installation of culverts less than 25 meters (Pêches et Océans Canada, 2010).

PESCA Environment 6-9 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

Current measures will protect watercourses and water bodies. A characterization will be carried out in the field in order to calculate a culvert dimension adapted to the nature of the ground and to the water flow.

The intensity of the impact will be low. The use of existing paths has reduced the number of new watercourse crossings built to three. Effective and recognized current measures will be applied. The significance of the impact on surface water during construction phase will be low. The residual impact will be insignificant.

IMPACT ASSESSMENT MODIFICATION OF THE FLOW AND SUPPLY OF SEDIMENT Phase Construction Component Surface water Activities Vegetation clearing and site preparation; construction and improvement of roads and work areas; transport and traffic; installation of equipment; restoration of work areas Value High Intensity Weak Magnitude Medium Extent Punctual Duration Temporary Frequency Intermittent Importance Weak Specific measure - Residual impact Insignificant

6.4.4 Wetlands

During the construction phase, clearing, construction and improvement of roads and work areas as well as installation of equipment may have an impact on wetlands. Based on the databases consulted, it is estimated that an area of 0.03 ha of potential wetlands is included in the areas required for the project. These wetlands are in the preliminary corridor for the construction of the 25 kV interconnection line (Volume 2, Map 1).

The developer will apply an avoid-minimize-compensate sequence with the objective of reducing the loss of wetlands. An ecological characterization will be carried out by the developer to delimit all the wetlands in the areas necessary for the realization of the project. This characterization will include, without being limited to, the ecological description of these environments (vegetation strata, soils, biophysical characteristics) and the description of their ecological functions. If it is impossible to avoid a wetland due to technical or environmental constraints, the proponent will assess the impact of the project and propose mitigation measures to minimize them.

Finally, the developer agrees to compensate for inevitable losses if necessary. In this case, a compensation plan will be developed for this purpose, at the end of the construction phase, in collaboration with representatives of the communities of Kuujjuaraapik and Whapmagoostui. Consultation with local stakeholders will make it possible to determine a unifying and beneficial project for the environment that will compensate for the inevitable losses of wetlands.

Given the potential impact, which could be of medium importance if wetlands are present at the work sites and specific mitigation measures planned, the residual impact will be insignificant.

PESCA Environment 6-10 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

IMPACT ASSESSMENT MODIFICATION OF THE NATURE OR AREA OF THE WETLANDS Phase Construction Component Wetlands Activities Vegetation clearing and site preparation; construction and improvement of roads and work areas; equipment installation Value High Intensity Weak Magnitude Medium Extent Punctual Duration Permanent Frequency Continuous Importance Medium Specific measures Apply the avoid-minimize-compensate sequence. Carry out a field characterization study in order to identify the wetlands in the areas required for the project. If necessary, develop a compensation plan in collaboration with representatives of the communities of Kuujjuaraapik and Whapmagoostui. Residual impact Insignificant

6.5 Impact on the biological environment

6.5.1 Avian fauna

6.5.1.1 Construction phase

Construction and improvement activities of roads and work areas may disturb birds, mainly nesting birds, due to noise generated by the presence of workers and machinery as well as by blasting activities (Pearce-Higgins et al. al., 2012). For some birds, noise can cause stress and displacement. Noise can influence nesting or activities for which natural sound signals are important, such as communication, hunting or flight (ISRE, 2000; Radle, 1998; The Ornithological Council, 2007). Birds can also adjust their songs to suit the surrounding sound environment (Warrington et al., 2018). The effects of noise on birds appear to differ depending on the species and type of noise (Kaseloo & Tyson, 2004).

The intensity of the disturbance on birds will be medium. The significance of the disturbance impact on birds during the construction phase will be low. The residual impact will be insignificant.

IMPACT ASSESSMENT DISTURBANCE BY ACTIVITIES Phase Construction Component Avian fauna Activity Construction and improvement of paths and workspaces Value Medium Intensity Medium Magnitude Medium Extent Punctual Duration Temporary Frequency Intermittent Importance Weak Specific measure - Residual impact Insignificant

PESCA Environment 6-11 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

6.5.1.2 Operation phase

Follow-ups carried out in wind farms in operation in Quebec reveal low bird mortality rates. Follow-ups carried out in the seven wind farms located in Gaspésie and in the MRC de La Matanie and resulting from the first call for tenders for wind power in Quebec (1,000 MW) have shown low mortality rates (Garant, 2013). Between 2007 and 2011, annual mortalities varied between 0 and 9.96 birds / wind turbine (Tremblay, 2011, 2012). The estimated annual mortality rate in Quebec is on average 1.6 birds / wind turbine / year (Féret, 2016).

An Environment Canada study indicates that annual mortalities in Canada vary between 0 and 26.9 birds / wind turbine / year and, on average, the mortality is 8.2 birds / wind turbine / year. This analysis is based on data from 43 wind farms in Canada, including 19 in Ontario, 7 in Alberta and 2 in Quebec (Zimmerling et al., 2013). The characteristics and arrangement of wind turbines, the site topography, the presence of a migration corridor and weather conditions can influence mortality rate observed from one farm to another (Erickson et al., 2005; Kingsley & Whittam, 2007; Kuvlesky Jr. et al., 2007). Mortalities of birds, other than raptors, are estimated at 5.7 birds / wind turbine in Ontario, 2.3 birds / wind turbine in Alberta, and 1.8 birds / wind turbine in the Atlantic provinces (BSC 2017). The mortality rates obtained in Quebec are therefore similar to those in the eastern provinces of Canada.

The average rate in the United States was estimated at 5.2 birds / wind turbine with a higher average (6.9 birds / wind turbine) in the eastern states (Loss et al., 2013).

The birds most likely to collide with wind turbines are said to be nocturnal migrants (Kuvlesky Jr. et al. 2007; National Research Council 2007; Zimmerling et al. 2013). In Canada, the species most frequently found during monitoring are the horned lark, golden-crowned wren and red-eyed vireo (BSC 2017). These birds, deprived of celestial landmarks in cloudy weather (periods of fog, rain or high winds), may have been disoriented. Under such conditions, birds could approach tall structures with light beacons and be enticed to fly nearby (Erickson et al. 2005). Bird mortality rates associated with telecommunications towers, which are often very tall and sometimes guyed, are higher than those associated with wind turbines (Calvert et al., 2013; Kingsley & Whittam, 2007; Longcore et al., 2012).

Birds of prey and waterfowl would rarely be victims of collisions, as these species avoid approaching wind turbines or flying at blade height (Barrios & Rodriguez, 2004; Chamberlain et al., 2006; Garvin et al., 2011). In Quebec, follow-ups carried out in operating wind farms indicate that raptors keep their trajectory near wind turbines, without changing their behavior (Féret, 2016; Tremblay, 2011, 2012). In wind farms resulting from the first call for tenders for wind power in Quebec (7 wind farms in Gaspé and in the MRC of La Matanie), 5 bird of prey mortalities were recorded from 2007 to 2012; none were associated with a special status species (Garant, 2013).

Wind turbines remain a minor source of bird mortality compared to other anthropogenic structures or sources. Environment Canada has assessed the extent of anthropogenic sources of mortality on avian fauna in Canada (Calvert et al. 2013). About 269 million birds die each year in relation with human presence and its activities. More than 95% of these deaths are attributable to predation by cats and collisions with windows, vehicles and transmission lines. By comparison, collisions with wind turbines represent less than 0.01% of these fatalities in Canada (Calvert et al., 2013). Similar results were obtained in the United States (Erickson et al., 2005). Mortality associated with wind turbines is too low to have a significant impact at the scale of local bird populations, unless a wind farm is installed in an area of

PESCA Environment 6-12 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

concentration of a species at risk (Kuvlesky Jr. et al. al., 2007; Zimmerling et al., 2013). The impact on special status species is assessed in section 6.5.5.

Considering the ornithological inventories carried out in 2012 and 2013 in the study area, the intensity of the impact is considered low. Passage rates for migrating raptors were low and no significant migration corridors or staging areas were detected. The wind turbines will be located on a summit, in a bare habitat little frequented by birds. The significance of the impact on birds in the exploitation phase will be low. The residual impact will be insignificant.

Bird mortality will be monitored during the operation of the WKHPPP, as required for each wind farm in Quebec. The monitoring program will respect the standards established by government authorities (MDDEFP, 2013). It will be submitted when applying for a permit to operate the WKHPPP.

IMPACT ASSESSMENT EQUIPMENT-RELATED BIRD MORTALITY Phase Operation Component Avian fauna Activity Presence and operation of equipment Value Medium Intensity Weak Magnitude Weak Extent Punctual Duration Permanent Frequency Intermittent Importance Weak Specific measure - Residual impact Insignificant

6.5.2 Terrestrial mammals

6.5.2.1 Construction phase

During the construction and improvement of roads and work areas, the presence of workers and machinery as well as noise associated with machinery and blasting activities may disturb mammals, cause stress and temporarily disrupt their land use (Kaseloo & Tyson, 2004; Radle, 1998). Noise disturbances cause short-term behavioral and physiological responses in animals such as increased heart rate and release of stress hormones. These disturbances can affect wildlife in terms of reproduction, communication and foraging. Activities such as blasting may force certain animals, for example caribou, to avoid areas usually frequented or likely to be frequented due to habitat loss / fragmentation or sensory disturbances caused by noise (Dutilleux & Fontaine, 2015; Environment and Climate Change Canada, 2020; OMNR, 2016). Telemetry data from the MFFP indicate that the study area is part of the wintering area of the migratory caribou of the Rivière aux Feuilles herd, but that it is not a particularly important sector for the species (CDPNQ, 2020).

The disturbance will be temporary (for a short time) and intermittent. The impact of the disturbance on terrestrial mammals during the construction phase will be of low importance. The residual impact will be insignificant.

PESCA Environment 6-13 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

IMPACT ASSESSMENT DISTURBANCE BY ACTIVITIES Phase Construction Components Terrestrial mammals Activity Construction and improvement of paths and work areas Value Medium Intensity Medium Magnitude Medium Extent Punctual Duration Temporary Frequency Intermittent Importance Weak Specific measure - Residual impact Insignificant

6.5.2.2 Operation phase

The noise and movement of the blades of wind turbines may disturb certain mammals. Studies on the impact of noise on animals show that animals can react differently depending on environmental conditions and the nature of the noise (Kaseloo & Tyson, 2004). In general, animals can become accustomed to different sources of noise, especially when they are emitted weakly and regularly (ISRE, 2000; Radle, 1998).

Various follow-ups carried out in wind farms show that mammals continue to frequent the area during operation. For example, moose ravaging has been observed at less than 500 m from wind turbines, in the wind farms of the Copper and Miller mountains in Murdochville (Landry & Pelletier, 2007).

In Gaspé peninsula, the Carleton wind farm may have a limited influence on the level of moose collection (Pelletier & Dorais, 2010). In Vermont, follow-ups in a wind farm using a camera and a motion detection system have shown that various mammals, such as moose, white-tailed deer, black bear, coyote, raccoon and red fox, circulate near wind turbines, whether they are on or off (Wallin, [nd] -a, [nd] -b). According to observations at Prince Wind Farm in Ontario between 2006 and 2012, the presence of wind turbines would not result in an avoidance response by moose (Natural Resource Solutions, 2012).

Considering the elements mentioned above, the intensity of the impact will be weak, as will its significance. The residual impact will be insignificant.

IMPACT ASSESSMENT DISTURBANCE BY THE PRESENCE OF WIND TURBINES Phase Operation Components Terrestrial mammals Activity Presence and operation of equipment Value Medium Intensity Weak Magnitude Weak Extent Punctual Duration Permanent Frequency Intermittent Importance Weak Specific measure - Residual impact Insignificant

PESCA Environment 6-14 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

6.5.3 Fish

Construction and improvement of roads and work areas, and mainly setting watercourse crossings, may result in sediment input in the watercourses and fish habitats during the construction phase. To avoid this potential impact, roads have been planned to reduce the number of watercourse crossings and to use existing roads as much as possible. According to the databases consulted and validations carried out in the field in 2020, 10 watercourse crossings would be present along the existing roads and three crossings will have to be built along the road to be constructed. The construction of roads and watercourse crossings will be carried out based on the main standards prescribed in the RADF in order to protect the aquatic environment. Good practices for the design and installation of culverts less than 25 m (Fisheries and Oceans Canada, 2010) will be taken into consideration, as recommended by Fisheries and Oceans Canada to ensure free passage of fish and maintain their habitat.

The watercourses that cross a road planned for the project will be subject to a field characterization in order to verify the presence of spawning grounds downstream of the crossing site and to protect them, if necessary.

Considering the elements mentioned above and the best management practices (current mitigation measures) that will be applied, the significance of the impact on fish and fish habitat during the construction phase will be weak. The residual impact will be insignificant.

IMPACT ASSESSMENT SEDIMENT SUPPLY IN FISH HABITAT Phase Construction Component Fish Activity Construction and improvement of paths and work areas Value Medium Intensity Weak Magnitude Weak Extent Punctual Duration Temporary Frequency Intermittent Importance Weak Specific measure - Residual impact Insignificant

6.5.4 Amphibians and reptiles

Construction and improvement of roads and work areas could modify the habitats of amphibians and reptiles, which mainly live near water bodies and wetlands. Installation of culverts and construction of roads will be carried out based on the main standards prescribed by the RADF. The potential habitats for amphibians and reptiles will therefore face change of little importance.

The significance of the impact on the habitat of amphibians and reptiles during the construction phase will be weak. The residual impact will be insignificant.

PESCA Environment 6-15 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

IMPACT ASSESSMENT HABITAT MODIFICATION Phase Construction Component Amphibians and reptiles Activity Construction and improvement of paths and work areas Value Medium Intensity Weak Magnitude Weak Extent Punctual Duration Permanent Frequency Continuous Importance Weak Specific measure - Residual impact Insignificant

6.5.5 Special-status wildlife species

During the operating phase, the presence of wind turbines can lead to bird mortality, including species with special status. Although the golden eagle and the peregrine falcon can occasionally circulate in the study area during migration, no nesting habitat (cliffs, ledges) is present in the work areas planned for the project. Short-eared owl nesting habitat, although present in the study area, is not found in any of the project work areas.

Birds of prey are rarely victims of collisions with wind turbines (National Research Council, 2007). This is also shown by the results of mortality monitoring carried out in Quebec in wind farms (Féret, 2016; Garant, 2013; Tremblay, 2011, 2012). The risk of collision with wind turbines in the context of this project is therefore low for these species.

The rusty blackbird, a special-status forest bird, is present in the study area (Table 2.9). The potential risk of collision with the wind turbines provided for in this project is low for this species. First, according to the monitoring carried out in operating wind farms (section 6.5.1.2), the bird mortality rate due to wind turbines is generally low in Quebec. Second, this species occurs at low density in the study area, which limits the likelihood of colliding with a wind turbine.

The significance of the impact on Special Status Birds will be weak. The residual impact will be insignificant.

IMPACT ASSESSMENT MORTALITY OF SPECIAL STATUS BIRDS RELATED TO WIND TURBINES Phase Operation Component Special status wildlife species (birds) Activity Presence and operation of equipment Value High Intensity Weak Magnitude Medium Extent Punctual Duration Permanent Frequency Intermittent Importance Weak Specific measure - Residual impact Insignificant

PESCA Environment 6-16 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

6.6 Impact on the human environment

6.6.1 Socioeconomic context

6.6.1.1 Construction phase

The WKHPPP is the result of a unique and historic partnership between the Eeyou of Whapmagoostui and the Inuit of Kuujjuaraapik. Direct and indirect economic benefits are expected for local communities during all phases of the project. The latter will have positive impacts in terms of job creation, economic spinoffs, development of specialized expertise in the region and workforce training.

The total investment for the completion of the WKHPPP is estimated at between $40 and 44 million. The financial plan provides that approximately 60% of these costs will be returned to the communities of Whapmagoostui and Kuujjuaraapik. Most of the construction costs, besides supplies, will be spent through local contracts for the Inuit and Crees. Local suppliers of concrete and construction materials will be favored. Indirect spinoffs from the construction of the WKHPPP related to accommodation and living expenses of non-resident workers are also expected.

The construction phase will require 30 workers on site from different trades. The activities will therefore require hiring several workers from the region or elsewhere, depending on skills and training. The developer, who wishes to maximize the number of Cree and Inuit employees, aims to work with local communities to arouse the interest of young people in clean energy projects.

Training will be offered by Nergica, a research and technology transfer center focused on renewable energies located in Gaspé. The training will consist of three phases:

◦ Phase 1 (fall 2022): training given in Gaspé for 10 to 20 participants in order to initiate them and make them aware of renewable energies that can be used in a northern environment. ◦ Phase 2 (winter 2023): training given in the community to the selected participants. It will integrate basic training modules in occupational health and safety, electrical concepts and mechanics applied to wind turbines. ◦ Phase 3 (2023-2024): training given in the community during the construction of the WKHPPP. It will reinforce the learning of phase 2 and will integrate training modules for working at height and in confined spaces.

This training will then facilitate access to a comprehensive electromechanical program offered in the province to become a certified wind turbine operator and maintenance technician (three years training).

The developer will set up a monitoring committee bringing together representatives of local communities, the developer and the contractor. This committee will deal with local economic spinoffs in order to maximize them and promote employment of people from local communities.

The impact in terms of job creation and economic spinoffs for the Cree community of Whapmagoostui and the Inuit community of Kuujjuaraapik will be positive, and the intensity is rated medium. The significance of its impact on the socio-economic context will be high and positive. The residual impact will be significant and positive.

PESCA Environment 6-17 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

IMPACT ASSESSMENT JOB CREATION AND ECONOMIC BENEFITS Phase Construction Component Socio-economic context Activities Vegetation clearing and site preparation; construction and improvement of roads and work areas; transport and circulation, installation of equipment; restoration of work areas Value High Intensity Medium Magnitude Strong Extent Regional Duration Temporary Frequency Intermittent Importance High (positive) Specific measure Set up a monitoring committee bringing together representatives of local communities, the developer and the contractor who will deal with the economic benefits and their maximization in local communities. Residual impact Significant (positive)

6.6.1.2 Operation phase

The WKHPPP will be owned and operated by a joint equal partnership Cree and Inuit corporation. The project will generate income for the corporation through the sale of electricity to Hydro-Quebec Distribution for 25 years. These revenues will constitute a significant economic development lever for the communities of Whapmagoostui and Kuujjuaraapik. The Whapmagoostui First Nation will also receive rental income relating to the use of Category I lands for the presence of the infrastructure of the WKHPPP (wind turbines, wind measurement mast, access roads, interconnection lines, substation, control and maintenance center).

Three permanent employees will be responsible for the upkeep and maintenance of the WKHPPP during operation. These activities will be entrusted to Ikayu Energy, a company whose mission is to help the communities of Nunavik develop, build and manage their own renewable energy projects. The application of participants of the training offered by Nergica (previous section) will be considered.

As in the construction phase, the monitoring committee will ensure that local economic benefits and employment of people from local communities are promoted.

The impact of the WKHPPP in terms of job creation and economic benefits is positive in nature. The significance of the economic and social impact during the operation phase will be high and positive. The residual impact will be significant and positive.

PESCA Environment 6-18 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

IMPACT ASSESSMENT JOB CREATION AND ECONOMIC BENEFITS Phase Operation Component Socio-economic context Activities Presence and operation of equipment; maintenance of equipment and paths Value High Intensity Medium Magnitude Strong Extent Local Duration Permanent Frequency Continuous Importance High (positive) Specific measure Set up a monitoring committee bringing together representatives of the local communities and the promoter who will deal with the economic benefits and their maximization in the local communities. Residual impact Significant (positive)

6.6.1.3 Dismantling phase

During the dismantling phase, which is shorter than the construction phase, a few workers will be used for temporary jobs on the site. The dismantling of the WKHPPP will result in the loss of jobs related to its operation and income related to the rental of Category I lands for the Whapmagoostui First Nation. This impact on the regional economy will be low. The significance of the impact on the environment during the dismantling phase will be medium. The residual impact will be significant.

IMPACT ASSESSMENT JOB CREATION AND ECONOMIC BENEFITS Phase Dismantling Component Socioeconomic context Activities Dismantling of equipment; transport and traffic; restoration of work areas Value High Intensity Weak Magnitude Medium Extent Regional Duration Temporary Frequency Intermittent Importance Medium Specific measure - Residual impact Significant

6.6.2 Land use

The construction of the WKHPPP could have an impact on the activities carried out on the territory of the communities due to the disturbance caused by the movement of heavy machinery and workers during construction work. About fifteen camps are located on the outskirts of the existing road which will be improved. These camps are located between 1.7 and 2.7 km from the site of the nearest wind turbine, i.e. T2 (Volume 2, Map 3). The territory is also frequented for hunting, gathering berries and plants, and spiritual activities.

PESCA Environment 6-19 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

During construction, the roads will remain accessible to users. Signage will designate site roads and work areas. If necessary, temporary traffic interruptions may be required by sector, for example when replacing a culvert or during blasting. For safety reasons, traffic speed will be reduced and access to work areas may be prohibited to users during work. The general contractor will transmit the necessary information to the population using posters appropriately located on the territory as well as by press releases broadcast on local community radio stations, in different languages (Inuktitut, Cree, English and French). In order to maintain harmonious cohabitation on the territory, the developer undertakes to maintain continuous communications with the general contractor during the planning and execution of the work.

Particular attention will be paid to goose hunting to the north-west and south-east of the hill where the wind turbines are planned. A follow-up will be carried out with hunters in the fall period in order to assess and detect any impact on this activity. In the event of a significant impact, the developer undertakes to put in place mitigation or compensation measures in collaboration with the hunters.

The developer will ensure, through regular maintenance and repairs if necessary, that the quality of the roads allows access to the camps.

Thanks to these specific mitigation measures, the residual impact will be insignificant for land users during the construction of the WKHPPP. Activities in the dismantling phase may create impacts of the same nature as in the construction phase, but of lesser intensity. The dismantling phase will be shorter and involve less work since no road construction is planned. Current and specific mitigation measures from the construction phase will be applied during the dismantling phase, if applicable.

IMPACT ASSESSMENT DISTURBANCE OF ACTIVITIES AND TRAFFIC Phases Construction and dismantling Component Land use Activities Vegetation clearing and site preparation; construction and improvement of paths and work areas; transport and traffic; installation of equipment; dismantling of equipment; restoration of work areas Value High Intensity Medium Magnitude Strong Extent Local Duration Temporary Frequency Intermittent Importance Medium Specific measures Establish, if necessary, measures to harmonize with the activities practiced in the territory. Install signage indicating the site and work areas to ensure the safety of land users and employees. Limit traffic speed. Follow up with hunters in the fall to assess and detect any impact on this activity. In the event of a significant impact, the developer undertakes to put in place mitigation or compensation measures in collaboration with the hunters. Maintain a quality of paths allowing access to users through regular maintenance and repairs as needed. Residual impact Insignificant

PESCA Environment 6-20 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

6.6.3 Soundscape

6.6.3.1 Construction and dismantling phases

The activities of the construction and dismantling phases will contribute to increase ambient noise levels, mainly due to the transport and use of heavy machinery. According to the sector policy Recommended Limits and Guidelines Relating to Sound Levels from a Construction Site - March 2015 Update (MDDELCC, 2015), the limits to be observed for the noise environment at this type of site are 55 dBA

during the day (7 a.m. to 7 p.m.; LAr,12h) and 45 dBA at night (7 p.m. to 7 a.m.; LAr,1h). Traffic on the territory and the execution of works will be planned in such a way as to limit the noise impact and to comply with the requirements of the ministry.

The intensity of the sound impact may vary from weak to strong, depending on the nature of work or intensity of traffic nearby. For example, a greater sound impact could occur along driveways or during blasting activities. The intensity of the impact during the dismantling phase will be less than during the construction phase since no road will be built. In general, the significance of the impact on the noise environment during the construction and dismantling phases will be weak. The residual impact will be insignificant.

Soundscape monitoring will be carried out near the inhabited environment during the main construction and transportation activities.

IMPACT ASSESSMENT DISTURBANCE BY NOISE Phases Construction and dismantling Component Soundscape Activities Vegetation clearing and site preparation; construction and improvement of paths and work areas; transport and traffic; installation of equipment; dismantling of equipment; restoration of work areas Value Medium Intensity Weak to strong depending on activities and locations Magnitude Weak to strong Extent Punctual Duration Temporary Frequency Intermittent Importance Weak Specific measure - Residual impact Insignificant

6.6.3.2 Operation phase

During the operation phase, the movement of blades from the wind turbines and the operation of the turbine produce a noise which, depending on the conditions at the site (wind, human activities), may be heard by members of the communities of Whapmagoostui and Kuujjuaraapik. As the noise of wind turbines is produced during windy periods, noise emissions will be partly masked by ambient noise. The perception of sound levels emitted by wind turbines will vary depending on weather conditions and the user's location in the territory. The closest inhabited area to the wind turbines corresponds to the camps located along the access road, more than 1.7 km from the wind turbines (Volume 2, Map 5).

PESCA Environment 6-21 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

The assessment of impact of operation of wind turbines on the soundscape is based on an instruction note on noise (MELCC, 2020e). This note proposes maximum acceptable noise levels from stationary sources, depending on the time of day and the zoning category of receiving areas (Table 6.4).

Table 6.4 Noise level by category of receiving areas according to the noise instruction note Day Night Zoning categories (7 h to 19 h) (19 h to 7 h) dBA dBA Sensitive areas I Territory intended for isolated or semi-detached single-family dwellings, schools, 45 40 hospitals or other establishments providing education, health or convalescence services. Land of an existing dwelling in an agricultural zone. II Territory intended for dwellings in multiple dwelling units, mobile home parks, 50 45 institutions or campsites. III Territory intended for commercial uses or recreational parks. However, the predicted 55 50 nighttime noise level only applies within the property lines of establishments used for residential purposes. Otherwise, the maximum noise level expected during the day also applies at night. Non-sensitive areas IV Territory zoned for industrial or agricultural purposes. However, on the land of an 70 70 existing dwelling in an industrial zone and established in accordance with municipal regulations in force at the time of its construction, the criteria are 50 dBA at night and 55 dBA during the day.

Source : (MELCC, 2020e)

The zoning category is defined, in this note, according to the uses permitted by municipal zoning by-law. In the absence of zoning such as one finds within a municipality, it is the actual uses of the territory that guide the determination of the zone. The sound levels produced by the wind turbines, at a reception point corresponding to one of the camps, will be compared to the criteria of 50 dBA during the day and 45 dBA at night. These criteria are those associated with category II from the instruction note, due to the use of the territory and the type of dwellings. When the hourly average of ambient noise before the project is higher than the proposed criterion, this average will become the sound level to be respected.

In order to evaluate the sound emission of future wind turbines, a simulation was carried out in accordance with standard ISO 9613-2 Attenuation of sound during its propagation in the open air - Part 2: General calculation method (ISO, 1996; Volume 2, Map 5). The simulation results represent the sound levels outside buildings.

The calculation method used predicted the equivalent continuous A-weighted average sound level, LAeq (as described in parts 1 to 3 of ISO 9613-2). The parameters used for the calculation are as follows:

◦ Nacelle at 75 m from the ground; ◦ Maximum sound power level of the wind turbine: 107.9 dBA; ◦ Spectrum of sound frequencies divided into thirds of an octave; ◦ Topography: contour lines every 10 m; ◦ Temperature of 10 ° C and relative humidity of 70%.

PESCA Environment 6-22 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

The modeling considered a load factor of 100%, that is operation of the wind turbines at their maximum power and the direction of wind causing the noise from each of the wind turbines to be picked up by the same receptor.

The parameters used in the modeling of the sound climate are conservative:

◦ No mitigation from obstacles is taken into account; ◦ The simulated humidity and temperature conditions are favorable to the propagation of sound; ◦ The simulated wind direction is such that it drives the noise from each of the wind turbines to the same receptor.

The sound level will vary depending on the distance between the built environment and the planned wind turbines. The modeling suggests that the sound level perceived at the camp located closest to the wind turbines would be less than 30 dBA (Volume 2, Map 5). Therefore, the intensity of the impact is rated as weak. The significance of the impact on the noise environment during the operational phase will be weak. The residual impact will be insignificant.

A follow-up will be carried out to verify the sound levels of the wind turbines during the operation of the WKHPPP (section 8).

IMPACT ASSESSMENT DISTURBANCE BY NOISE EMITTED BY WIND TURBINES Phase Operation Component Soundscape Activity Presence and operation of equipment Value Medium Intensity Weak Magnitude Weak Extent Punctual Duration Permanent Frequency Intermittent Importance Weak Specific measure - Residual impact Insignificant

6.6.4 Landscape

The landscape study focuses on the visual impact of the WKHPPP, mainly wind turbines in the operational phase. The wind turbine towers will be gradually visible during construction phase, as will the cranes. During their dismantling, the wind turbines will be gradually removed from the landscape. The magnitude of the visual impact during the construction and dismantling phases will be equivalent or less than that of the operation phase, depending on the progress of work. The following sections deal with the impact in the operational phase.

PESCA Environment 6-23 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

6.6.4.1 Resistance assessment of landscape units

The landscape units in the study area show moderate resistance to the establishment of the WKHPPP (Table 6.5). The absence of forest cover accentuates visual accessibility and offers few possibilities of absorption of the planned infrastructures. The size of the expected impact is therefore considered medium. These landscapes have an average intrinsic quality given the proximity of anthropized environments and moderate uniqueness. They are large open spaces, offering wide visual fields. The territory is frequented by mobile and varied users: hunters, trappers, gatherers, all-terrain vehicle and snowmobile enthusiasts. To the southwest of the study area, the communities of Whapmagoostui and Kuujjuaraapik have several hundred potential observers.

Table 6.5 Resistance of landscape units Significance of anticipated impact Value of landscape unit Units Absorption Insertion Intrinsic Resistance Significance Valuation Value capacity capacity quality Hudsonian Plateau Weak Medium Medium Medium Medium Medium Medium Hudsonian Cuestas Medium Medium Medium Medium Medium Medium Medium

6.6.4.2 Degree of perception of infrastucture

The wind turbines will be installed approximately 5 km from the communities of Whapmagoostui and Kuujjuaraapik. In order to assess the degree of perception of future wind turbines, six visual simulations were carried out from points of interest (Volume 2). The nearest wind turbines will be located over 5.1 km from the beach on the shore of Hudson Bay, over 5.3 km from the Kuujjuaraapik airport and over 7.3 km from the mouth of the Great Whale River.

Due to the configuration of the territory, certain portions of the landscape study area offer no visibility of the planned site for the installation of the wind turbines. The areas with opportunities to view wind turbine nacelles and the number of potentially visible wind turbines are shown on the visibility analysis map (Volume 2, Map 6).

For each of the landscape units, the degree of perception was assessed according to the visual exposure of potential observers, their sensitivity and the influence of the presence of wind turbines and other equipment. The synthesis of the degrees of perception is presented in table 6.6 in addition to Map 6 and Visual Simulations (Volume 2).

PESCA Environment 6-24 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

Table 6.6 Summary of the degrees of perception of the project

Degree of Notes, explanation and field observations Landscape unit perception (Volume 2 : Map 6 and visual simulations)

Hudsonian Medium Views relatively open due to the configuration of the landscape and the absence of forest Plateau cover. Open views from the access path to the wind turbines (VS6). Closed views from the path along Hudson Bay (VS5). Closest wind turbines located 2.7 km from the access path to the wind turbines (VS6; intermediate plane, medium influence area) - few mobile and occasional observers. Local influence. Two wind turbines potentially visible from the path along Hudson Bay (VS5) and the access path to the wind turbines (VS6). Hudsonian Low Views relatively open by the configuration of the landscape. Cuestas Closest wind turbines located more than 5 km from the beach on the edge of Hudson Bay (VS4; background, medium influence area) - few occasional observers. Local influence. Two wind turbines potentially visible from Kuujjuaraapik airport (VS3) and the mouth of the Great Whale River (VS1). No view of wind turbines from the communities of Whapmagoostui and Kuujjuaraapik (VS2). Partial view from Kuujjuaraapik Airport (VS3).

6.6.4.3 Assessment of visual impacts

The assessment of the significance of the visual impact results from the combination of the degree of perception of the wind turbines and their unit resistance. Table 6.7 presents the summary of the visual impact per landscape unit.

Table 6.7 Summary of visual impacts per landscape unit

Degree of Significance of Landscape unit Resistance perception impact Hudsonian Plateau Medium Medium Medium Hudsonian Cuestas Medium Low Minor

The visual impact will be of medium importance for the Hudson Plateau area since undulation of the landscape allows a visual opening on the wind turbines. For the users of the territory, visual contact with the wind turbines will be occasional and permanent. Part of this unit is included within the zone of strong influence. The wind turbines will modify the foreground and intermediate plan of the views offered to the users of the territory.

A visual impact of minor importance is expected for the landscape of the Hudsonian cuestas, particularly from the beach bordering Hudson Bay and the mouth of the Great Whale River, since they offer open views which join the surrounding hills targeted to accommodate the wind turbines. However, these views are far removed from the wind turbines. The wind turbine nacelles will be invisible from the communities of Whapmagoostui and Kuujjuaraapik (Volume 2, Map 6).

PESCA Environment 6-25 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

Visual impact in winter

The white color of the wind turbines will promote their integration into the predominantly white winter landscapes. No additional significant visual impact is expected during the winter period.

Visual impact of light beacons

According to the regulations and requirements of Transport Canada (2006), light beacons must be installed on the nacelles of wind turbines. These beacons will be visible over 360 °, from visually clear places. Given the distance between the wind turbines and the main viewpoints, no additional visual impact is anticipated.

Visual impact of the electrical network and access roads

An overhead electricity network will transport the electricity produced by the wind turbines to the project’s substation. It is planned that this substation will be built in an anthropogenic environment, on the outskirts of the village of Whapmagoostui, in the landscape unit of the Hudsonian cuestas. The significance of the visual impact of the substation is considered minor.

The access roads to the wind turbines have been planned, as much as possible, following the existing roads. Clearing and construction of new access roads will not cause any significant visual impact since they will be more than 3 km from the village of Whapmagoostui, in an environment where roads are already present.

6.6.4.4 Mitigation measures

With the objective of mitigating the anticipated impact on the landscape, the developer chose a more powerful wind turbine model in order to reduce the number of wind turbines to be installed (from 3 to 2) and by building them as far as possible from the communities of Whapmagoostui and Kuujjuaraapik. In addition, the recommendations of the main reference guides will make it possible to better integrate the project equipment and infrastructure into the landscape (MAMR, 2007; MRNF, 2005):

◦ The use of wind turbines of the same model promotes a harmonious integration into the landscape. They will be similar, elongated, tubular and white. The direction of rotation of the blades will be the same; ◦ Except for the identification of the type of wind turbine on the nacelle, the wind turbines will not carry any promotional or advertising representations, in the form of symbols, logos or words. The display will not be bright, artificially illuminated by reflection, or luminescent; ◦ At the end of the operation of the project, the wind turbines will be dismantled in accordance with the regulations in force at that time, and the sites will be rehabilitated; ◦ The project will be developed respecting the users of the territory. The latter will remain accessible for the practice of their activities.

The assessment of the anticipated visual impacts of wind turbines was carried out in compliance with these requirements and recommendations.

PESCA Environment 6-26 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

6.6.4.5 Overall assessment of the visual impact of the project

The realization of the project will have a visual impact of minor to medium importance on the landscape units due to the following conclusions:

◦ The landscape units present an irregular relief without forest cover, offering visibility on the planned equipment and infrastructures. These characteristics increase the importance of the anticipated impact as well as the degree of perception of wind turbines; ◦ The wind turbines are located more than 5 km from the villages of Whapmagoostui and Kuujjuaraapik; ◦ The topographic configuration prevents any visibility of the nacelles of the wind turbines from the villages of Whapmagoostui and Kuujjuaraapik. Open views and vistas are offered from the beach bordering Hudson Bay and the mouth of the Great Whale River. The projected wind turbines will alter the background of these visual fields; ◦ The potential observers of landscape units are essentially users of the territory, frequenting it occasionally and seasonally. Visual contact with the planned infrastructure will generally be short- lived and occasional.

6.6.5 Archeological and cultural heritage

The archaeological potential appears to be higher along the coast of Hudson Bay and the shores of the Great Whale River than inland. It is therefore unlikely that the activities in the construction phase will have an impact on elements of the archaeological and cultural heritage.

During the construction phase, site managers will be informed of the obligation to report to the foreman any fortuitous discovery of an archaeological property or site. In the event of such a discovery, the site managers will interrupt work at this location and inform the developer. The latter will immediately notify the Ministry of Culture and Communications (MCC) and the Aanischaaukamikw Cree Cultural Institute.

Considering the above, the intensity of the impact will be low. The significance of the impact during the construction phase will therefore be low. The residual impact will be insignificant.

IMPACT ASSESSMENT DISTURBANCE OF POTENTIAL ARCHEOLOGICAL SITES Phase Construction Component Archeological heritage Activities Vegetation clearing and site preparation; construction and improvement of paths and work areas; restoration of work areas Value Medium Intensity Weak Magnitude Weak Extent Punctual Duration Permanent Frequency Continuous Importance Weak Specific measure - Residual impact Insignificant

PESCA Environment 6-27 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Analysis of impacts and mitigation and compensation measures

6.7 Cumulative impacts

Cumulative impacts are changes in the environment caused by the multiple interactions of human activities and natural processes that accumulate over time and space. The cumulative impact of the project is negligible given its scope and the insignificant residual impacts assessed in the previous section. The construction phase of the project will generate up to 30 direct jobs on the site. The skilled trades required for construction should not prevent other development activities from taking place in the communities of Whapmagoostui and Kuujjuaraapik during the same period. The installation of wind turbines will have no cumulative impact compared to other wind farms in Quebec. In fact, the closest wind turbines are in Kattinniq on the Raglan mine site, approximately 740 km north of the villages of Whapmagoostui and Kuujjuaraapik. To the south, the Rivière-du-Moulin wind farm, in the Laurentides wildlife reserve, would be the closest, at about 930 km.

PESCA Environment 6-28 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Environmental surveillance

7 Environmental surveillance

The developer undertakes to implement an environmental monitoring program in order to ensure the application of the necessary environmental protection measures during the construction of the WKHPPP, its operation and its dismantling. The developer also undertakes to develop and apply an emergency measures plan to protect staff, land users, the population and the environment.

The environmental monitoring program and the emergency measures plan will be submitted to the authorities at the authorization request stage. Environmental protection measures and emergency response measures will be described in the execution specifications and will be an integral part of the contracts awarded to contractors. The main features of these documents are presented in this section.

7.1 Environmental surveillance programs

The developer will appoint an environmental monitor during the implementation of the three phases of the project (construction, operation and dismantling). The main tasks of the supervisor will consist of:

◦ Participate in the planning of works requiring environmental monitoring; ◦ Ensure the implementation of the environmental monitoring program;

◦ Communicate their environmental obligations to stakeholders (site manager, subcontractors, maintenance managers and operators); ◦ Judge the compliance of the work with regulations, standards and commitments;

◦ Notify the developer and the site manager of any environmental non-compliance or activity requiring modifications; ◦ Participate in the search for solutions, where applicable, by communicating and collaborating as necessary with the ministerial authorities concerned; ◦ Write the reports required by the developer and government authorities.

7.1.1 Construction phase

During the construction phase, the general contractor will have the obligation to apply the required environmental protection measures and to ensure the compliance of the following elements:

◦ Site works; ◦ Materials management, including hazardous materials and residual materials; ◦ Activities of subcontractors and stakeholders; ◦ Work practices in accordance with occupational health and safety standards.

PESCA Environment 7-1 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Environmental surveillance

Environmental monitoring activities during the construction phase will mainly focus on the following points:

◦ Compliance of the work of contractors and subcontractors with environmental standards and requirements and the commitments of the developer; ◦ Modification of the biophysical components of the environment due to construction; ◦ Compliance with the mitigation and compensation measures proposed in the environmental and social impact assessment; ◦ Transport of wind turbine parts according to safety and environmental protection standards; ◦ Identification of work areas and signage aimed at preventing risk of accidents; ◦ Management of residual materials and hazardous materials.

Workers will also be made aware of environmental protection and good cohabitation with the host community. Thus, when they are welcomed on the site, during health and safety meetings or through signage on the site, the following elements will be presented and regularly reminded to workers:

◦ Procedures in the event of an accidental spill; ◦ Main terms and conditions taken from the RADF, such as the ban on circulating in a watercourse; ◦ Speed limits on the site, access road and public roads;

◦ Good cohabitation practices with other users of the territory; ◦ Registers available to monitor several environmental activities: water sampling if permits allow, storage of hazardous materials, accidental spills.

Upon arrival at the site, workers will receive an environmental monitoring guide including these elements, among other things.

7.1.2 Operation phase

During the operation phase, the developer will ensure that the employees and suppliers of the WKHPPP comply with the following:

◦ Laws, regulations and standards in force; ◦ Maintenance specifications for wind turbines and substation, including the management of hazardous materials and residual materials; ◦ Environmental monitoring activities planned for certain components of the environment (section 8); ◦ Clear signage of places reserved for the WKHPPP and areas at risk; ◦ Emergency measures plan in the event of an accident, incident or major breakage presenting a risk to users of the territory; ◦ Occupational health and safety standards.

PESCA Environment 7-2 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Environmental surveillance

7.1.3 Dismantling phase

The developer will ensure compliance with the regulations in force during dismantling of the facilities and restoration of the premises. Environmental monitoring during the dismantling phase will apply to the same elements as during the construction phase, particularly regarding the management of hazardous materials and residual materials.

7.2 Emergency measures plan in the event of an accident and/or failure

The developer will ensure that staff and contractors know the emergency measures plan and can apply it during all three phases of the project. This plan may be the responsibility of the developer or the general contractor. The emergency measures plan will describe:

◦ The various types of accidents and possible or probable failures (risk analysis); ◦ Preventive measures;

◦ The emergency procedures to be implemented (responsible persons, available equipment, actions to be taken, preferred routes); ◦ Communication and alerting processes according to available internal and external resources;

◦ Training of workers.

The modalities for updating or evaluating the emergency measures plan will be determined.

In order to optimize the coordination of the various emergency measures plans, the developer will transmit to the First Nation of Whapmagoostui, the northern village of Kuujjuaraapik and the Kativik Regional Government (KRG) the details of the installation of the WKHPPP and the measures that the developer intends to put in place.

7.2.1 Preventative measures and emergy procedures in case of an accident and/or failure

Table 7.1 summarizes the risk assessment, the applicable preventive measures and the main emergency procedures planned for the different types of accidents and malfunctions that may occur in the hybrid power plant during construction, operation and dismantling.

A preventative measures plan will be implemented, including an analysis of daily tasks, and a registry of the health and safety procedures will be available for all the employees.

PESCA Environment 7-3 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Environmental surveillance

Table 7.1 Prevention measures and emergency procedures according to the type of accident or failure

Accident or failure Risk assessment Prevention measure Planned emergency procedure Construction and dismantling phase Hazardous material spill Oils and greases, gasoline, diesel fuel and certain Emergency spill kits equipped with absorbent Emergency kits will be used in the event of a cleaning products and coolants will be used. material will be available in heavy machinery. spill. A risk of accidental spillage of these products is The cleaning of vehicles and machinery will be Contaminated soils and hazardous materials will associated with the handling or breakage of heavy avoided within 60 m of lakes and rivers. be treated in accordance with the regulations in machinery. These events are probable and are force. limited to small amounts. Any spill will be reported to the authorities concerned. Work related injuries or The causes of these accidents are linked to working The security measures in force on construction sites Depending on the severity of the accident, other major problems at heights, in confined spaces, handling heavy will be applied. public services (ambulance, police, fire (electrocution, heart machinery, installing the electrical network and road The work teams will receive training on work department) will be notified immediately. First attack, fall) traffic. associated with wind farms, in particular work at aid will be given as soon as the premises are Dust raised by traffic on the roads during dry height. secure. periods could reduce the visibility of drivers. First aid kits will be available to respond to injuries. Hybrid power plant personnel will be required to obey established speed limits. Dust suppressants will be used as needed to reduce dust uplift. Fatal work accident - The security measures in force on construction sites The person in charge will immediately notify the will be applied. developer, who will inform the Committee on The work teams will receive training on work Standards, Equity, Health and Safety at Work associated with wind farms, in particular work at (CNESST). The premises will be kept intact to height. facilitate the CNESST's investigation.

PESCA Environment 7-4 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Environmental surveillance

Accident or failure Risk assessment Prevention measure Planned emergency procedure Exploitation phase Hazardous material spill The wind turbine, generator and transformer at the The transformer will be equipped with an oil An emergency kit (various absorbent materials) substation contain oil or grease. A spill risk is retention pan to prevent spillage on the ground. If will be used to contain the hazardous material associated with a failure or with handling activities. any oils accumulates inside the tank, they would be and limit the area affected. A spill is unlikely given the presence of retention collected and disposed of according to standard Contaminated soil will be recovered by basins or boxes and sealing systems. safety practices. The transport and handling of excavation and treated in accordance with the Oil changes and maintenance will be carried out hazardous materials will be carried out in regulations in force. according to the manufacturer's specifications. accordance with the regulations and standards in Any spill will be reported to the authorities force. Emergency kits equipped with absorbent concerned. material will be available in the machinery. Overheating or fire in a This possibility could arise from a failure of the The manufacturer's specifications for the installation A manager will notify the local authorities, the wind turbine electrical equipment. and maintenance of wind turbines will be observed. fire department and the police. The area will be An automatic control system will detect overheating evacuated. and shut down the wind turbine. Fire extinguishers will be available at each wind turbine site. Ice projection The possibility of an accident caused by the Signs will indicate the risk of danger on the site near During periods of ice projection, avoid traffic projection of ice is low given the limited use of the a wind turbine. A fence will be installed if needed. near wind turbines. territory and the absence of trails or camps near the wind turbines. During periods of ice, workers will avoid driving near wind turbines. The wind turbines are equipped with an icing detection system on the blades and various de-icing systems. For example, a stopper system can stop the movement of the blades when they are covered with ice, reducing the risk of ice being thrown. Blade breakage The risks of a blade breaking, which are minimal, An automatic shut-off system will stop the wind A security perimeter will be established and the can be accentuated during strong storms or other turbine if a broken blade causes the rotor to become premises will be secured. extreme weather events (tornado, ice storm). Wind unbalanced. turbines have a computerized control system with Signs will indicate the dangers at the site near a detectors (temperature, voltage, frequency and wind turbine. vibrations) causing the wind turbine to stop when necessary.

PESCA Environment 7-5 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Environmental surveillance

Accident or failure Risk assessment Prevention measure Planned emergency procedure Collapse or breakage of This eventuality is unlikely. The manufacturer's specifications for the installation A security perimeter will be established, and the a tower of this equipment and its maintenance will be premises will be secured. respected, including the characteristics of the foundations according to the bearing capacity of the soil. Access to the territory is limited and the wind turbines will be located away from the inhabited environment, thus limiting the risk of injury associated with such an incident. Mechanical and A failure of the transformer or the electrical network A mechanical failure inside the nacelle will cause The repair of mechanical and electrical electrical failure may occur. the wind turbine to stop. breakdowns will be the responsibility of the operators of the hybrid power plant.

PESCA Environment 7-6 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Environmental surveillance

7.2.2 Responsibilities

Witness of an accident or failure should report the event directly to the site manager in the construction and dismantling phases and to the operation manager in the operating phase. The manager will communicate to employees and users of the territory the main emergency measures to be applied.

7.2.3 Communication system in case of emergency

The communication system during the construction, operation and dismantling phases will allow communication in the event of an emergency with the staff present, the users of the territory and the authorities concerned.

7.2.3.1 Internal communication

In the event of an emergency or accident, the communication system must allow: ◦ Each employee present on the site or in the hybrid power plant to be contacted by telephone, radio or alarm system; ◦ Employees and visitors to use communication systems; ◦ The site manager of the hybrid power plant and the project developer to be notified; ◦ The person in charge to communicate, as necessary, with a responsible person to delegate the implementation of adequate security measures.

7.2.3.2 External communication

The person in charge or any other person able to react quickly will communicate, as necessary, with the external organizations concerned. A summary list of emergency services available in the communities of Whapmagoostui and Kuujjuaraapik is presented below for guidance. Their updated contact details will be an integral part of the communication plan that will be implemented: ◦ Ambulance : 819 929-9110; ◦ Whapmagoostui medical emergency: 819 929-3307; ◦ Inuit medical emergency line: 819 929-9090; ◦ Whapmagoostui Clinic: 819 929-3467; ◦ CLSC Kuujjuaraapik: 819 331-9090; ◦ Whapmagoostui Police: 819 929-3700; ◦ Kuujjuaraapik Police: 819 929-9111; ◦ Whapmagoostui Fire Department: 819 929-9000 / 819 929-9110; ◦ Kuujjuaraapik Fire Department: 819 929-9000; ◦ Public security: 819 929-9466; ◦ Government Operations Center (COG): 866 650-1666; ◦ Social emergency (Whapmagoostui): 819 929-3596.

PESCA Environment 7-7 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Environmental surveillance

7.2.4 Training

The site manager and the operations manager will be trained and ready to intervene in the event of an accident. The project developer will ensure that the employees present on the site or at the hybrid power plant during construction, operation and decommissioning are informed of the prevention and intervention measures in the event of an emergency as well as updates, if necessary. Training and information transfer will be adapted to each of the hierarchical levels.

7.2.5 Assessment after accident or incident

In order to improve its effectiveness, the emergency measures plan will provide for an assessment procedure following an incident or accident, including the review of the following elements:

◦ Preventive measures ensuring the safety of employees and users of the territory and of the hybrid power plant; ◦ Emergency procedures;

◦ Role of each employee, supplier or subcontractor; ◦ Communication and alarm equipment and systems; ◦ Training received and need for new training.

The emergency measures plan will be updated as needed on a regular basis, which will include validation of emergency numbers and communication procedures.

PESCA Environment 7-8 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Environmental monitoring

8 Environmental monitoring

In accordance with the Directive transmitted on October 29, 2020 by the Regional Administrator of the Cree Nation Government, environmental monitoring will be carried out during the operation phase. The follow-up will focus on the following components: avian fauna and soundscape. The follow-up programs will be submitted at a later date.

8.1 Avian fauna

The objective of this monitoring is to measure the real impact of the WKHPPP in operation on avian fauna regarding the mortality rate associated with the presence of wind turbines. This monitoring will be carried out during the first three years of operation by searching for carcasses at the base of the wind turbines using methods that comply with the reference protocols of the departments concerned (Environnement Canada, 2007; MDDEFP, 2013). Adjustments are to be made, particularly about the periods to be covered, to consider the northern character of the region. The sampling plan will be sent to the regional representative of the Department of Wildlife Management of Nord-du-Québec (MFFP) for approval. The results will also be sent each year to the authorities concerned.

8.2 Soundscape

The purpose of soundscape monitoring is to check the noise levels of wind turbines during the first year of operation from frequented sites, including camps and the village. The ambient noise level, when the wind turbines are in operation, will be measured at several evaluation points. The results will be compared to the sound levels obtained during the characterization of the initial sound environment carried out prior to the project, as well as to the criteria of the ministry's instruction note.

PESCA Environment 8-1 March 31, 2021

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Effect of the environment

9 Effect of the environment

Certain meteorological or environmental phenomena could influence the operation of the WKHPPP: extreme winds, sleet, extreme temperatures, lightning, fires and permafrost.

9.1 Extreme winds

Wind turbines have, depending on the model, a stop device that is activated gradually when the wind speed reaches a certain force. In the case of the wind turbines selected for the WKHPPP, the cut-off wind speed is 22 m / s. This system makes it possible to avoid incidents in the event of extreme winds.

9.2 Ice

Freezing precipitation is rain or drizzle that falls as a liquid and then freezes on contact with the earth or a cold object, forming a layer of ice. Ice is the homogeneous and transparent deposit of water resulting from the freezing of droplets of mist or rain on objects whose surface temperature is lower than 0 ° C (or slightly higher). These events usually occur when the ambient temperature is between -4 ° C and 1 ° C.

During periods of freezing precipitation, ice can deposit on the blades of wind turbines and reduce their performance. The wind turbines selected by the developer are equipped with a system for detecting icing on the blades, which, beyond a certain threshold, causes them to stop. The developer is also studying the possibility of installing an additional de-icing system for the blades.

9.3 Extreme temperatures

The chosen wind turbine model is designed to operate in very cold or very hot weather. Temperatures outside the thresholds tolerated by the wind turbines would automatically lead to their temporary shutdown. According to data recorded by the Kuujjuaraapik A weather station, there are on average 37.9 days per year with minimum temperatures below -30 ° C and 0.14 days with maximum temperatures above + 35 ° C (Gouvernement du Canada, 2021).

PESCA Environment 9-1 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Effect of the environment

9.4 Lightning

The wind turbines will be equipped with a grounding system, which in the event of lightning allows the current surge to be deviated to the ground.

9.5 Fire

A fire could result in material damage to the equipment of the WKHPPP. Since the wind turbines are planned to be built at the top of a barren hill with no tree vegetation, the risk of damage is low. Since the wind turbine's nacelle is set at a height of 75 m, it is unlikely that the fire could reach it. In addition, the tower will be made of steel, a material resistant to high temperatures.

In collaboration with the local fire departments, the developer will first ensure the safety of workers and land users in the event of a fire and if possible, try to protect the wind turbines. The Society for the Protection of Forests Against Fire (SOPFEU) will be notified to determine if an intervention is required.

9.6 Permafrost

Permafrost is soil in arctic regions that is permanently frozen for at least two years and is therefore impermeable. The warming and thawing associated with climate change can make soil unstable and alter drainage and, therefore, alter infrastructure. The installation of the WKHPPP equipment will be carried out taking into consideration the permafrost and the recommendations of the National Building Code. The wind turbines will be installed on a rocky substrate, at altitude. No effect of permafrost is anticipated on the project.

PESCA Environment 9-2 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Bibliography

10 Bibliography

Archéotec (1979). Complexe de la Grande rivière de la Baleine. Études d'environnement. Étude de l'utilisation préhistorique, historique et contemporaine du territoire par les autochtones de Poste- de-la-Baleine. Volume 1 - Synthèse des études. Rapport présenté à la direction de l'Environnement, Hydro-Québec. 3 annexes + 172 p.

Archéotec (1990). Complexe Grande-Baleine, phase II de l'avant-projet. Étude du potentiel archéologique, mise à jour de 1989. Volume 1. Rapport présenté à la Vice-présidence Environnement, Hydro- Québec. 2 annexes et 28 p.

Archéotec (2009). Suivi environnemental du complexe La Grande - Synthèse des données archéologiques. Rapport présenté à Hydro-Québec. 473 p.

ARK (2019a). Administration régionale Kativik. Repéré à http://www.krg.ca en décembre 2020.

ARK (2019b). Administration régionale Kativik - Sécurité publique. Repéré à https://www.krg.ca/fr- CA/departments/public-security en décembre 2020.

Barrios, L. & A. Rodriguez (2004). Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. Journal of Applied Ecology, 41: 72-81.

Bernatchez, L. & M. Giroux (2012). Les poissons d'eau douce du Québec et leur répartition dans l'est du Canada. Ottawa. Broquet. 348 p.

BirdLife International (2020). BirdLife International en partenariat avec Études d'Oiseaux Canada et Nature Canada. Zone importante pour la conservation des oiseaux QC145 - Grande Rivière de la Baleine - et Whapmagoostui, Québec. Repéré à https://www.ibacanada.org/site.jsp?siteID=QC145 en décembre 2020.

BSC (2017). Wind Energy Bird and Bat Monitoring Database - Summary of the Findings from Post- construction Monitoring Reports. Bird Studies Canada, Canadian Wind Energy Association, Environment Canada and Ontario Ministry of Natural Resources. 50 p.

Calvert, A. M., C. A. Bishop, R. D. Elliot, E. A. Krebs, T. M. Kydd, C. S. Machtans, et al. (2013). A Synthesis of Human-related Avian Mortality in Canada. Avian Conservation and Ecology, 8 (2): 11. Repéré à http://www.ace-eco.org/vol8/iss2/art11/.

Canards Illimités Canada (2009). Plan régional de conservation des milieux humides et de leurs terres hautes adjacentes [données numériques].

Canot Kayak Qc ([s.d.]). Grande Rivière de la Baleine. Repéré à https://www.canot- kayak.qc.ca/parcour_details.php?id=255 en décembre 2020.

CCEBJ (2019). Participation et implication du public dans le cadre de projets dans le Territoire de la Baie- James - Pratiques exemplaires pour les promoteurs de projets. Comité consultatif pour l'environnement de la Baie James. 32 p.

CDPNQ (2020). Centre de données sur le patrimoine naturel du Québec, ministère des Forêts, de la Faune et des Parcs. Consultation de la banque de données pour les espèces fauniques menacées, vulnérables ou susceptibles d'être ainsi désignées - Territoires de Whapmagoostui et de Kuujjuarapik, Nord-du-Québec - Décembre 2020 [données numériques].

PESCA Environment 10-1 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Bibliography

CDPNQ (2021). Centre de données sur le patrimoine naturel du Québec, ministère de l’Environnement et de la Lutte contre les changements climatiques. Consultation de la banque de données pour les espèces floristiques menacées, vulnérables ou susceptibles d'être ainsi désignées - Territoires de Whapmagoostui et de Kuujjuarapik, Nord-du-Québec - Janvier 2021 [données numériques].

CEN (2020). Centre d'études nordiques. Complexe de recherche Whapmagoostui-Kuujjuarapik. Repéré à http://www.cen.ulaval.ca/station.php?id=321&nm=wk en décembre 2020.

Centre de santé Inuulitisivik (2011-2019). Centre de santé – Inuulitisivik. Repéré à https://www.inuulitsivik.ca/ en décembre 2020.

Chamberlain, D. E., M. R. Rehfisch, A. D. Fox, M. Desholm & S. J. Anthony (2006). The effect of avoidance rates on bird mortality predictions made by wind turbine collision risk models. Ibis, 148: 198-202.

CIRAIG (2014). Comparaison des filières de production d’électricité et des bouquets d’énergie électrique - Rapport technique. Centre interuniversitaire de recherche sur le cycle de vie des produits procédés et services. 102 p.

Conseil Génération Énergie (2018). La Transition Énergétique du Canada. Rapport du Conseil Génération Énergie. 59 p.

COSEPAC (2014). Évaluation et Rapport de situation du COSEPAC sur le carcajou (Gulo gulo) au Canada. Ottawa. Comité sur la situation des espèces en péril au Canada. vii + 87 p.

COSEPAC (2018). Évaluation et Rapport de situation du COSEPAC sur l'ours blanc (Ursus maritimus) au Canada. Ottawa. Comité sur la situation des espèces en péril au Canada. xvii + 129 p.

Courtois, R., C. Dussault, A. Gingras & G. Lamontagne (2003). Rapport sur la situation du caribou forestier au Québec. Société de la faune et des parcs du Québec, Direction de la recherche faunique, Direction de l'aménagement de la faune de Jonquière, Direction de l'aménagement de la faune de Sept-Îles. 45 p.

Cree Nation of Whapmagoostui (2019). Climate Change Adaptation Action Plan. Cree Nation of Whapmagoostui and the Cree Nation Government facilitated by InsightShare. 23 p.

CSC ([s.d.]). Commission scolaire crie [en ligne]. Repéré à https://eeyoueducation.ca/ en décembre 2020.

Desroches, J.-F. & D. Rodrigue (2004). Amphibiens et reptiles du Québec et des Maritimes. Michel Quintin. 288 p.

Desrosiers, N., R. Morin & J. Jutras (2002). Atlas des micromammifères du Québec. Québec. Société de la faune et des parcs du Québec, Direction du développement de la faune. 92 p.

Dutilleux, G. & A. Fontaine (2015). Bruit routier et faune sauvage. Centre d’études et d’expertise sur les risques, l’environnement, la mobilité et l’aménagement. Direction technique infrastructures de transport et matériaux. 31 p.

ECCC (2019). Gouvernement du Canada, Environnement et Changement climatique Canada. Potentiels de réchauffement planétaire. Repéré à https://www.canada.ca/fr/environnement-changement- climatique/services/changements-climatiques/emissions-gaz-effet-serre/orientation- quantification/potentiels-rechauffement-planetaire.html en février 2021.

Environnement Canada (2007). Protocoles recommandés pour la surveillance des impacts des éoliennes sur les oiseaux. Environnement Canada, Service canadien de la faune. 41 p.

PESCA Environment 10-2 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Bibliography

Environnement et Changement climatique Canada (2020). Programme de rétablissement modifié du caribou des bois (Rangifer tarandus caribou), population boréale, au Canada. Série de Programmes de rétablissement de la Loi sur les espèces en péril. Environnement et Changement climatique Canada, Ottawa. xiv + 155 p.

Équipe de rétablissement des oiseaux de proie du Québec (2018). Plan de rétablissement du faucon pèlerin (Falco peregrinus anatum/tundrius) au Québec — 2019-2029. Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs, Direction générale de la gestion de la faune et des habitats. 58 p.

Équipe de rétablissement du caribou forestier du Québec (2013a). Bilan du plan de rétablissement du caribou forestier (Rangifer tarandus) au Québec - 2005-2012. Gouvernement du Québec, ministère du Développement durable, de l’Environnement, de la Faune et des Parcs, Direction de l'expertise sur la faune et ses habitats. 32 p., 5 ann.

Équipe de rétablissement du caribou forestier du Québec (2013b). Plan de rétablissement du caribou forestier (Rangifer tarandus) au Québec - 2013-2023. Gouvernement du Québec, ministère du Développement durable, de l’Environnement, de la Faune et des Parcs. 110 p.

Erickson, W. P., G. D. Johnson & D. P. Young Jr (2005). A Summary and Comparison of Bird Mortality from Anthropogenic Causes with an Emphasis on Collisions - Technical Report PSW-GTR-191. USDA Forest Service General, p. 1029-1042.

FCMQ (2020). Fédération des clubs de motoneigistes du Québec. Carte interactive des sentiers de motoneiges. Repéré à http://fcmq.viaexplora.com/carte-motoneige/index.html en décembre 2020.

FCNQ (2018). Fédération des coopératives du Nouveau-Québec - Coopératives - Kuujjuarapik. Repéré à http://www.fcnq.ca/fr/kuujjuarapik#coop-title-container en décembre 2020.

Féret, M. (2016, février). 10 ans de suivis fauniques au Québec. Communication présentée au colloque Produire l'énergie de demain, Association québécoise de la production d'énergie renouvelable. Québec.

FQCQ ([s.d.]). Fédération québécoise des Clubs Quads. Carte interactive. Repéré à https://www.fqcq.qc.ca/carte-interactive/ en décembre 2020.

Garant (2013, février). Mortalités d'oiseaux et de chiroptères - Bilan des premiers 1 000 MW. Communication présentée au colloque Énergie et économie - Réussir la transition vers le renouvelable, Association québécoise de la production d'énergie renouvelable. Québec.

Garvin, J. C., C. S. Jennelle, D. Drake & S. M. Grodsky (2011). Response of raptors to a windfarm. Journal of Applied Ecology, 48: 199-209.

Gauthier, J. & Y. Aubry (1995). Les oiseaux nicheurs du Québec - Atlas des oiseaux nicheurs du Québec méridional. Montréal. Association québécoise des groupes d'ornithologues, Société québécoise de protection des oiseaux, Service canadien de la faune, Environnement Canada. 1 295 p.

Gingras, P. (2019). La Presse. Grand Nord québécois : la croissance du bœuf musqué dérange les . Repéré à https://www.lapresse.ca/actualites/environnement/2019-11-11/grand-nord-quebecois-la- croissance-du-boeuf-musque-derange-les-inuits.

Goldwind ([s.d.]). Goldwind Brochure - PMDD Wind Turbine - 1S MW. Repéré à https://www.goldwindamericas.com/sites/default/files/GW%201S%20MW-ENG-DIGITAL.pdf en janvier 2021.

Gouvernement du Canada (2020). Registre public des espèces en péril. Repéré à https://www.canada.ca/fr/environnement-changement-climatique/services/registre-public-especes- peril.html en décembre 2020.

PESCA Environment 10-3 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Bibliography

Gouvernement du Canada (2021). Normales climatiques canadiennes - Normales et moyennes climatiques de 1981-2010 [en ligne]. Repéré à https://climat.meteo.gc.ca/climate_normals/index_f.html en février 2021.

Gouvernement du Québec (2020a). Accueil - Données Québec. Repéré à https://www.donneesquebec.ca/fr en mai 2020.

Gouvernement du Québec (2020b). Politique-cadre d’électrification et de lutte contre les changements climatiques - Plan pour une économie verte 2030. Ministère de l’Environnement et de la Lutte contre les changements climatiques. Gouvernement du Québec. 128 p.

Hydro-Québec (1992). Méthode d'évaluation environnementale - Lignes et postes - Le paysage (1e éd.). Réalisation : Le groupe Viau et Le groupe conseil Entraco. Hydro-Québec, Vice-présidence Environnement, Service Ressources et Aménagement du territoire. 325 p.

Hydro-Québec (2002). Ententes entre Hydro-Québec, la Société d'énergie de la Baie-James et les Cris du Québec [en ligne]. Repéré à http://www.hydroquebec.com/sebj/fr/pdf/resum_ententes.pdf en décembre 2020.

Hydro-Québec (2008). Rapport d'expertise. Jumelage éolien-diesel - Mise à jour des VAN optimales pour les réseaux du Nunavik et des Îles-de-la-Madeleine. Repéré à http://www.regie- energie.qc.ca/audiences/3648-07/RepDDRHQD3648/B-68HQD-06-01_annexe1_3648- 2_23mai08.pdf en décembre 2020.

Hydro-Québec (2019). Plan stratégique 2020-2024. 48 p.

Hydro-Québec Distribution (2019a). Plan d'approvisionnement 2020-2029. HQD-1, document 1. Hydro- Québec Distribution. 15 p.

Hydro-Québec Distribution (2019b). Complément d'information du Plan d'approvisionnement 2020-2029 - Réseaux autonomes. HQD-3, document 1. Hydro-Québec Distribution. 83 p.

IEA (2020). International Energy Agency. Renewables [en ligne]. Repéré à https://www.iea.org/fuels-and- technologies/renewables en décembre 2020.

Institut culturel Avataq (1990). Complexe Grande Baleine : interventions archéologiques. Rapport final présenté à Vice-présidence Environnement, Hydro-Québec. 4 annexes et 48 p.

ISO (1996). Acoustique - Atténuation du son lors de sa propagation à l'air libre - Partie 2 : Méthode générale de calcul. Organisation internationale de normalisation. 19 p.

ISRE (2000). Colloque sur les effets du bruit de la faune - Compte rendu du colloque Happy Valley-Goose Bay. Happy Valley-Goose Bay, Labrador. Institut pour la surveillance et la recherche environnementales. 84 p.

Jean, D., S. Rivard, M. Bélanger & Société Makivik (2006). Inventaire et structure de population du boeuf musqué (Ovibos moschatus) au sud-ouest de la baie d'Ungava (août 2003). Le Naturaliste canadien, 130 (2): 42-48.

Jolicoeur, H., R. Courtois & S. Lefort (2005). Le caribou de Charlevoix, une décennie après sa réintroduction, 1978-1981. Gouvernement du Québec, ministère des Ressources naturelles et de la Faune, Direction du développement de la faune. 178 p.

Jutras, J., M. Delorme, J. Mc Duff & C. Vasseur (2012). Le suivi des chauves-souris du Québec. Le Naturaliste canadien, 136 (1): 48-52.

Kaseloo, P. A. & K. O. Tyson (2004). Synthesis of noise effects on wildlife populations. Petesburg. Virginia State University, Department of biology. 67 p.

PESCA Environment 10-4 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Bibliography

Kativik Ilisarniliriniq (2020). Accueil - Kativik Ilisarniliriniq. Repéré à http://www.kativik.qc.ca en décembre 2020.

Kingsley, A. & B. Whittam (2007). Les éoliennes et les oiseaux - Revue de la documentation pour les évaluations environnementales. Préparée pour Environnement Canada, Service canadien de la faune. 93 p.

Kuvlesky Jr., W. P., L. A. Brennan, M. L. Morrison, K. K. Boydston, B. M. Ballard & F. C. Bryant (2007). Wind Energy Development and Wildlife Conservation: Challenges and Opportunities. The Journal of Wildlife Management, 71 (8): 2487-2498.

Landry, G. & C. Pelletier (2007). L'orignal (Alces alces) et le développement de l'industrie éolienne en Gaspésie. Gouvernement du Québec, ministère des Ressources naturelles et de la Faune, Direction de l'aménagement de la faune de la Gaspésie - Îles-de-la-Madeleine. 32 p.

Le Henaff, D. (1986). Plan tactique - Boeuf musqué. Gouvernement du Québec, ministère du Loisir, de la Chasse et de la Pêche, Direction générale de la faune. 44 p.

Lefort, S. & S. Massé (2015). Plan de gestion de l'orignal au Québec 2012-2019. Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs, Secteur de la faune et des parcs, Direction générale de l’expertise sur la faune et ses habitats, Direction générale du développement de la faune. 443 p.

Longcore, T., C. Rich, P. Mineau, B. MacDonald, D. G. Bert, L. M. Sullivan, et al. (2012). An Estimate of Avian Mortality at Communication Towers in the United States and Canada. Plos One, 7 (4): e34025. Repéré à doi:10.1371/journal.pone.0034025.

Loss, S. R., T. Will & P. P. Marra (2013). Estimates of bird collision mortality at wind facilities in the contiguous United States. Biological Conservation, 168: 201-209.

Makivik Corporation (2019). Kuujjuarapik. Repéré à https://www.makivik.org/kuujjuarapik/ en décembre 2020.

MAMH ([s. d.]). Gouvernement du Québec, ministère des Affaires municipales et de l'Habitation. Répertoire des municipalités. Repéré à https://www.mamh.gouv.qc.ca/repertoire-des- municipalites en juillet 2020.

MAMR (2007). Guide d’intégration des éoliennes au territoire – Vers de nouveaux paysages. Gouvernement du Québec, ministère des Affaires municipales et des Régions, Direction des politiques municipales et de la recherche. 38 p. Repéré à http://www.mamrot.gouv.qc.ca//publications/amenagement/guide_integration_eoliennes_territoire. pdf.

MCC (2013-2020). Gouvernement du Québec, ministère de la Culture et des Communications. Répertoire du patrimoine culturel du Québec. Repéré à https://www.patrimoine- culturel.gouv.qc.ca/rpcq/accueil.do;jsessionid=4273FC631CEB1FFF105E3B54B0ED18E6?metho de=afficher en décembre 2020.

MDDEFP (2013). Protocole de suivi des mortalités d’oiseaux et de chiroptères dans le cadre de projets d’implantation d’éoliennes au Québec – Novembre 2013. Gouvernement du Québec, ministère du Développement durable, de l’Environnement, de la Faune et des Parcs, Secteur faune. 20 p.

MDDELCC (2015). Lignes directrices relativement aux niveaux sonores provenant d'un chantier de construction industriel (version du 27 mars 2015). Gouvernement du Québec, ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques. 1 p. Repéré à http://www.mddelcc.gouv.qc.ca/publications/note-instructions/98-01/lignes-directrices- construction.pdf.

PESCA Environment 10-5 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Bibliography

MELCC (2020a). Gouvernement du Québec, ministère de l'Environnement et de la Lutte contre les changements climatiques. Répertoire des terrains contaminés. Repéré à http://www.environnement.gouv.qc.ca/sol/terrains/terrains-contamines/recherche.asp en août 2020.

MELCC (2020b). Gouvernement du Québec, ministère de l'Environnement et de la Lutte contre les changements climatiques. Répertoire des dépôts de sols et de résidus industriels. Repéré à http://www.mddelcc.gouv.qc.ca/sol/residus_ind/recherche.asp en août 2020.

MELCC (2020c). Gouvernement du Québec, ministère de l'Environnement et de la Lutte contre les changements climatiques. Espèces menacées ou vulnérables au Québec. Repéré à http://www.environnement.gouv.qc.ca/biodiversite/especes/index.htm en décembre 2020.

MELCC (2020d). Gouvernement du Québec, ministère de l'Environnement et de la Lutte contre les changements climatiques. Aires protégées au Québec. Les provinces naturelles. Niveau I du cadre écologique de référence du Québec. Repéré à http://www.environnement.gouv.qc.ca/biodiversite/aires_protegees/provinces/partie4h.htm en décembre 2020.

MELCC (2020e). Gouvernement du Québec, ministère de l’Environnement et de la Lutte contre les changements climatiques. Note d'instructions - Traitement des plaintes sur le bruit et exigences aux entreprises qui le génèrent (février 1998, modifiée en juin 2006). Repéré à http://www.environnement.gouv.qc.ca/publications/note-instructions/98-01.htm en décembre 2020.

MELCC (2020f). Gouvernement du Québec, ministère de l'Environnement et de la Lutte contre les changements climatiques. Système d'information hydrogéologique (SIH). Repéré à http://www.environnement.gouv.qc.ca/eau/souterraines/sih/index.htm en septembre 2020.

MFFP (2016-2020a). Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs. Faune. Repéré à https://mffp.gouv.qc.ca/la-faune/ en décembre 2020.

MFFP (2016-2020b). Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs. Liste des espèces désignées comme menacées ou vulnérables au Québec. Repéré à https://mffp.gouv.qc.ca/la-faune/especes/liste-especes-vulnerables/ en décembre 2020.

MFFP (2018). Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs. Suivi démographique du troupeau de caribous migrateurs de la Rivière aux Feuilles. Repéré à https://mffp.gouv.qc.ca/caribous-migrateurs-riviere-aux-feuilles-2018-12-13/ en décembre 2020.

MFFP (2019). Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs. Zones de végétation et domaines bioclimatiques du Québec. Repéré à https://mffp.gouv.qc.ca/forets/inventaire/inventaire-zones.jsp en décembre 2020.

MLCP (1986). Les parcs québécois - Les régions naturelles (vol. 7). Gouvernement du Québec, Ministère du Loisir, de la Chasse et de la Pêche. 209 p.

Morin, P., D. Berteaux & I. Klvana (2005). Hierarchical habitat selection by Northern American porcupines in soutern boreal forest. Canadian Journal of Zoology, 83: 1333-1342.

MRNF (2005). Guide pour la réalisation d'une étude d'intégration et d'harmonisation paysagères - Projet d'implantation de parc éolien sur le territoire public. Québec. Gouvernement du Québec, ministère des Ressources naturelles et de la Faune, Direction générale de la gestion du territoire public. 24 p.

MRNF (2008). Protocole d'inventaires acoustiques de chiroptères dans le cadre de projets d'implantation d'éoliennes au Québec - 8 janvier 2008. Gouvernement du Québec, ministère des Ressources naturelles et de la Faune, Secteur faune. 10 p.

PESCA Environment 10-6 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Bibliography

MRNF (2009). Étude sur les impacts cumulatifs des éoliennes sur les paysages - Mars 2009. Gouvernement du Québec, ministère des Ressources naturelles et de la Faune, Direction des affaires régionales et du soutien aux opérations Énergie, Mines et Territoire. 54 p., 4 ann.

Nadeau, S., R. Decarie, D. Lambert & M. St Georges (1995). Nonlinear mideling of muskrat use of habitat. Journal of Wildlife Management, 59: 110-117.

National Research Council (2007). Environmental Impacts of Wind-Energy Projects - Prepublication copy. The National Academies Press. 267 p.

Natural Ressource Solutions (2012, octobre). Wind farm project Integration with moose populations. Communication présentée au congrès annuel & salon professionnel CanWEA. Toronto.

OMNR (2016). Best management practices for aggregate activities and forest-dwelling Woodland Caribou. Ontario Ministry of Natural Resources. 10 p.

Ouellet, J.-P. (1986). Organisation socio-spatiale de la marmotte commune (Marmota monax) en milieu agricole pour la saison post-reproductrice [mémoire de maîtrise], Université de Montréal, Montréal.

Parcs Canada (2020). Gouvernement du Canada, Parcs Canada. Commission des lieux et monuments historiques du Canada. Repéré à https://www.pc.gc.ca/fr/culture/clmhc-hsmbc en décembre 2020.

Payette, S., C. Morneau, S. Boudreau & P. Lamothe (2002). Le caribou migrateur (Rangifer tarandus L.) du Nord québécois dans l'espace et le temps. Le Naturaliste canadien, 126 (2): 24-36.

Pearce-Higgins, J. W., L. Stephen, A. Douse & R. H. W. Langston (2012). Greater impacts of wind farms on bird populations during construction than subsequent operation: results of a multi-site and multi-species analysis. Journal of Applied Ecology, 49: 386-394.

Pêches et Océans Canada (2010). Bonnes pratiques pour la conception et l'installation de ponceaux de moins de 25 mètres. Région du Québec. 18 p., 4 ann.

Pelletier, C. & M. Dorais (2010). Analyse des sites d’abattage de l’orignal (Alces alces) au parc éolien de Carleton. Gouvernement du Québec, ministère des Ressources naturelles et de la Faune, Direction de l’expertise Énergie, Faune, Forêts, Mines - Territoire de la Gaspésie–Îles-de-la- Madeleine. 18 p.

Potvin, F., N. Bertrand & R. Walsh (2006). Évolution de l’habitat d’espèces fauniques de la forêt boréale dans un secteur de coupe intensive sur une période de 25 ans. Québec. Gouvernement du Québec, ministère des Ressources naturelles et de la Faune. 28 p.

Prescott, J. & P. Richard (2013). Mammifères du Québec et de l'est du Canada (3e éd.). Waterloo. Michel Quintin. 479 p.

Radle, A. L. (1998). World Forum For Acoustic Ecology - WFAE contributing Authors - Radle, Autumn Lyn - The Effect Of Noise On Wildlife: A Literature Review.

REN21 (2020). Renewables 2020 Global Status Report. Renewable Energy Policy Network for the 21st Century. 367 p.

Ressources naturelles (2013). Gouvernement du Canada. CanVec [données numériques].

Robert, M., M.-H. Hachey, D. Lepage & A. Couturier (2019). Deuxième atlas des oiseaux nicheurs du Québec méridional. Regroupement QuébecOiseaux, Service canadien de la faune (Environnement et Changement climatique Canada) et Études d’Oiseaux Canada, Montréal. xxv + 694 p.

PESCA Environment 10-7 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Bibliography

Samson, C. (1995). Écologie et dynamique de population de l'ours noir (Ursus americanus) dans une forêt mixte protégée du sud du Québec [Thèse de doctorat], Université Laval, Département de biologie, Québec.

Samson, C. (1996). Modèle d'indice de qualité pour l'habitat de l'ours noir (Ursus americanus) au Québec. Gouvernement du Québec, ministère de l'Environnement et de la Faune, Direction générale de la ressource faunique et des parcs. 57 p.

Samson, C., R. Dussault, R. Courtois & J.-P. Ouellet (2002). Guide d'aménagement de l'habitat de l'orignal. Sainte-Foy. Fondation de la faune du Québec et ministère des Ressources naturelles du Québec. 48 p.

Secrétariat du Conseil du Trésor du Canada ([s. d.]). Gouvernement du Canada. Inventaire des sites contaminés fédéraux - Version 32.0. Repéré à www.tbs-sct.gc.ca/fcsi-rscf/home-accueil-fra.aspx en novembre 2020.

Société d'histoire naturelle de la vallée du Saint-Laurent ([s.d.]). Atlas des amphibiens et reptiles du Québec (AARQ). Repéré à https://www.atlasamphibiensreptiles.qc.ca en mai 2020.

Société de la faune et des parcs (2003). Plan de développement régional associé aux ressources fauniques du Nord-du-Québec. Chibougamau. Direction de l'aménagement de la faune du Nord- du-Québec. 115 p.

Statistique Canada (2020). Statistique Canada. Profil du recensement de 2016 [en ligne]. Repéré à http://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=F en décembre 2020.

Szor, G. & G. Gingras (2020). Inventaire aérien du caribou forestier (Rangifer tarandus caribou) dans les secteurs baie James, Rupert et La Grande, Nord-du-Québec, à l’hiver 2020. Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs, direction de la gestion de la faune du Nord-du-Québec. 31 p.

Taillon, J. (2010). Le caribou toundrique - Grand nomade. Nature sauvage (automne): 16-22.

Taillon, J., V. Brodeur & S. Rivard (2016). État de la situation biologique du caribou migrateur, troupeau de la rivière aux Feuilles, . Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs. 69 p.

The Ornithological Council (2007). Impact of Wind Energy and Related Human Activities on Grassland and Shrub-Steppe Birds. The National Wind Coordinating Collaborative. 183 p.

Transports Canada (2006). Amendement 621.19.12 à la norme 621.16 du Règlement de l'aviation canadien. 8 p.

Transports Québec (2020). Gouvernement du Québec, Ministère des Transports. Infrastructures aéroportuaires. Repéré à https://www.transports.gouv.qc.ca/fr/projets-infrastructures/structures- infrastructures/infrastructures-aeroportuaires/Pages/infrastructures-aeroportuaires.aspx en décembre 2020.

Tremblay, J. A. (2011). Réponses aux questions soumises par le Bureau d’audiences publiques (BAPE) sur l’environnement – Étude du parc éolien Montérégie. Ministère des Ressources naturelles et de la Faune du Québec. 9 p. Repéré à http://www.bape.gouv.qc.ca/sections/mandats/eole_riviere-du-moulin/documents/DB12.pdf.

Tremblay, J. A. (2012). Réponses aux questions soumises par le Bureau d’audiences publiques (BAPE) sur l’environnement – Étude du parc éolien Rivière-du-Moulin. Ministère des Ressources naturelles et de la Faune du Québec. 5 p. Repéré à http://www.bape.gouv.qc.ca/sections/mandats/eole_riviere-du-moulin/documents/DQ10.2.pdf.

PESCA Environment 10-8 March 31, 2021 KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Bibliography

Université de Montréal (2007). Collection Paysages du Nouveau-Québec de 1974 à 1984 © 2007 Direction des bibliothèques, Université de Montréal. Poste-de-la-Baleine à l'embouchure de la Grande rivière de la Baleine, Basse-Hudsonie sudique. Repéré à https://calypso.bib.umontreal.ca/digital/collection/_nquebec/id/3219 en décembre 2020.

Van Zyll de Jong, C. G. (1985). Traité des mammifères du Canada - tome 2 : Les chauves-souris. Ottawa. Musée national des Sciences naturelles.

Wallin, J. ([s. d.]-a). Results of wildlife movement monitoring using an infrared sensing remote camera located under wind turbine 7, searsburg wind project during october, 2005. Multiple Resource Management inc. 13 p.

Wallin, J. ([s. d.]-b). Results of wildlife movement monitoring using an infrared sensing remote camera located under wind turbine 7, searsburg wind project - April-Novembre, 2006. Multiple Resource Management inc. 12 p.

Warrington, M. H., C. M. Curry, B. Antze & N. Koper (2018). Noise from four types of extractive energy infrastructure affects song features of Savannah Sparrows. The Condor: Ornithological Applications, 120 (1): 1-15.

Whapmagoostui First Nation ([s.d.]). Whapmagoostui Band Office [en ligne]. Repéré à http://www.whapmagoostuifn.ca en décembre 2020.

Whitmore, J. & P.-O. Pineau (2021). État de l’énergie au Québec 2021. Chaire de gestion du secteur de l’énergie, HEC Montréal, préparé pour le ministère de l’Énergie et des Ressources naturelles (Secteur de la Transition énergétique). 61 p.

Zimmerling, J. R., A. C. Pomeroy, M. V. d'Entremont & C. M. Francis (2013). Canadian Estimate of Bird Mortality Due to Collisions and Direct Habitat Loss Associated with Wind Turbine Developments. Avian Conservation and Ecology, 8 (2): 10.

PESCA Environment 10-9 March 31, 2021

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Appendices

11 Appendices

Appendix A - KWREC Corporate Structure Appendix B - Resolutions and Letters of Support for the Project Appendix C - Bird Inventory Report (2012-2013) Appendix D - Identification of telecommunications systems Appendix E - Report on Public Consultations

PESCA Environment March 31, 2021

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Appendices

Appendix A KWREC Corporate Structure

PESCA Environment A-1 March 31, 2021

Corporate Structure Chart

9415-1610 Québec Inc. operating under the name: Kuujjuaraapik Whapmagoostui Renewable Energy Corporation

50% 50% Sakkuq Landholding Nimschu Iskudow Inc. Corporation of Kuujjuaraapik

15% 85% Tawich Development Cree First Nation of Corporation Whapmagoostui 100% owned by the Cree First Nation of Wemindji

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Appendices

Appendix B Resolutions and Letters of Support for the Project

PESCA Environment B-1 March 31, 2021

Grand Council of the Crees (Eeyou lstchee)/ G.C.C.E.l. est. 1974 Cree Regional AuthoritY

Council/Board

RESOLUTION 2012-27

SUBJECT: Whapmagoostui First Nation Pilot Proiect to Develop {0 [lW of Hybrid Energy

WHEREAS the members of the vvhapmagoostui First Nation currently consumes approximately 11,500,000 k\Nh of non-renewable energy per year;

WHEREAS it is in the best interest of the whapmagoostui First Nation and the cree people to develop clean and sustainable energy sources for the long- term energy needs bf the community and the Cree people to protect the environment and avert the environmental impact of future hydro development projects;

WHEREAS renewable energy projects are an important economic development opportunity for the cree people as it will create jobs, training programs and economic developmint spin-offs to help ensure the communities' long-term economic growth;

WHEREAS Hydro-Quebec has announced that it is currently planning to renew the thermal plant power station in Whapmagoostui in 2013;

WHEREAS this announced renewal of the thermal plan power provides the whapmagoostui First Nation with an opportunity to negotiate a Power Purchase Agreement for renewable energy with Hydro-Quebec for the next 20 years;

WHEREAS the cree and the Government of Quebec have identified opportunities for the Cree to develop energy projects;

WHEREAS Whapmagoostui First Nation is interested in developing sustainable and clean renewable energy sources within its category lA lands;

WHEREAS, the successful development of sustainable and clean energy resources can constitute an important source of new revenues and create an important investment oppo(unity for the long term;

1T IS RESOLVED THAT

THAT Board/Council of the Grand Council of the Crees (Eeyou lstchee)/Cree Regional Authority hereby expresses support to the cree Nation of whapmagoostui in its endeavor to develop sustainable and clean renewable energy souroe.

Proposed by: Chief Davie Bobbish

Seconded by: Chief Stanley George

12

John Paul Murdoch, Corporate Secretary

CERTIFIED TRUE COPY OF A RESOLUTION OF THE BOARD OF DIRECTORS OF NIMSCHU ISKUDOW INC

SUBJECT: Public Consultation Process Re Whapmagoostui-Kuujjuaraapik Hybrid Power Plant Project (WKHPPP)

WHEREAS, in 2011, the Whapmagoostui First Nation (WFN) called for the development of clean energy technologies as an alternative to the diesel power plant owned by Hydro-Quebec Distribution (HQD) that distributes electricity to the Whapmagoostui- Kuujjuaraapik community.

WHEREAS the said power plant has notable deficiencies that result in multiple power blackouts on a yearly basis.

WHEREAS, since 2011, the WFN Council has adopted Resolutions supporting the process to develop the Whapmagoostui – Kuujjuaraapik Hybrid Power Plant Project (hereafter: «Project») among others Council Resolutions number: 2011-084, 2013— 2014-09-07 and 2015-2016-05-02.

WHEREAS the proposed Project will serve as a component to the diesel powerhouse owned and operated by Hydro-Quebec Distribution ((hereafter: «HQD») to create local economic and employment opportunities and to reduce the emissions of CO2 greenhouse gases.

WHEREAS, the Whapmagoostui First Nation (WFN) has mandated its subsidiary Nimschu Iskudow Inc. (hereafter: «NI») to develop the Project and to ensure the involvement of the Inuit of Kuujjuaraapik into the Project.

WHEREAS a Memorandum of Understanding (MOU) creating a Steering Committee composed of the Northern Village of Kuujjuaraapik, the Sakkuq Landholding Corporation of Kuujjuaraapik (hereafter: «Sakkuq») as well as WFN’s and NI’s representatives was executed in February 2019.

WHEREAS, the activities of the Steering Committee led to the incorporation, on March 11, 2020, of a legal entity named Kuujjuaraapik Whapmagoostui Renewable Energy Corporation (Hereafter: «KWREC»), which is owned equally (50% each) between NI and Sakkuq and which became the sole promoter of the Project.

CERTIFIED TRUE COPY OF A RESOLUTION OF THE BOARD OF DIRECTORS OF NIMSCHU ISKUDOW INC

WHEREAS, KWREC has filed, on July 8, 2020, a Project Notice with the environmental authorities in accordance with Section 22 of the James Bay and Northern Québec Agreement (hereafter: «JBNQA»).

WHEREAS, KWERC has executed on September 2, 2020, agreements with the Ministry of Natural Resources Canada securing grant contributions for a total amount of nine (9) million dollars ($9,000,000) for the Project.

WHEREAS the Evaluating Committee established under the JBNQA (hereafter: «COMEV») has, on October 28, 2020, issued directives of the Project’s impact study and, more particularly, related to the consultation of the concerned Whapmagoostui’s Crees.

WHEREAS KWREC is currently holding discussions with Hydro-Québec Distribution in view to enter into a Power Purchase Agreement (PPA) for the Project, which is confirmed by HQD at page 34 of its 2020 Progress Report for the 2020-2029 Supply Plan (file number: R4110-2019), dated October 30, 2020, filed before the Quebec Energy Board; and

WHEREAS, the NI Board has reviewed the Project’s presentation dated November 24, 2020, which demonstrates, among others the Project’s positive impact on WFN’s capacity building, employment, economic spinoff, source of revenue as well as greenhouse gases effect reduction while its negative environmental impact remains relatively limited.

WHEREAS, on February 9, 2021, the Board of Directors with full quorum participated in the public consultation meeting regarding the proposed Project.

NOW THEREFORE BE IT RESOLVED:

THAT, the NI Board of Directors, duly constituting quorum and assembled on February 9th, 2021, does hereby express its full support of the following:

1. Public consultation process for the Whapmagoostui-Kuujjuaraapik Hybrid Power Plant Project (WKHPPP). 2. Environmental Impact Assessment Process developed for the Project in accordance with Section 22 of the JBNQA; and CERTIFIED TRUE COPY OF A RESOLUTION OF THE BOARD OF DIRECTORS OF NIMSCHU ISKUDOW INC

3. Issuance of Directives issued by CGN’s Regional Administrator, Mr. Isaac Voyageur, following COMEV’s recommendations in this regard.

THAT, further, the NI Board does here express its full support of the proposed community- owned Kuujjuaraapik-Whapmagoostui Wind Energy Project to be a sustainable energy component to HQD’s diesel powerplant serving the Whapmagoostui-Kuujjuaraapik community. THAT, President Matthew Mukash and Vice-President Sam W. Gull be and they are hereby mandated to do all things necessary to give effect to the foregoing.

The undersigned, Secretary of Nimschu Iskudow (the “Corporation”), hereby certifies that the foregoing, Resolution 210209-1 Proposed by Robert Wynne, seconded by John Shem with no abstention, is a certified true copy of Resolution of the Board of Directors of the Corporation as of February 9th, 2021 which Resolution is still in full force and effect. IN WITNESS WHEREOF, I have signed this February 25th 2021.

Yves-André Bureau

Corporate Secretary

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Appendices

Appendix C Bird Inventory Report (2012-2013)

PESCA Environment C-1 March 31, 2021

KUUJJUARAAPIK WHAPMAGOOSTUI RENEWABLE ENERGY CORPORATION

Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

22 décembre 2020

KWREC CENTRALE D’ÉNERGIE HYBRIDE DE WHAPMAGOOSTUI KUUJJUARAAPIK

Inventaires d’oiseaux 2012-2013

PESCA Environnement 22 décembre 2020

KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

□ KWREC CENTRALE D’ÉNERGIE HYBRIDE DE WHAPMAGOOSTUI KUUJJUARAAPIK INVENTAIRES D’OISEAUX 2012-2013

Rapport destiné à Kuujjuaraapik Whapmagoostui Renewable Energy Corporation (KWREC) Diffusion Publique Dépôt de la version finale xx janvier 2021 N/Réf. 1031

Photographies : PESCA Environnement

□ ÉQUIPE DE RÉALISATION

PESCA Environnement

version originale signée par version originale signée par

Matthieu Féret, biologiste, M. Sc. Josée-Anne Beauchesne, biologiste Directeur de projet Chargée de projet

PESCA Environnement i 22 décembre 2020

KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

□ TABLE DES MATIÈRES

1 MISE EN CONTEXTE ...... 1

2 DÉLIMITATION DE LA ZONE D’ÉTUDE ...... 1

3 PROTOCOLES D’INVENTAIRES ...... 1 3.1 Périodes d’inventaires ...... 2 3.2 Méthodes d’inventaires ...... 2 3.2.1 Point d’observation (rapaces) ...... 5 3.2.2 Transect (oiseaux terrestres) ...... 6 3.2.3 Visite de plans d’eau (sauvagine) ...... 7 3.3 Traitement des données ...... 8 3.3.1 Rapaces ...... 8 3.3.2 Oiseaux terrestres ...... 8 3.3.3 Sauvagine ...... 9

4 RÉSULTATS ...... 9 4.1 Rapaces ...... 9 4.1.1 Migration printanière ...... 9 4.1.2 Migration automnale ...... 13 4.2 Oiseaux terrestres ...... 16 4.2.1 Migration printanière ...... 16 4.2.2 Migration automnale ...... 17 4.3 Sauvagine ...... 19 4.3.1 Migration printanière ...... 19 4.3.2 Nidification ...... 20 4.3.3 Migration automnale ...... 21 4.4 Photographies d’espèces observées ...... 22

5 CONCLUSION ...... 23

BIBLIOGRAPHIE ...... 24

PESCA Environnement iii 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

□ LISTE DES TABLEAUX

Tableau 1 Effort d’échantillonnage et méthodes d’inventaires de la faune avienne dans la zone d’étude en 2012 et en 2013 ...... 2 Tableau 2 Effort d’échantillonnage relatif aux oiseaux terrestres dans la zone d’étude durant les migrations printanière et automnale de 2012 et de 2013 ...... 6 Tableau 3 Variation spatiale de l’abondance des rapaces dans la zone d’étude durant la migration printanière de 2012 ...... 10 Tableau 4 Variation temporelle de l’abondance des rapaces dans la zone d’étude durant la migration printanière de 2012 ...... 11 Tableau 5 Altitude de vol des rapaces dans la zone d’étude durant la migration printanière de 2012 ...... 12 Tableau 6 Variation spatiale de l’abondance des rapaces dans la zone d’étude durant les migrations automnales de 2012 et de 2013 ...... 13 Tableau 7 Variation temporelle de l’abondance des rapaces dans la zone d’étude durant la migration automnale de 2012 ...... 14 Tableau 8 Variation temporelle de l’abondance des rapaces dans la zone d’étude durant la migration automnale de 2013 ...... 14 Tableau 9 Altitude de vol des rapaces dans la zone d’étude durant les migrations automnales de 2012 et de 2013 ...... 15 Tableau 10 Sauvagines observées dans la zone d’étude durant la migration printanière de 2012 ...... 19 Tableau 11 Sauvagines observées dans la zone d’étude durant la nidification de 2012 ...... 20 Tableau 12 Sauvagines observées dans la zone d’étude durant les migrations automnales de 2012 et de 2013 ...... 21

PESCA Environnement iv 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

□ LISTE DES FIGURES

Figure 1 Localisation de la zone d’étude et des sites d’inventaires d’oiseaux ...... 3 Figure 2 Points d’observation de rapaces dans la zone d’étude en 2012 ...... 5 Figure 3 Transects d’inventaires d’oiseaux terrestres dans la zone d’étude en 2012 ...... 6 Figure 4 Visite de plans d’eau lors de l’inventaire de la sauvagine dans la zone d’étude en 2012 ...... 7 Figure 5 Direction de vol des rapaces dans la zone d’étude durant la migration printanière de 2012 ...... 12 Figure 6 Direction de vol des rapaces dans la zone d’étude durant les migrations automnales de 2012 et de 2013 ...... 15 Figure 7 Densité des oiseaux terrestres dans la zone d’étude durant la migration printanière de 2012 ...... 16 Figure 8 Diversité des oiseaux terrestres dans la zone d’étude durant la migration printanière de 2012 ...... 17 Figure 9 Densité des oiseaux terrestres dans la zone d’étude durant les migrations automnales de 2012 et de 2013 ...... 18 Figure 10 Diversité des oiseaux terrestres dans la zone d’étude durant les migrations automnales de 2012 et de 2013 ...... 18 Figure 11 Oiseaux observés lors des inventaires de la faune avienne dans la zone d’étude en 2012 et en 2013 ...... 22

□ LISTE DES ANNEXES

Annexe A Conditions météorologiques quotidiennes lors des inventaires de la faune avienne réalisés dans la zone d’étude en 2012 et en 2013 Annexe B Caractéristiques des sites d’inventaires de la faune avienne dans la zone d’étude en 2012 et en 2013 Annexe C Résultats détaillés quotidiens des inventaires de la faune avienne réalisés dans la zone d’étude en 2012 et en 2013

PESCA Environnement v 22 décembre 2020

KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

1 Mise en contexte

Les communautés crie et inuit de Whapmagoostui et de Kuujjuaraapik sont présentement alimentées en électricité par une centrale au diesel. Le projet de centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik est développé par ces deux communautés afin de réduire l’utilisation de combustibles fossiles et les émissions de gaz à effet de serre (GES) tout en répondant à un besoin d’augmenter la puissance énergétique à court terme de ce réseau autonome. Ce projet vise l’installation de deux éoliennes d’une puissance nominale de 1,5 MW chacune pour un total de 3,0 MW.

PESCA Environnement a été mandatée afin de caractériser le milieu d’implantation du projet, notamment en ce qui a trait aux oiseaux. Des inventaires ornithologiques ont été réalisés en 2012 et en 2013 afin de décrire l’utilisation du site d’implantation par les oiseaux et de vérifier la présence d’espèces à statut particulier.

2 Délimitation de la zone d’étude

La zone d’étude relative à la présente étude d'impact couvre 4 679,9 ha (46,8 km²). Elle est située au Nunavik, à l’embouchure de la Grande rivière de la Baleine, sur la côte est de la baie d’Hudson. Elle englobe toutes les infrastructures du projet, de même que le village nordique de Kuujjuaraapik et le village cri de Whapmagoostui (figure 1).

Le relief de la zone d’étude est généralement constitué d’affleurements rocheux ne dépassant pas 235 m d’altitude et traversés par des vallées. Des dunes de sable sont également présentes le long de la baie d’Hudson. Le réseau hydrographique comprend des lacs et des cours d’eau. La zone d’étude se situe dans le domaine bioclimatique de la pessière à lichens (MFFP, 2019).

3 Protocoles d’inventaires

Les oiseaux terrestres, les rapaces et la sauvagine ont été recensés lors des inventaires de la faune avienne. Dans le contexte de la présente étude, les oiseaux terrestres désignent toutes les espèces aviennes, à l’exception des rapaces et de la sauvagine. La sauvagine regroupe toutes les espèces d’oies et de canards barboteurs ou plongeurs.

PESCA Environnement 1 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

3.1 Périodes d’inventaires

Les périodes suivantes ont été couvertes par les inventaires de la faune avienne dans la zone d’étude :

◦ Migration printanière des rapaces et des oiseaux terrestres :  2012 : 19 mai au 3 juin (13 jours); ◦ Migration automnale des rapaces et des oiseaux terrestres :  2012 : 18 septembre au 4 octobre (12 jours);  2013 : 17 au 30 août (11 jours); ◦ Nidification de la sauvagine :  2012 : 25 mai (visite de 6 plans d’eau).

3.2 Méthodes d’inventaires

Les inventaires ont été réalisés selon trois méthodes retenues en fonction des périodes d’inventaires et des groupes d’oiseaux ciblés (tableau 1). Les protocoles de référence provincial et fédéral ont été pris en considération lors de la réalisation des inventaires ornithologiques (Environnement Canada, 2007; MRNF, 2008).

Tableau 1 Effort d’échantillonnage et méthodes d’inventaires de la faune avienne dans la zone d’étude en 2012 et en 2013

Migration Nidification Groupe Méthode Printemps Automne Automne 2012 (h) Total 2012 (h) 2012 (h) 2013 (h) Rapaces Point d’observation 55,1 63,0 35,8 s. o. 153,9 Oiseaux terrestres Transect 10,8 5,2 4,9 s. o. 20,9 Sauvagine Visite de plans d’eau s. o. s. o. s. o. 1,6 1,6 Total 65,9 68,2 40,7 1,6 176,4 s. o. : sans objet.

La sauvagine observée au cours des inventaires d’oiseaux terrestres et de rapaces a été notée en périodes de migration.

La localisation des sites d’inventaires de la faune avienne est présentée à la figure 1.

Les données météorologiques suivantes ont été notées au cours des inventaires et sont présentées à l’annexe A : ◦ la couverture nuageuse; ◦ les précipitations; ◦ la température; ◦ la force et l’origine du vent; ◦ la hauteur approximative du plafond nuageux.

PESCA Environnement 2 22 décembre 2020 Kuujjuaraapik Whapmagoostui ± Renewable Energy Corporation T6 Centrale d'énergie hybride de Whapmagoostui Kuujjuaraapik

5

T

Zone d'étude Plan d'eau visité - Sauvagine S2 S3 Point d'observation - Rapaces Transect - Oiseaux terrestres R4 Chemin T 4 Plan d'eau Cours d'eau Végétation et autres milieux Arbustaie S4 Affleurements/fragments rocheux S5 S6 Brûlis Baie d'Hudson Anthropique Lande subarctique Toundra à arbustes dressés dominée par le substrat rocheux Forêt de conifères Surface dénudée

R2

1 T

R1 T3 S1 T2

R3 Figure 1 Lo calisatio n de la zo ne d’étude et des sites d’inventaires d’o iseaux Whapmagoostui Kuujjuaraapik Source : BDVQ, 1 : 2 000 Canvec, 1 : 50 000 0 400 800 m RRN Grande rivière de MFFP NAD 1983, CSRS MTM, Fuseau 9 la Baleine 2021-01-07

N/Réf.: WKHPPP_1031_OIS_f1_20210107

KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

3.2.1 Point d’observation (rapaces)

L’inventaire des rapaces fréquentant la zone d’étude en période de migration a été réalisé à partir de quatre points d’observation (R1, R2, R3 et R4). Ces derniers se trouvaient dans des endroits surélevés et offrant une vue dégagée sur les alentours (figure 1). Ces points ont été choisis en fonction de leur accessibilité et de manière à couvrir la zone d’étude. Le point R3, temporaire, a été visité une fois au printemps. Les coordonnées géographiques des points d’observation sont indiquées à l’annexe B.

Figure 2 Points d’observation de rapaces dans la zone d’étude en 2012

L’inventaire durant la migration printanière des rapaces s’est déroulé du 19 mai au 1er juin 2012 pour un total de 55,1 h d’observation réparties sur 11 jours. L’inventaire durant la migration automnale des rapaces s’est déroulé du 18 septembre au 4 octobre 2012 (63,0 h d’observation réparties sur 11 jours) et du 17 au 30 août 2013 (35,8 h réparties sur 9 jours).

Les observations ont été effectuées entre 8 h 30 et 16 h 35. L’inventaire a été réalisé dans des conditions météorologiques favorables à la migration des rapaces, soit lors de journées sans précipitations ni brouillard, à l’exception de 3 h 45 min d’inventaire réparties sur 3 jours au printemps et de 1 h d’inventaire à l’automne, où des précipitations de neige et de pluie ont été notées (annexe A). La visibilité est cependant demeurée suffisamment bonne pour permettre une observation adéquate des rapaces.

Les données notées lors des observations de rapaces ont été :

◦ l'espèce; ◦ le nombre; ◦ le comportement (vol, chasse, etc.); ◦ le type de vol (plané, battu, etc.); ◦ la provenance, la direction et la hauteur de vol (0-50 m, 50-100 m, 100-150 m, 150 m et plus); ◦ le stade de maturité et le sexe de l’oiseau, si possible.

PESCA Environnement 5 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

3.2.2 Transect (oiseaux terrestres)

La méthode d’inventaire par transect permet de recenser les oiseaux terrestres en période de migration (Environnement Canada, 2007). Au printemps 2012, 6 transects (T1 à T6) ont été visités 5 fois chacun pour un total de 10,8 h d’inventaire entre le 23 mai et le 3 juin 2012. À l’automne 2012, les mêmes transects ont été visités 3 fois chacun pour un total de 5,2 h d’inventaire entre le 20 septembre et le 4 octobre 2012. Ces transects ont également été visités 3 fois chacun pour un total de 4,9 h d’inventaire au cours de l’automne 2013 (tableau 2). Les transects ont permis de couvrir trois écosystèmes fréquentés par les oiseaux forestiers dans la zone d’étude : le milieu forestier, les affleurements rocheux et la zone côtière. Les transects sont localisés sur la figure 1 et leurs caractéristiques sont décrites à l’annexe B.

Tableau 2 Effort d’échantillonnage relatif aux oiseaux terrestres dans la zone d’étude durant les migrations printanière et automnale de 2012 et de 2013

Nombre de visites lors de la migration Transect Écosystème Printemps Automne Automne Total (2012) (2012) (2013) T1 Zone côtière 5 3 3 11 T2 Affleurements rocheux 5 3 3 11 T3 Milieu forestier 5 3 3 11 T4 Affleurements rocheux 5 3 3 11 T5 Zone côtière 5 3 3 11 T6 Milieu forestier 5 3 3 11 Total 30 18 18 66

Les transects, d’une longueur de 400 m chacun, ont été visités entre 4 h 39 et 8 h 38 au printemps et entre 6 h 07 et 9 h 35 à l’automne (figure 3). Les inventaires ont été réalisés lors de journées sans précipitations et lorsque la force du vent était inférieure à 4 sur l’échelle de Beaufort (28 km/h). Une faible neige a été notée le 23 mai 2012 (annexe A).

Figure 3 Transects d’inventaires d’oiseaux terrestres dans la zone d’étude en 2012

PESCA Environnement 6 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Tous les oiseaux observés et entendus le long des transects ont été notés. Les données recueillies ont été :

◦ l'espèce;

◦ le nombre;

◦ le comportement (chant, cri, vol, etc.);

◦ la direction de vol;

◦ la distance perpendiculaire de l’oiseau par rapport au transect (0-50 m, 50-100 m, 100 m et plus).

3.2.3 Visite de plans d’eau (sauvagine)

La visite de 6 plans d’eau (S1 à S6) avait pour objectif le recensement d’espèces de sauvagine durant la période de nidification (figure 1). L’inventaire a été réalisé le 25 mai 2012 pour un total de 1,6 h d’observation.

Les plans d’eau ont été visités à partir de points terrestres offrant une vue dégagée et permettant le dénombrement des espèces de sauvagine présentes (figure 4). Les plans d’eau visités sont décrits à l’annexe B.

Figure 4 Visite de plans d’eau lors de l’inventaire de la sauvagine dans la zone d’étude en 2012

Les informations notées lors des observations de sauvagines ont été :

◦ l'espèce; ◦ le nombre de mâles, de femelles, de couples appariés et la présence de couvées; ◦ le comportement (vol, alimentation, repos, etc.); ◦ la provenance, la direction et la hauteur de vol (0-50 m, 50-100 m, 100-150 m, 150 m et plus);

◦ le stade de maturité et le sexe de l’oiseau, si possible.

PESCA Environnement 7 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

3.3 Traitement des données

Lors des inventaires, tous les oiseaux observés ou entendus ont été notés afin d’évaluer l’abondance de la faune avienne dans la zone d’étude. Dans certains cas, l’identification de l’oiseau à l’espèce a pu s’avérer difficile en raison de la distance entre l’observateur et l’oiseau, du son détecté (chant ou cri), de la durée de l’observation ou du chant, des conditions de luminosité, de la densité de la végétation ou du comportement de l’oiseau. Par conséquent, les oiseaux non identifiés à l’espèce ont été regroupés selon leur genre, par exemple « pic sp. » et « paruline sp. ». Lorsque l’incertitude d’identification portait sur deux espèces de genres différents, la donnée était inscrite à un échelon taxonomique supérieur. Cette approche a permis :

◦ de déterminer avec exactitude les espèces présentes;

◦ d’éviter les erreurs d’identification;

◦ d’additionner toutes les observations lors de l’évaluation de l’abondance de la faune avienne dans la zone d’étude.

Dans le cas d’une identification au genre ou à un groupe taxonomique supérieur et lorsque l’oiseau pouvait référer à une espèce à statut particulier, une note était consignée afin de considérer l’utilisation de la zone d’étude par cette espèce.

3.3.1 Rapaces

Tous les rapaces observés ou entendus au cours des inventaires réalisés en 2012 et en 2013 ont été notés. Seules les données recueillies au cours des inventaires spécifiques aux rapaces (points d’observation) ont été considérées dans les calculs d’indices d’abondance (nombre d’observations à l’heure) et de diversité (nombre d’espèces observées). Les données relatives aux rapaces recueillies au cours des inventaires non spécifiques sont présentées à l’annexe C.

3.3.2 Oiseaux terrestres

Tous les oiseaux terrestres observés ou entendus au cours des inventaires réalisés en 2012 et en 2013 ont été notés. Seules les données recueillies au cours des inventaires spécifiques aux oiseaux terrestres (transects) ont été considérées dans les calculs de densité (nombre d’observations par km2) et de diversité. Les données relatives aux oiseaux terrestres recueillies au cours des inventaires non spécifiques sont présentées à l’annexe C.

La densité des oiseaux terrestres en période de migration a été calculée en nombre d’observations par km2, en considérant les oiseaux terrestres détectés à une distance de 100 m de part et d’autre des transects de 400 m de long. La superficie couverte à chaque transect a été de 0,11 km2.

PESCA Environnement 8 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Le statut de nidification des espèces d’oiseaux terrestres a été déterminé à partir de l'Atlas des oiseaux nicheurs du Québec (Gauthier & Aubry, 1995) :

◦ Nicheur migrateur : espèce qui niche au Québec et dont la totalité ou la majeure partie des effectifs hiverne à l'extérieur de la portion québécoise de l'aire de nidification; ◦ Nicheur résident : espèce qui niche au Québec et dont la totalité ou la majeure partie des effectifs hiverne à l'intérieur de la portion québécoise de l'aire de nidification; ◦ Nicheur sédentaire : espèce qui niche au Québec et qui n'effectue habituellement pas de migration annuelle.

3.3.3 Sauvagine

Toute sauvagine observée ou entendue au cours des inventaires réalisés en 2012 et en 2013 a été notée. Les données recueillies au cours des inventaires spécifiques et non spécifiques à la sauvagine ont été considérées dans la description de l’utilisation de la zone d’étude par ce groupe d’oiseaux.

4 Résultats

Les observateurs présents sur le terrain en 2012 et en 2013 ont recensé un total de 64 espèces d’oiseaux dans la zone d’étude. Les inventaires spécifiques aux rapaces, aux oiseaux terrestres et à la sauvagine ont permis d’identifier 50 espèces. Lors de déplacements sur le territoire, 14 autres espèces ont été observées (annexe C).

4.1 Rapaces

4.1.1 Migration printanière

Au printemps 2012, six espèces de rapace ont été observées. L’indice d’abondance pour l’ensemble de la migration printanière a été de 0,9 observation/h (tableau 3). L’espèce la plus fréquemment observée a été la buse pattue, avec 23 mentions. Près de 40 % des observations de la buse pattue ont été notées le 29 mai (tableau 4).

Au cours de la migration printanière, deux espèces de rapace à statut particulier ont été observées dans la zone d’étude : l’aigle royal et le faucon pèlerin.

PESCA Environnement 9 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Tableau 3 Variation spatiale de l’abondance des rapaces dans la zone d’étude durant la migration printanière de 2012

Point et durée (h) d'observation Total Espèce R1 R2 R3 R4 13,5 19,6 2,0 20,0 55,1 Aigle royala 2 0 0 1 3 Balbuzard pêcheur 2 0 0 0 2 Busard des marais 0 1 0 0 1 Buse pattue 8 2 0 13 23 Faucon émerillon 1 3 2 0 6 Faucon pèlerinb 2 1 1 3 7 Faucon sp. 2 0 0 1 3 Rapace sp. 0 0 0 2 2 Nombre total d'observations 17 7 3 20 47 Nombre total d'espèces 5 4 2 3 6 Indice d'abondance (observations/h) 1,3 0,4 1,5 1,0 0,9 a Espèce désignée vulnérable au Québec et non en péril au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020) b Espèce désignée vulnérable au Québec et préoccupante au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020).

PESCA Environnement 10 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Tableau 4 Variation temporelle de l’abondance des rapaces dans la zone d’étude durant la migration printanière de 2012

Date d’inventaire (jj/mm) et durée d’observation (h) Total Proportion Espèce 19/05 20/05 21/05 23/05 26/05 27/05 28/05 29/05 30/05 31/05 01/06 (%) 6,3 2,0 6,0 7,0 4,3 3,5 7,5 7,0 5,5 3,5 2,5 55,1 Aigle royala 0 0 0 1 0 0 2 0 0 0 0 3 6,4 Balbuzard pêcheur 0 0 0 0 0 0 2 0 0 0 0 2 4,3 Busard des marais 0 0 0 1 0 0 0 0 0 0 0 1 2,1 Buse pattue 0 0 7 3 0 0 1 9 2 1 0 23 48,9 Faucon émerillon 2 2 1 0 0 0 0 0 1 0 0 6 12,8 Faucon pèlerinb 0 1 0 2 0 0 2 1 1 0 0 7 14,9 Faucon sp. 0 0 1 0 0 1 1 0 0 0 0 3 6,4 Rapace sp. 0 0 0 2 0 0 0 0 0 0 0 2 4,3 Nombre total d'observations 2 3 9 9 0 1 8 10 4 1 0 47 100,0 Nombre total d'espèces 1 2 2 4 0 0 4 2 3 1 0 6 - Indice d'abondance (observations/h) 0,3 1,5 1,5 1,3 0 0,3 1,1 1,4 0,7 0,3 0 0,9 - a Espèce désignée vulnérable au Québec et non en péril au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020). b Espèce désignée vulnérable au Québec et préoccupante au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020). Les proportions présentées dans le tableau ont été arrondies à une décimale.

PESCA Environnement 11 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Durant la migration printanière, 38,9 % des rapaces volaient à une altitude de 150 m et plus (tableau 5).

Tableau 5 Altitude de vol des rapaces dans la zone d’étude durant la migration printanière de 2012

Classe d’altitude (m)a Espèce 0-50 50-100 100-150 150 et plus Nombre (%) Nombre (%) Nombre (%) Nombre (%) Aigle royalb 0 0 1 20,0 1 20,0 3 60,0 Balbuzard pêcheur 2 33,3 2 33,3 2 33,3 0 0 Busard des marais 1 100,0 0 0 0 0 0 0 Buse pattue 2 7,4 6 22,2 5 18,5 14 51,9 Faucon émerillon 6 75,0 1 12,5 1 12,5 0 0 Faucon pèlerinc 4 23,5 3 17,6 4 23,5 6 35,3 Faucon sp. 1 16,7 1 16,7 1 16,7 3 50,0 Rapace sp. 0 0 0 0 0 0 2 100,0 Total 16 22,2 14 19,4 14 19,4 28 38,9 a Lorsqu'un oiseau était observé dans plusieurs classes d'altitude, une mention était notée pour chacune de ces classes. Les proportions présentées dans le tableau ont été arrondies à une décimale. b Espèce désignée vulnérable au Québec et non en péril au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020). c Espèce désignée vulnérable au Québec et préoccupante au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020)

Durant la migration printanière, la moitié des rapaces se dirigeait vers le nord-est (figure 5).

N 60

NO 45 NE

30

15

O 0 E

SO SE

S Figure 5 Direction de vol des rapaces dans la zone d’étude durant la migration printanière de 2012

PESCA Environnement 12 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

4.1.2 Migration automnale

À l’automne 2012, cinq espèces de rapace ont été observées. L’espèce la plus fréquemment observée a été la buse pattue (66 mentions). À l’automne 2013, deux autres espèces ont été observées : l’aigle royal et le busard des marais (tableau 6).

L’indice d’abondance lors des migrations automnales de 2012 et de 2013 a été de 0,9 observation/h. Les indices d’abondance les plus élevés (3,9 et 6,0 observations/h) ont été enregistrés les 3 et 4 octobre 2012 (tableau 7). Les indices d’abondance de 2013 ont été de 0,7 observation/h ou moins (tableau 8).

Comme au printemps, deux espèces de rapace à statut particulier ont été observées dans la zone d’étude au cours de la migration automnale : l’aigle royal et le faucon pèlerin.

Tableau 6 Variation spatiale de l’abondance des rapaces dans la zone d’étude durant les migrations automnales de 2012 et de 2013

Point d'observation Point d'observation Espèce (2012) (2013) Total R1 R2 R4 R1 R2 R4 Durée d'observation (h) 21,0 21,0 21,0 15,5 10,5 9,8 98,8 Aigle royala 0 0 0 1 0 0 1 Autour des palombes 0 1 0 0 0 0 1 Balbuzard pêcheur 0 0 1 0 0 0 1 Busard des marais 0 0 0 0 1 0 1 Buse pattue 27 23 16 3 0 0 69 Faucon émerillon 0 3 1 1 1 1 7 Faucon pèlerinb 3 1 4 1 0 0 9 Rapace sp. 0 0 0 1 0 0 1 Nombre total d'observations 30 28 22 7 2 1 90 Nombre total d'espèces 2 4 4 4 2 1 7 Indice d'abondance (observations/h) 1,4 1,3 1,0 0,5 0,2 0,1 0,9 a Espèce désignée vulnérable au Québec et non en péril au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020). b Espèce désignée vulnérable au Québec et préoccupante au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020).

PESCA Environnement 13 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Tableau 7 Variation temporelle de l’abondance des rapaces dans la zone d’étude durant la migration automnale de 2012 Date d’inventaire (jj/mm) et durée d’observation (h) Proportion Espèce 18/09 19/09 22/09 24/09 27/09 28/09 29/09 30/09 01/10 03/10 04/10 Total (%) 3,5 7,0 7,0 3,5 3,5 7,0 7,0 7,0 7,0 7,0 3,5 63,0 Autour des palombes 0 0 0 0 0 0 0 0 0 0 1 1 1,3 Balbuzard pêcheur 0 1 0 0 0 0 0 0 0 0 0 1 1,3 Buse pattue 0 0 10 0 1 4 2 1 4 24 20 66 82,5 Faucon émerillon 0 0 1 0 0 0 0 0 3 0 0 4 5,0 Faucon pèlerina 0 1 0 1 0 3 0 0 0 3 0 8 10,0 Nombre total d'observations 0 2 11 1 1 7 2 1 7 27 21 80 100,0 Nombre total d'espèces 0 2 2 1 1 2 1 1 2 2 2 5 - Indice d'abondance (observations/h) 0 0,3 1,6 0,3 0,3 1,0 0,3 0,1 1,0 3,9 6,0 1,3 - a Espèce désignée vulnérable au Québec et préoccupante au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020)

Tableau 8 Variation temporelle de l’abondance des rapaces dans la zone d’étude durant la migration automnale de 2013 Date d’inventaire (jj/mm) et durée d’observation (h) Proportion Espèce 17/08 19/08 21/08 23/08 24/08 26/08 27/08 28/08 30/08 Total (%) 3,5 3,5 3,5 5,0 3,5 1,3 7,0 7,0 1,5 35,8 Aigle royala 0 0 0 0 0 0 0 1 0 1 10,0 Busard des marais 0 0 1 0 0 0 0 0 0 1 10,0 Buse pattue 0 1 0 2 0 0 0 0 0 3 30,0 Faucon émerillon 0 1 0 0 0 0 1 0 1 3 30,0 Faucon pèlerinb 0 0 0 0 0 0 0 1 0 1 10,0 Rapace sp. 0 0 0 0 0 0 0 1 0 1 10,0 Nombre total d'observations 0 2 1 2 0 0 1 3 1 10 100,0 Nombre total d'espèces 0 2 1 1 0 0 1 2 1 5 - Indice d'abondance (observations/h) 0 0,6 0,3 0,4 0 0 0,1 0,4 0,7 0,3 - a Espèce désignée vulnérable au Québec et non en péril au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020) b Espèce désignée vulnérable au Québec et préoccupante au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020).

PESCA Environnement 14 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Durant la migration automnale, 51,6 % des rapaces volaient à une altitude de 150 m et plus (tableau 9).

Tableau 9 Altitude de vol des rapaces dans la zone d’étude durant les migrations automnales de 2012 et de 2013

Classe d'altitude (m)a Espèce 0-50 50-100 100-150 150 et plus Nombre (%) Nombre (%) Nombre (%) Nombre (%) Aigle royalb 0 0 0 0 0 0 1 100,0 Autour des palombes 1 100,0 0 0 0 0 0 0 Balbuzard pêcheur 0 0 0 0 0 0 1 100,0 Busard des marais 0 0 0 0 0 0 1 100,0 Buse pattue 6 6,3 15 15,8 18 18,9 56 58,9 Faucon émerillon 5 41,7 5 41,7 1 8,3 1 8,3 Faucon pèlerinc 4 28,6 2 14,3 4 28,6 4 28,6 Rapace sp. 0 0 0 0 0 0 1 100,0 Total 16 12,7 22 17,5 23 18,3 65 51,6 a Lorsqu'un oiseau était observé dans plusieurs classes d'altitude, une mention était notée pour chacune de ces classes. Les proportions présentées dans le tableau ont été arrondies à une décimale. b Espèce désignée vulnérable au Québec et non en péril au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020) c Espèce désignée vulnérable au Québec et préoccupante au Canada (Gouvernement du Canada, 2020; MFFP, 2016-2020)

Durant la migration automnale, la majorité des rapaces (58,8 %) se dirigeait vers le sud-ouest (figure 6).

N 80

NO 60 NE

40

20

O 0 E

SO SE

S Figure 6 Direction de vol des rapaces dans la zone d’étude durant les migrations automnales de 2012 et de 2013

PESCA Environnement 15 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

4.2 Oiseaux terrestres

4.2.1 Migration printanière

L’inventaire spécifique aux oiseaux terrestres réalisé par transect lors de la migration printanière de 2012 a permis de confirmer la présence de 31 espèces, pour un total de 861 observations. Aucune de ces espèces n’a de statut particulier. Les espèces les plus fréquemment observées ont été l’alouette hausse- col (167 mentions), le bruant à gorge blanche (118 mentions) et le bruant à couronne blanche (101 mentions; annexe C).

Un quiscale rouilleux a été observé en dehors des inventaires spécifiques aux oiseaux terrestres le 25 mai 2012 lors de la visite de plans d’eau pour la sauvagine. Le quiscale rouilleux est considéré comme une espèce susceptible d’être désignée menacée ou vulnérable par le gouvernement du Québec et détient un statut préoccupant au fédéral (Gouvernement du Canada, 2020; MFFP, 2016-2020).

Dans chaque type d’habitat, les nicheurs migrateurs ont été les oiseaux les plus nombreux dans la zone d’étude au printemps. Le milieu forestier a été davantage fréquenté que les autres habitats (figure 7).

Dans chaque type d’habitat, la diversité des nicheurs migrateurs était plus élevée que les autres espèces. Les diversités les plus élevées (15 espèces) ont été notées dans le milieu forestier et les affleurements rocheux (figure 8).

250

200 ) 2

150 Nicheur migrateur Nicheur résident Nicheur sédentaire

100 Densité (observations/km Densité

50

0 Milieu forestier Zone côtière Affleurements rocheux Habitat Figure 7 Densité des oiseaux terrestres dans la zone d’étude durant la migration printanière de 2012

PESCA Environnement 16 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

16

14

12

10 Nicheur migrateur Nicheur résident 8 Nicheur sédentaire

6

Diversité (nombre d'espèces) (nombre Diversité 4

2

0 Milieu forestier Zone côtière Affleurements rocheux Habitat

Figure 8 Diversité des oiseaux terrestres dans la zone d’étude durant la migration printanière de 2012

4.2.2 Migration automnale

L’inventaire spécifique aux oiseaux terrestres réalisé par transect lors des périodes de migration automnale de 2012 et de 2013 a permis de confirmer la présence de 29 espèces, pour un total de 661 observations. Aucune de ces espèces n’a de statut particulier. Les espèces les plus fréquentes ont été le sizerin flammé (128 mentions), l’alouette hausse-col (77 mentions) et le bruant des prés (62 mentions; annexe C).

Les nicheurs résidents ont été les oiseaux les plus abondants dans le milieu forestier et les nicheurs migrateurs, les plus abondants dans la zone côtière et les affleurements rocheux (figure 9).

Lors de la migration automnale, la diversité des oiseaux terrestres a été plus élevée en milieu forestier (21 espèces, dont 12 espèces de nicheurs migrateurs; figure 10).

PESCA Environnement 17 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

160

140

120 ) 2

100 Nicheur migrateur Nicheur résident 80 Nicheur sédentaire

60 Densité (observations/km Densité 40

20

0 Milieu forestier Zone côtière Affleurements rocheux Habitat Figure 9 Densité des oiseaux terrestres dans la zone d’étude durant les migrations automnales de 2012 et de 2013

14

12

10

8 Nicheur migrateur Nicheur résident Nicheur sédentaire 6

4 Diversité (nombre (nombre d'espèces) Diversité

2

0 Milieu forestier Zone côtière Affleurements rocheux Habitat

Figure 10 Diversité des oiseaux terrestres dans la zone d’étude durant les migrations automnales de 2012 et de 2013

PESCA Environnement 18 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

4.3 Sauvagine

Au cours des inventaires effectués en 2012 et en 2013, 15 espèces de sauvagine ont été identifiées, pour un total de 8 742 observations (annexe C). La principale espèce observée a été la bernache du Canada (7 090 observations). Aucune espèce de sauvagine à statut particulier n’a été observée au cours des inventaires.

4.3.1 Migration printanière

Lors de la migration printanière de 2012, 13 espèces de sauvagine ont été identifiées lors des inventaires non spécifiques, pour un total de 4 764 observations. La bernache du Canada et la macreuse à bec jaune ont été les espèces les plus fréquentes (tableau 10).

Tableau 10 Sauvagines observées dans la zone d’étude durant la migration printanière de 2012

Espèce Points d'observation Transects Total

Canards barboteurs Canard noir 0 5 5 Canard souchet 0 2 2 Canards plongeurs Eider à duvet 0 2 2 Fuligule à collier 0 6 6 Fuligule milouinan 6 42 48 Grand harle 8 1 9 Harelde kakawi 30 8 38 Harle huppé 96 212 308 Harle sp. 5 1 6 Macreuse à bec jaune 484 607 1 091 Macreuse à front blanc 19 0 19 Macreuse brune 7 0 7 Autres sauvagines 0 0 0 Bernache du Canada 3 130 31 3 161 Oie des neiges 6 54 60 Sauvagine sp. 2 0 2 Nombre total d'observations 3 793 971 4 764 Nombre total d'espècesa 9 11 13 a Observations identifiées à l'espèce.

PESCA Environnement 19 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

4.3.2 Nidification

Un inventaire de sauvagines a été réalisé le 25 mai 2012, en période de nidification, en visitant six plans d’eau.

Lors de ces visites, 32 observations ont permis de confirmer la présence de cinq espèces de sauvagine (tableau 11 et annexe C) :

◦ 21 bernaches du Canada (plan d’eau S6); ◦ 1 couple de canards souchets (plans d’eau S1 et S3); ◦ 1 couple de fuligules milouinans (plan d’eau S3); ◦ 3 harles huppés (plan d’eau S5); ◦ 1 couple de sarcelles d’hiver (plan d’eau S5).

Tableau 11 Sauvagines observées dans la zone d’étude durant la nidification de 2012

Nombre d'observations Espèce Femelle Mâle Sexe indéterminé Total

Canards barboteurs Canard souchet 2 2 0 4 Sarcelle d'hiver 1 1 0 2 Canards plongeurs Fuligule milouinan 1 1 0 2 Harle huppé 2 1 0 3 Autres sauvagines Bernache du Canada 0 0 21 21 Nombre total d'observations 6 5 21 32 Nombre total d'espècesa 4 4 1 5 a Observations identifiées à l'espèce.

Les bernaches du Canada observées lors de cet inventaire formaient un groupe. Elles étaient posées sur le plan d’eau S6 mais leur nidification n’a pas été confirmée. Il s’agissait probablement d’un groupe en migration.

PESCA Environnement 20 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

4.3.3 Migration automnale

Lors de la migration automnale de 2012, trois espèces de sauvagine ont été identifiées, pour un total de 1 991 observations. La bernache du Canada a été l’espèce la plus fréquente (1 959 observations; tableau 12).

Lors de la migration automnale de 2013, deux espèces de sauvagine ont été identifiées, pour un total de 1 955 observations. La bernache du Canada a été l’espèce la plus fréquente (1 949 observations; tableau 12).

Tableau 12 Sauvagines observées dans la zone d’étude durant les migrations automnales de 2012 et de 2013

Points d'observation Transects Espèce Total 2012 2013 2012 2013 Canards barboteurs Canard noir 0 0 0 3 3 Canard sp. 0 0 0 3 3 Canards plongeurs Garrot à œil d'or 4 0 0 0 4 Harle sp. 8 0 0 0 8 Autres sauvagines Bernache du Canada 1 913 1 949 46 0 3 908 Oie des neiges 20 0 0 0 20 Nombre total d'observations 1 945 1949 46 6 3 946 Nombre total d'espècesa 3 1 1 1 4 a Observations identifiées à l'espèce.

PESCA Environnement 21 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

4.4 Photographies d’espèces observées

La figure 11 présente des photographies d’espèces observées lors des inventaires de la faune avienne réalisés dans la zone d’étude en 2012 et en 2013.

Photo 1. Tétras du Canada Photo 2. Faucon émerillon

Photo 3. Harelde kakawi Photo 4. Bernache du Canada

Photo 5. Plectrophane lapon Photo 6. Macreuse à bec jaune

Figure 11 Oiseaux observés lors des inventaires de la faune avienne dans la zone d’étude en 2012 et en 2013

PESCA Environnement 22 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

5 Conclusion

Les observateurs présents sur le terrain en 2012 et en 2013 ont recensé un total de 64 espèces d’oiseaux dans la zone d’étude. La présence de trois espèces à statut particulier (aigle royal, faucon pèlerin et quiscale rouilleux) a été confirmée en période de migration.

Les rapaces ont peu survolé la zone d’étude en périodes de migrations. L’indice d’abondance moyen a été de 0,9 observation/h durant la migration printanière et la migration automnale. L’espèce la plus commune a été la buse pattue.

Les espèces d’oiseaux terrestres les plus abondantes ont été l’alouette hausse-col, le bruant à gorge blanche, le sizerin flammé et le bruant à couronne blanche.

La sauvagine était peu présente dans la zone d’étude en période de nidification. Des indices de nidification ont été rapportés pour le canard souchet, le fuligule milouinan et la sarcelle d’hiver par la présence de couples appariés.

La bernache du Canada a été l’espèce la plus abondante, essentiellement durant la migration.

PESCA Environnement 23 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Bibliographie

Environnement Canada (2007). Protocoles recommandés pour la surveillance des impacts des éoliennes sur les oiseaux. Environnement Canada, Service canadien de la faune. 41 p.

Gauthier, J. & Y. Aubry (1995). Les oiseaux nicheurs du Québec - Atlas des oiseaux nicheurs du Québec méridional. Montréal. Association québécoise des groupes d'ornithologues, Société québécoise de protection des oiseaux, Service canadien de la faune, Environnement Canada. 1 295 p.

Gouvernement du Canada (2020). Registre public des espèces en péril. Repéré à https://www.canada.ca/fr/environnement-changement-climatique/services/registre-public-especes- peril.html en décembre 2020.

MFFP (2016-2020). Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs. Espèces fauniques menacées ou vulnérables. Repéré à https://mffp.gouv.qc.ca/la-faune/especes/especes- menacees-vulnerables/ en décembre 2020.

MFFP (2019). Gouvernement du Québec, ministère des Forêts, de la Faune et des Parcs. Zones de végétation et domaines bioclimatique du Québec. Repéré à https://mffp.gouv.qc.ca/forets/inventaire/inventaire-zones-carte.jsp en novembre 2020.

MRNF (2008). Protocole d’inventaires d’oiseaux de proie dans le cadre de projets d’implantation d’éoliennes au Québec. 11 p.

PESCA Environnement 24 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Annexe A Conditions météorologiques quotidiennes lors des inventaires de la faune avienne réalisés dans la zone d’étude en 2012 et en 2013

Tableau A. 1 Printemps 2012

Date Station Durée Couverture Température Plafond Début Fin Précipitationsa Ventb Origine (jj/mm) d'inventaire (min) nuageuse (%) (°C) nuageuxc 19/05 R2 09:40 10:00 20 75-100 0 1 2 rafale 3 Nord Moyen 19/05 R2 10:00 11:00 60 75-100 0 1 3 Nord Haut 19/05 R2 11:00 12:00 60 50-75 0 1 4 Nord Haut 19/05 R2 12:00 13:00 60 0-25 0 1 4 Nord Haut 19/05 R2 13:00 14:00 60 0-25 0 1 4 rafale 5 Nord Haut 19/05 R2 14:00 15:00 60 0-25 0 1 4 rafale 5 Nord Haut 19/05 R2 15:00 16:00 60 0-25 0 1 4 rafale 5 Nord Haut 20/05 R3 14:30 15:00 30 75-100 0 5 4 rafale 5 Sud-ouest Moyen 20/05 R3 15:00 16:00 60 75-100 0 5 5 rafale 6 Ouest Moyen 20/05 R3 16:00 16:30 30 75-100 0 4 5 rafale 6 Ouest Moyen 21/05 R1 09:30 10:00 30 75-100 0 4 1 n.d.d Moyen 21/05 R1 10:00 11:00 60 75-100 3 5 2 Sud-est Moyen 21/05 R1 11:00 12:00 60 75-100 0 6 2 Sud-est Moyen 21/05 R1 12:00 13:00 60 75-100 0 7 2 Sud-est Moyen 21/05 R1 13:00 14:00 60 75-100 0 7 2 rafale 3 Sud-ouest Moyen 21/05 R1 14:00 15:00 60 75-100 0 7 3 rafale 4 Sud Moyen 21/05 R1 15:00 15:30 30 75-100 0 7 4 rafale 5 Sud Moyen 23/05 T5 06:27 06:45 18 75-100 0 2 1 n.d. Haut 23/05 T6 06:59 07:18 19 75-100 6 2 1 n.d. Haut 23/05 T4 07:58 08:17 19 75-100 0 2 2 Sud-est Haut 23/05 R4 08:30 09:00 30 75-100 0 3 1 rafale 2 Sud-est Haut 23/05 R4 09:00 10:00 60 75-100 0 3 1 rafale 2 Sud-est Haut 23/05 R4 10:00 11:00 60 75-100 0 5 1 rafale 2 Sud-est Haut 23/05 R4 11:00 12:00 60 25-50 0 6 2 rafale 3 Sud-est Haut 23/05 R2 12:40 13:00 20 0-25 0 6 3 rafale 4 Nord Haut

PESCA Environnement A-1 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Date Station Durée Couverture Température Plafond Début Fin Précipitationsa Ventb Origine (jj/mm) d'inventaire (min) nuageuse (%) (°C) nuageuxc 23/05 R2 13:00 14:00 60 0-25 0 6 3 rafale 4 Nord Haut 23/05 R2 14:00 15:00 60 0-25 0 6 3 rafale 4 Nord Haut 23/05 R2 15:00 16:00 60 0-25 0 7 4 rafale 5 Nord Haut 23/05 R2 16:00 16:10 10 0-25 0 7 4 rafale 5 Nord Haut 25/05 T2 06:09 06:25 16 75-100 0 2 1 rafale 2 Nord Haut 25/05 T3 06:32 07:09 37 75-100 0 2 1 rafale 2 Nord Moyen 25/05 S1 07:00 07:20 20 75-100 0 2 1 rafale 3 Nord Haut 25/05 T1 07:45 08:15 30 75-100 0 4 2 rafale 3 Nord Moyen 25/05 S2 08:50 09:05 15 75-100 0 4 2 rafale 3 Nord Haut 25/05 S3 09:15 09:35 20 75-100 0 4 2 rafale 3 Nord Moyen 25/05 S4 10:10 10:20 10 75-100 0 4 3 rafale 4 Nord Bas 25/05 S5 10:25 10:40 15 75-100 0 3 3 rafale 4 Nord Bas 25/05 S6 11:15 11:30 15 75-100 0 3 5 Nord Bas 26/05 R2 11:00 12:00 60 75-100 6 2 4 rafale 5 Sud-ouest Moyen 26/05 R2 12:00 12:45 45 75-100 6 2 4 rafale 5 Sud-ouest Moyen 26/05 R4 13:25 14:00 35 75-100 0 3 4 rafale 5 Sud-ouest Moyen 26/05 R4 14:00 15:00 60 75-100 0 3 3 rafale 4 Sud-ouest Moyen 26/05 R4 15:00 15:55 55 75-100 0 3 3 rafale 4 Sud-ouest Moyen 27/05 T5 06:40 07:00 20 75-100 0 0 4 Ouest Moyen 27/05 T6 07:12 07:31 19 75-100 0 2 2 Ouest Moyen 27/05 T4 08:00 08:22 22 75-100 0 0 3 rafale 4 Ouest Moyen 27/05 R4 08:30 09:00 30 75-100 0 0 4 Ouest Moyen 27/05 R4 09:00 10:00 60 75-100 0 0 4 Ouest Moyen 27/05 R4 10:00 11:00 60 75-100 0 2 4 Ouest Moyen 27/05 R4 11:00 12:00 60 75-100 7 2 4 Ouest Moyen 28/05 T1 06:08 06:30 22 75-100 0 3 2 Nord-est Haut 28/05 T2 06:45 07:01 16 75-100 0 3 2 Nord-est Haut 28/05 T3 07:17 07:38 21 75-100 0 4 1 Nord-est Haut 28/05 R1 08:30 09:00 30 75-100 0 3 3 Nord-est Haut 28/05 R1 09:00 10:00 60 75-100 0 3 3 Nord-est Haut 28/05 R1 10:00 11:00 60 50-75 0 5 3 rafale 4 Nord-est Haut

PESCA Environnement A-2 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Date Station Durée Couverture Température Plafond Début Fin Précipitationsa Ventb Origine (jj/mm) d'inventaire (min) nuageuse (%) (°C) nuageuxc 28/05 R1 11:00 12:00 60 25-50 0 5 3 rafale 4 Nord-est Haut 28/05 R1 12:00 13:00 60 25-50 0 7 4 Nord-est Haut 28/05 R1 13:00 14:00 60 0-25 0 7 4 Nord-est Haut 28/05 R1 14:00 15:00 60 0-25 0 7 4 Nord-est Haut 28/05 R1 15:00 16:00 60 0-25 0 7 4 Nord-est Haut 29/05 T5 06:24 06:52 28 75-100 0 7 3 rafale 4 Est Haut 29/05 T6 07:03 07:19 16 75-100 0 7 3 rafale 4 Est Haut 29/05 T4 07:55 08:17 22 75-100 0 8 4 Est Haut 29/05 R4 08:30 09:00 30 75-100 0 9 4 Est Haut 29/05 R4 09:00 10:00 60 75-100 0 11 1 rafale 3 Est Haut 29/05 R4 10:00 11:00 60 75-100 0 12 1 rafale 3 Est Haut 29/05 R4 11:00 12:00 60 75-100 0 13 2 rafale 3 Est Haut 29/05 R4 12:00 13:00 60 50-75 0 13 2 rafale 3 Est Haut 29/05 R4 13:00 14:00 60 25-50 0 13 2 rafale 3 Est Haut 29/05 R4 14:00 15:00 60 0-25 0 12 2 rafale 3 Est Haut 29/05 R4 15:00 15:30 30 0-25 0 11 2 rafale 3 Est Haut 30/05 T3 06:21 06:47 26 75-100 0 5 2 Nord-est Haut 30/05 T2 07:06 07:26 20 75-100 0 6 2 Nord-est Haut 30/05 T1 07:47 08:12 25 75-100 0 7 3 Nord-est Haut 30/05 R2 08:40 10:00 80 75-100 0 6 2 rafale 3 Nord-est Haut 30/05 R2 10:00 11:00 60 25-50 0 7 2 rafale 3 Nord-est Haut 30/05 R2 11:00 12:00 60 75-100 0 6 2 rafale 3 Nord-est Haut 30/05 R2 12:00 13:00 60 75-100 0 5 2 rafale 3 Nord-est Haut 30/05 R2 13:00 14:10 70 75-100 0 4 2 rafale 3 Nord-est Moyen 31/05 R4 08:30 09:00 30 75-100 0 7 4 Sud Haut 31/05 R4 09:00 10:00 60 75-100 0 7 4 Sud Haut 31/05 R4 10:00 11:00 60 75-100 0 10 4 Sud Haut 31/05 R4 11:00 12:00 60 75-100 0 5 4 Ouest Haut 01/06 T3 05:18 05:45 27 25-50 0 5 1 n.d. Haut 01/06 T2 06:02 06:17 15 75-100 0 5 2 Sud-ouest Haut 01/06 T1 06:28 06:43 15 50-75 0 7 2 Sud-ouest Haut

PESCA Environnement A-3 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Date Station Durée Couverture Température Plafond Début Fin Précipitationsa Ventb Origine (jj/mm) d'inventaire (min) nuageuse (%) (°C) nuageuxc 01/06 T6 06:58 07:17 19 50-75 0 7 2 Sud-ouest Haut 01/06 T5 07:34 08:02 28 75-100 0 7 2 Sud-ouest Haut 01/06 T4 08:20 08:38 18 75-100 0 7 2 Sud-ouest Moyen 01/06 R2 09:30 10:00 30 75-100 0 6 1 Nord-est Haut 01/06 R2 10:00 11:00 60 75-100 0 7 1 Nord-est Haut 01/06 R2 11:00 12:00 60 75-100 0 8 2 Nord-est Haut 03/06 T3 04:39 05:06 27 75-100 0 13 1 n.d. Haut 03/06 T2 05:22 05:40 18 75-100 0 15 1 Nord-est Haut 03/06 T1 05:53 06:12 19 75-100 0 17 2 Nord-est Haut 03/06 T6 06:29 06:56 27 75-100 0 17 2 Nord-est Haut 03/06 T5 07:09 07:26 17 75-100 0 11 2 Nord-est Haut 03/06 T4 07:50 08:12 22 75-100 0 15 2 rafale 3 Est Haut a Précipitations b Vitesse moyenne du vent et en rafale c Plafond nuageux 0 : Aucune selon l’échelle de Beaufort Bas : Présence de nuages au sommet des montagnes 1 : Brouillard 0 : Calme (0-1 km/h) Moyen : Présence de nuages entre le sommet des montagnes et une altitude de 2 2 : Bruine 1: Très légère brise (1-5 km/h) Haut : Présence de nuages à plus de 2 km d’altitude 3 : Pluie faible 2 : Légère brise (6-11 km/h)

4 : Pluie moyenne 3 : Petite brise (12-19 km/h)

5 : Pluie forte 4 : Jolie brise (20-28 km/h) d n.d. : non déterminé 5 : Bonne brise (29-38 km/h) 6 : Neige faible 7 : Neige moyenne 6 : Vent frais (39-49 km/h) 8 : Neige forte

PESCA Environnement A-4 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Tableau A. 2 Nidification 2012

Date Station Durée Couverture Température Plafond Début Fin Précipitationsa Ventb Origine (jj/mm) d'inventaire (min) nuageuse (%) (°C) nuageuxc 25/05 S1 07:00 07:20 20 75-100 0 2 1 rafale 3 Nord Haut 25/05 S2 08:50 09:05 15 75-100 0 4 2 rafale 3 Nord Haut 25/05 S3 09:15 09:35 20 75-100 0 4 2 rafale 3 Nord Moyen 25/05 S4 10:10 10:20 10 75-100 0 4 3 rafale 4 Nord Bas 25/05 S5 10:25 10:40 15 75-100 0 3 3 rafale 4 Nord Bas 25/05 S6 11:15 11:30 15 75-100 0 3 5 Nord Bas a Précipitations b Vitesse moyenne du vent et en rafale c Plafond nuageux 0 : Aucune selon l’échelle de Beaufort Bas : Présence de nuages au sommet des montagnes 1 : Brouillard 0 : Calme (0-1 km/h) Moyen : Présence de nuages entre le sommet des montagnes et une altitude de 2 km 2 : Bruine 1: Très légère brise (1-5 km/h) Haut : Présence de nuages à plus de 2 km d’altitude 3 : Pluie faible 2 : Légère brise (6-11 km/h)

4 : Pluie moyenne 3 : Petite brise (12-19 km/h)

5 : Pluie forte 4 : Jolie brise (20-28 km/h) 5 : Bonne brise (29-38 km/h) 6 : Neige faible 7 : Neige moyenne 6 : Vent frais (39-49 km/h) 8 : Neige forte

PESCA Environnement A-5 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Tableau A. 3 Automne 2012

Date Station Durée Couverture Température Plafond Début Fin Précipitationsa Ventb Origine (jj/mm) d'inventaire (min) nuageuse (%) (°C) nuageuxc 18/09 R2 10:30 11:00 30 75-100 0 9 1 Nord-ouest Haut 18/09 R2 11:00 12:00 60 75-100 0 7 2 Nord-ouest Haut 18/09 R2 12:00 13:00 60 75-100 0 7 2 Nord-ouest Haut 18/09 R2 13:00 14:00 60 75-100 0 7 2 Nord-ouest Haut 19/09 R4 09:00 10:00 60 75-100 3 4 4 rafale 5 Nord-ouest Moyen 19/09 R4 10:00 11:00 60 75-100 0 5 4 rafale 5 Nord-ouest Haut 19/09 R4 11:00 12:00 60 75-100 0 6 4 rafale 5 Nord-ouest Haut 19/09 R4 12:00 12:30 30 75-100 0 6 4 rafale 5 Nord-ouest Haut 19/09 R2 13:05 14:00 55 75-100 0 7 5 Nord-ouest Haut 19/09 R2 14:00 15:00 60 75-100 0 7 5 Nord-ouest Haut 19/09 R2 15:00 16:00 60 75-100 0 7 5 Nord-ouest Haut 19/09 R2 16:00 16:35 35 75-100 0 7 5 Nord-ouest Haut 20/09 T1 07:06 07:26 20 25-50 0 4 3 n.d.d Haut 20/09 T6 07:45 08:01 16 25-50 0 4 2 rafale 3 n.d. Haut 20/09 T5 08:17 08:39 22 50-75 0 7 3 n.d. Haut 20/09 T4 09:01 09:20 19 75-100 0 7 3 n.d. Haut 22/09 T3 07:01 07:22 21 0-25 0 -1 0 n.d. Haut 22/09 T2 07:48 08:05 17 0-25 0 1 2 n.d. Bas 22/09 R4 09:00 10:00 60 0-25 0 6 2 Sud-est Haut 22/09 R4 10:00 11:00 60 0-25 0 7 2 Sud-est Haut 22/09 R4 11:00 12:00 60 0-25 0 9 2 Sud-est Haut 22/09 R4 12:00 13:00 60 0-25 0 10 2 Est Haut 22/09 R4 13:00 14:00 60 50-75 0 10 2 Nord-est Haut 22/09 R4 14:00 15:00 60 75-100 0 10 3 Nord Haut 22/09 R4 15:00 16:00 60 75-100 0 10 3 Nord Haut 24/09 R2 12:30 13:00 30 75-100 0 7 4 Sud Moyen 24/09 R2 13:00 14:00 60 75-100 0 7 4 Sud Moyen

PESCA Environnement A-6 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Date Station Durée Couverture Température Plafond Début Fin Précipitationsa Ventb Origine (jj/mm) d'inventaire (min) nuageuse (%) (°C) nuageuxc 24/09 R2 14:00 15:00 60 75-100 0 8 4 Sud Moyen 24/09 R2 15:00 16:00 60 75-100 0 8 4 Sud Moyen 27/09 T1 08:30 08:45 15 75-100 0 8 2 Sud-ouest Haut 27/09 T5 09:20 09:35 15 75-100 0 8 2 Sud-ouest Haut 27/09 R2 11:30 12:00 30 75-100 0 10 1 n.d. Haut 27/09 R2 12:00 13:00 60 75-100 0 9 1 n.d. Haut 27/09 R2 13:00 14:00 60 75-100 0 9 1 n.d. Haut 27/09 R2 14:00 15:00 60 75-100 0 9 1 n.d. Haut 28/09 T2 07:15 07:35 20 75-100 0 5 0 n.d. Haut 28/09 T6 08:02 08:18 16 75-100 0 7 0 n.d. Haut 28/09 T4 08:50 09:05 15 75-100 0 7 1 n.d. Haut 28/09 R4 09:15 10:00 45 75-100 0 8 1 n.d. Haut 28/09 R4 10:00 11:00 60 75-100 0 9 1 n.d. Haut 28/09 R4 11:00 12:00 60 75-100 0 9 1 n.d. Haut 28/09 R4 12:00 13:00 60 75-100 0 10 2 n.d. Haut 28/09 R4 13:00 14:00 60 75-100 0 10 2 n.d. Haut 28/09 R4 14:00 15:00 60 75-100 0 10 2 n.d. Haut 28/09 R4 15:00 16:00 60 75-100 0 9 2 n.d. Haut 28/09 R4 16:00 16:15 15 75-100 0 9 2 n.d. Haut 29/09 T3 07:35 07:52 17 75-100 0 5 0 n.d. Haut 29/09 R1 09:00 10:00 60 75-100 0 5 2 Sud-ouest Moyen 29/09 R1 10:00 11:00 60 75-100 0 5 2 Sud-ouest Moyen 29/09 R1 11:00 12:00 60 75-100 0 6 2 Sud-ouest Moyen 29/09 R1 12:00 13:00 60 75-100 0 7 3 Sud-ouest Moyen 29/09 R1 13:00 14:00 60 75-100 0 7 3 rafale 4 Sud-ouest Moyen 29/09 R1 14:00 15:00 60 75-100 0 7 4 Sud-ouest Moyen 29/09 R1 15:00 16:00 60 75-100 0 7 4 Sud-ouest Moyen 30/09 R1 09:00 10:00 60 0-25 0 8 4 rafale 5 n.d. Haut

PESCA Environnement A-7 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Date Station Durée Couverture Température Plafond Début Fin Précipitationsa Ventb Origine (jj/mm) d'inventaire (min) nuageuse (%) (°C) nuageuxc 30/09 R1 10:00 11:00 60 0-25 0 9 5 n.d. Haut 30/09 R1 11:00 12:00 60 0-25 0 10 5 n.d. Haut 30/09 R1 12:00 13:00 60 0-25 0 12 5 n.d. Haut 30/09 R1 13:00 14:00 60 0-25 0 12 5 n.d. Haut 30/09 R1 14:00 15:00 60 0-25 0 13 5 n.d. Haut 30/09 R1 15:00 16:00 60 0-25 0 13 5 n.d. Haut 01/10 T6 07:44 08:00 16 0-25 0 5 3 Sud Haut 01/10 T4 08:30 08:50 20 0-25 0 5 4 Sud Haut 01/10 R4 09:00 10:00 60 0-25 0 n.d. 4 Sud Haut 01/10 R4 10:00 11:00 60 0-25 0 n.d. 4 Sud Haut 01/10 R4 11:00 12:00 60 0-25 0 n.d. 3 rafale 4 Sud Haut 01/10 R4 12:00 12:30 30 0-25 0 n.d. 3 rafale 4 Sud Haut 01/10 R2 13:00 14:00 60 0-25 0 n.d. 3 Sud-ouest Haut 01/10 R2 14:00 15:00 60 0-25 0 n.d. 3 Sud-ouest Haut 01/10 R2 15:00 16:00 60 0-25 0 n.d. 2 rafale 3 Sud-ouest Haut 01/10 R2 16:00 16:30 30 0-25 0 n.d. 2 rafale 3 Sud-ouest Haut 03/10 T3 07:45 08:00 15 75-100 0 7 0 n.d. Haut 03/10 R1 09:00 10:00 60 75-100 0 7 2 Sud-est Moyen 03/10 R1 10:00 11:00 60 75-100 0 8 3 Sud-est Haut 03/10 R1 11:00 12:00 60 75-100 0 8 3 rafale 4 Sud-est Haut 03/10 R1 12:00 13:00 60 75-100 0 9 2 rafale 3 Sud-est Haut 03/10 R1 13:00 14:00 60 75-100 0 11 2 rafale 3 Sud-est Haut 03/10 R1 14:00 15:00 60 75-100 0 9 2 Sud-est Haut 03/10 R1 15:00 16:00 60 75-100 0 7 2 Sud-est Haut 04/10 T2 08:00 08:15 15 75-100 0 6 1 n.d. Haut 04/10 T1 08:30 08:45 15 75-100 0 7 1 n.d. Haut 04/10 T5 09:04 09:19 15 75-100 0 8 2 n.d. Haut 04/10 R2 09:45 10:00 15 75-100 0 8 3 Nord-est Haut

PESCA Environnement A-8 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Date Station Durée Couverture Température Plafond Début Fin Précipitationsa Ventb Origine (jj/mm) d'inventaire (min) nuageuse (%) (°C) nuageuxc 04/10 R2 10:00 11:00 60 75-100 0 8 4 Nord-est Haut 04/10 R2 11:00 12:00 60 75-100 0 8 6 Nord-est Haut 04/10 R2 12:00 13:00 60 75-100 0 8 6 Nord-est Haut 04/10 R2 13:00 13:15 15 75-100 0 8 6 Nord-est Haut a Précipitations b Vitesse moyenne du vent et en rafale c Plafond nuageux 0 : Aucune selon l’échelle de Beaufort Bas : Présence de nuages au sommet des montagnes 1 : Brouillard 0 : Calme (0-1 km/h) Moyen : Présence de nuages entre le sommet des montagnes et une altitude de 2 km 2 : Bruine 1: Très légère brise (1-5 km/h) Haut : Présence de nuages à plus de 2 km d’altitude 3 : Pluie faible 2 : Légère brise (6-11 km/h)

4 : Pluie moyenne 3 : Petite brise (12-19 km/h) d n.d. : non déterminé 5 : Pluie forte 4 : Jolie brise (20-28 km/h)

5 : Bonne brise (29-38 km/h) 6 : Neige faible 7 : Neige moyenne 6 : Vent frais (39-49 km/h) 8 : Neige forte

PESCA Environnement A-9 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Tableau A. 4 Automne 2013

Date Station Durée Couverture Température Plafond Début Fin Précipitationsa Ventb Origine (jj/mm) d'inventaire (min) nuageuse (%) (°C) nuageuxc 17/08 R4 09:00 10:00 60 50-75 0 15 7 Sud-est Haut 17/08 R4 10:00 11:00 60 75-100 0 15 7 Sud-est Haut 17/08 R4 11:00 12:00 60 75-100 0 15 7 Sud-est Haut 17/08 R4 12:00 12:30 30 75-100 0 15 7 Sud-est Haut 19/08 T1 06:23 06:40 17 75-100 0 12 0 n.d.d Moyen 19/08 T2 06:53 07:12 19 75-100 0 12 0 n.d. Moyen 19/08 T3 07:32 07:48 16 75-100 0 12 0 n.d. Moyen 19/08 R1 09:00 10:00 60 75-100 0 12 2 rafale 3 Sud-est Moyen 19/08 R1 10:00 11:00 60 50-75 0 13 2 rafale 3 Sud-est Haut 19/08 R1 11:00 12:00 60 50-75 0 14 2 rafale 3 Sud-est Haut 19/08 R1 12:00 12:30 30 25-50 0 16 2 rafale 3 Sud-est Haut 20/08 T5 06:30 06:42 12 75-100 0 14 4 Sud Haut 20/08 T6 06:51 07:10 19 75-100 0 14 4 Sud Haut 20/08 T4 07:32 07:48 16 75-100 0 15 4 Sud Haut 21/08 R2 10:45 11:00 15 25-50 0 16 3 rafale 4 Sud-ouest Haut 21/08 R2 11:00 12:00 60 0-25 0 17 4 Sud-ouest Haut 21/08 R2 12:00 13:00 60 0-25 0 18 4 Sud-ouest Haut 21/08 R2 13:00 14:00 60 0-25 0 18 4 Sud-ouest Haut 21/08 R2 14:00 14:15 15 0-25 0 18 4 Sud-ouest Haut 23/08 T1 06:07 06:22 15 0-25 0 6 2 n.d. Haut 23/08 T4 06:33 06:49 16 0-25 0 6 0 n.d. Haut 23/08 T6 07:02 07:24 22 0-25 0 6 0 n.d. Haut 23/08 T5 07:30 07:45 15 0-25 0 6 2 rafale 3 Sud-ouest Haut 23/08 T2 08:11 08:28 17 0-25 0 8 0 n.d. Haut 23/08 T3 08:43 09:01 18 0-25 0 8 0 n.d. Haut 23/08 R1 10:00 11:00 60 0-25 0 10 5 Sud-ouest Haut 23/08 R1 11:00 12:00 60 0-25 0 12 5 Sud-ouest Haut

PESCA Environnement A-10 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Date Station Durée Couverture Température Plafond Début Fin Précipitationsa Ventb Origine (jj/mm) d'inventaire (min) nuageuse (%) (°C) nuageuxc 23/08 R1 12:00 13:00 60 0-25 0 14 5 Sud-ouest Haut 23/08 R1 13:00 14:00 60 0-25 0 15 4 Sud-ouest Haut 23/08 R1 14:00 15:00 60 0-25 0 15 5 Sud-ouest Haut 24/08 R2 11:45 12:00 15 75-100 0 17 1 Ouest Moyen 24/08 R2 12:00 13:00 60 75-100 0 19 1 Ouest Moyen 24/08 R2 13:00 14:00 60 75-100 0 20 1 Ouest Moyen 24/08 R2 14:00 15:00 60 75-100 0 17 1 Nord Moyen 24/08 R2 15:00 15:15 15 75-100 0 16 1 Nord Bas 25/08 T5 06:25 06:40 15 50-75 0 14 2 Sud-est Haut 25/08 T6 06:47 07:04 17 50-75 0 14 2 Sud-est Haut 25/08 T4 07:22 07:38 16 50-75 0 18 3 Sud-est Haut 25/08 T1 07:52 08:05 13 25-50 0 18 3 Sud-est Haut 25/08 T2 08:16 08:32 16 25-50 0 19 2 rafale 3 Sud-est Haut 25/08 T3 08:44 08:59 15 75-100 0 19 0 n.d. Haut 26/08 R4 08:45 09:00 15 100 0 14 0 n.d. Bas 26/08 R4 09:00 10:05 65 100 0 14 2 Nord Bas 27/08 R4 09:00 10:00 60 75-100 0 11 3 rafale 4 Nord Haut 27/08 R4 10:00 11:00 60 75-100 0 12 3 Nord Haut 27/08 R4 11:00 12:00 60 75-100 0 12 3 Nord Haut 27/08 R4 12:00 12:30 30 75-100 0 12 3 Nord Haut 27/08 R2 12:50 13:00 10 75-100 0 14 5 Nord Moyen 27/08 R2 13:00 14:00 60 75-100 0 15 5 Nord Moyen 27/08 R2 14:00 15:00 60 75-100 0 15 5 Nord Haut 27/08 R2 15:00 16:00 60 75-100 0 13 5 Nord Haut 27/08 R2 16:00 16:20 20 75-100 0 12 5 Nord Haut 28/08 R1 08:50 09:00 10 0-25 0 8 3 Est Haut 28/08 R1 09:00 10:00 60 0-25 0 8 3 Est Haut 28/08 R1 10:00 11:00 60 0-25 0 10 3 Est Haut

PESCA Environnement A-11 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Date Station Durée Couverture Température Plafond Début Fin Précipitationsa Ventb Origine (jj/mm) d'inventaire (min) nuageuse (%) (°C) nuageuxc 28/08 R1 11:00 12:00 60 0-25 0 12 2 Est Haut 28/08 R1 12:00 13:00 60 0-25 0 13 2 Nord Haut 28/08 R1 13:00 14:00 60 0-25 0 14 2 rafale 3 Nord Haut 28/08 R1 14:00 15:00 60 0-25 0 14 3 Nord Haut 28/08 R1 15:00 15:50 50 0-25 0 14 3 Nord Haut 30/08 R4 08:55 09:00 5 75-100 0 8 3 Nord Haut 30/08 R4 09:00 10:00 60 75-100 0 8 3 Nord Haut 30/08 R4 10:00 10:25 25 75-100 0 8 3 Nord Haut a Précipitations b Vitesse moyenne du vent et en rafale c Plafond nuageux 0 : Aucune selon l’échelle de Beaufort Bas : Présence de nuages au sommet des montagnes 1 : Brouillard 0 : Calme (0-1 km/h) Moyen : Présence de nuages entre le sommet des montagnes et une altitude de 2 2 : Bruine 1: Très légère brise (1-5 km/h) Haut : Présence de nuages à plus de 2 km d’altitude 3 : Pluie faible 2 : Légère brise (6-11 km/h)

4 : Pluie moyenne 3 : Petite brise (12-19 km/h) d n.d. : non déterminé 5 : Pluie forte 4 : Jolie brise (20-28 km/h)

5 : Bonne brise (29-38 km/h) 6 : Neige faible 7 : Neige moyenne 6 : Vent frais (39-49 km/h) 8 : Neige forte

PESCA Environnement A-12 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Annexe B Caractéristiques des sites d’inventaires de la faune avienne dans la zone d’étude en 2012 et en 2013

Tableau B. 1 Points d’observation des rapaces durant les migrations printanière et automnale de 2012 et de 2013

Point d'observation Longitude X Latitude Y (m)a (m)a R1 330 339 6 130 811 R2 325 844 6 132 979 R3 325 741 6 129 770 R4 331 019 6 136 058 a Projection NAD 83, UTM 18.

Tableau B. 2 Transects pour l’inventaire des oiseaux terrestres durant les migrations printanière et automnale de 2012 et de 2013

Transect Site d’inventaire Écosystème Début (0 m) Longitude X Latitude Y Fin (400 m) (m)a (m)a T1 Zone côtière 0 325 810 6 132 307 400 325 650 6 131 941 T2 Affleurements rocheux 0 327 444 6 130 369 400 327 061 6 130 246 T3 Milieu forestier 0 328 919 6 130 512 400 329 281 6 130 482 T4 Affleurements rocheux 0 331 024 6 136 023 400 331 266 6 135 706 T5 Zone côtière 0 330 290 6 137 325 400 330 204 6 136 940 T6 Milieu forestier 0 331 081 6 137 380 400 331 382 6 137 605 a Projection NAD 83, UTM 18.

Tableau B. 3 Plans d’eau visités pour l’inventaire de la sauvagine durant la période de nidification de 2012

Longitude X Latitude Y Superficie Plan d'eau (m)a (m)a (ha) S1 325 665 6 130 602 0,30 S2 330 158 6 136 471 0,38 S3 329 875 6 136 472 0,24 S4 329 240 6 135 338 0,31 S5 329 147 6 135 187 s. o. S6 328 952 6 135 077 s. o. a Projection NAD 83, UTM 18. s. o. : sans objet.

PESCA Environnement B-1 22 décembre 2020

KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Annexe C Résultats détaillés quotidiens des inventaires de la faune avienne réalisés dans la zone d’étude en 2012 et en 2013

Inventaires spécifiquesa Inventaires non spécifiquesb Espèce observée Total Migration Migration Total Migration Migration Total printanière Nidification automnale partiel printanière Nidification automnale partiel Alouette hausse-col 167 - 77 244 0 0 0 0 244 Bécasseau minuscule 0 - 0 - 2 0 0 2 2 Bec-croisé bifascié 0 - 14 14 0 0 0 0 14 Bruant à couronne blanche 101 - 9 110 0 0 0 0 110 Bruant à gorge blanche 118 - 31 149 0 0 0 0 149 Bruant chanteur 0 - 1 1 0 0 0 0 1 Bruant de Lincoln 11 - 0 11 0 0 0 0 11 Bruant des prés 44 - 62 106 0 0 0 0 106 Bruant fauve 48 - 13 61 0 0 0 0 61 Bruant hudsonien 11 - 9 20 0 0 0 0 20 Bruant sp. 9 - 6 15 0 0 0 0 15 Chevalier grivelé 0 - 0 - 1 0 0 1 1 Corneille d'Amérique 9 - 19 28 0 0 0 0 28 Durbec des sapins 0 - 8 8 0 0 0 0 8 Fringillidé sp. 0 - 1 1 0 0 0 0 1 Goéland argenté 1 - 10 11 0 0 0 0 11 Goéland bourgmestre 3 - 0 3 0 0 0 0 3 Goéland marin 6 - 6 12 0 0 0 0 12 Goéland sp. 33 - 11 44 0 0 0 0 44 Grand corbeau 30 - 29 59 0 0 0 0 59 Grand héron 0 - 1 1 0 0 1 1 2 Grive à dos olive 1 - 4 5 0 0 0 0 5 Grive solitaire 15 - 0 15 0 0 0 0 15

PESCA Environnement C-1 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Inventaires spécifiquesa Inventaires non spécifiquesb Espèce observée Total Migration Migration Total Migration Migration Total printanière Nidification automnale partiel printanière Nidification automnale partiel Grue du Canada 0 - 0 - 1 0 0 1 1 Junco ardoisé 29 - 32 61 0 0 0 0 61 Limicole sp. 0 - 34 34 0 0 0 0 34 Merle d'Amérique 47 - 25 72 0 0 0 0 72 Mésange à tête brune 2 - 17 19 0 0 0 0 19 Mésangeai du Canada 15 - 24 39 0 0 0 0 39 Oiseau sp. 0 - 1 1 0 0 0 0 1 Paruline à calotte noire 1 - 9 10 0 0 0 0 10 Paruline à croupion jaune 34 - 7 41 0 0 0 0 41 Paruline des ruisseaux 2 - 0 2 0 0 0 0 2 Paruline obscure 0 - 1 1 0 0 0 0 1 Paruline rayée 9 - 0 9 0 0 0 0 9 Paruline sp. 1 - 1 2 0 0 0 0 2 Passereau 10 - 16 26 0 0 0 0 26 Pic flamboyant 0 - 2 2 0 0 0 0 2 Pipit d'Amérique 0 - 21 21 0 0 0 0 21 Plectrophane lapon 24 - 19 43 0 0 0 0 43 Plongeon catmarin 8 - 0 8 1 0 0 1 9 Plongeon huard 10 - 3 13 1 0 5 6 19 Plongeon sp. 5 - 1 6 0 0 1 1 7 Pluvier semipalmé 10 - 0 10 0 0 0 0 10 Quiscale rouilleuxc 0 - 0 - 1 0 0 1 1 Roitelet à couronne dorée 2 - 0 2 0 0 0 0 2 Roitelet à couronne rubis 20 - 7 27 0 0 0 0 27 Sizerin flammé 5 - 128 133 0 0 0 0 133

PESCA Environnement C-2 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Inventaires spécifiquesa Inventaires non spécifiquesb Espèce observée Total Migration Migration Total Migration Migration Total printanière Nidification automnale partiel printanière Nidification automnale partiel Tarin des pins 14 - 0 14 0 0 0 0 14 Tétras du Canada 6 - 2 8 0 0 0 0 8 Oiseaux terrestres, nombre 861 - 661 1 522 7 0 7 14 1536 d'observations Oiseaux terrestres, nombre d'espècesd 31 - 29 38 6 0 2 7 42 Aigle royalc 3 - 1 4 0 0 0 0 4 Autour des palombes 0 - 1 1 0 0 0 0 1 Balbuzard pêcheur 2 - 1 3 2 0 1 3 6 Busard des marais 1 - 1 2 2 0 0 2 4 Buse pattue 23 - 69 92 0 0 0 0 92 Faucon émerillon 6 - 7 13 4 0 0 4 17 Faucon pèlerinc 7 - 9 16 2 0 1 3 19 Faucon sp. 3 - 0 3 0 0 0 0 3 Rapace sp. 2 - 1 3 0 0 0 0 3 Rapaces, nombre d'observations 47 - 90 137 10 0 2 12 149 Rapaces, nombre d'espècesd 6 - 7 7 4 0 2 4 7 Bernache du Canada - 21 - 21 3 161 0 3 908 7 069 7 090 Canard noir - 0 - 0 5 0 3 8 8 Canard souchet - 4 - 4 2 0 0 2 6 Canard sp. - 0 - 0 0 0 3 3 3 Eider à duvet - 0 - 0 2 0 0 2 2 Fuligule à collier - 0 - 0 6 0 0 6 6 Fuligule milouinan - 2 - 2 48 0 0 48 50 Garrot à œil d'or - 0 - 0 0 0 4 4 4 Grand harle - 0 - 0 9 0 0 9 9 Harelde kakawi - 0 - 0 38 0 0 38 38 Harle huppé - 3 - 3 308 0 0 308 311

PESCA Environnement C-3 22 décembre 2020 KWREC Centrale d’énergie hybride de Whapmagoostui Kuujjuaraapik Inventaires d’oiseaux 2012-2013

Inventaires spécifiquesa Inventaires non spécifiquesb Espèce observée Total Migration Migration Total Migration Migration Total printanière Nidification automnale partiel printanière Nidification automnale partiel Harle sp. - 0 - 0 6 0 8 14 14 Macreuse à bec jaune - 0 - 0 1 091 0 0 1 091 1 091 Macreuse à front blanc - 0 - 0 19 0 0 19 19 Macreuse brune - 0 - 0 7 0 0 7 7 Oie des neiges - 0 - 0 60 0 20 80 80 Sarcelle d'hiver - 2 - 2 0 0 0 0 2 Sauvagine sp. - 0 - 0 2 0 0 2 2 Sauvagine, nombre d'observations - 32 - 32 4 764 0 3 946 8 710 8 742 Sauvagine, nombre d'espècesd - 5 - 5 13 0 4 14 15 Total nombre d'observations 908 32 751 1 691 4 781 0 3 955 8 736 10 427 Total nombre d'espècesd 37 5 36 50 23 0 8 25 64 a Observations notées lors des inventaires spécifiques à chaque groupe d'oiseaux : - oiseaux terrestres : transect (migrations printanière et automnale); - rapaces : point d'observation (migrations printanière et automnale); - sauvagine : visite de plans d’eau (nidification). b Observations notées lors de tous les inventaires non spécifiques à chaque groupe d'oiseaux. c Espèce à statut particulier aux niveaux provincial et/ou fédéral (Gouvernement du Canada, 2020; MFFP, 2016-2020). d Observations identifiées à l'espèce.

PESCA Environnement C-4 22 décembre 2020

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Appendices

Appendix D Identification of telecommunications systems

PESCA Environment D-1 March 31, 2021

PARC ÉOLIEN WKHPPP SITUÉ À WHAPMAGOOSTUI / KUUJJUARAPIK, QUÉBEC

ÉTUDE PRÉLIMINAIRE D’IMPACT ENVIRONNEMENTAL

IDENTIFICATION DES SYSTÈMES DE TÉLÉCOMMUNICATIONS

Préparée pour

PESCA ENVIRONNEMENT INC. 895, boulevard Perron Carleton-sur-Mer, (Québec) G0C 1J0

PARC ÉOLIEN WKHPPP SITUÉ À WHAPMAGOOSTUI / KUUJJUARAPIK, QUÉBEC

ÉTUDE PRÉLIMINAIRE D’IMPACT ENVIRONNEMENTAL

IDENTIFICATION DES SYSTÈMES DE TÉLÉCOMMUNICATIONS

Équipe responsable de la préparation de ce document

Etienne Leroux, Ing. 18 février 2021

Andrew Lonardelli, Ing. Jr. 18 février 2021

Note : Ce document est rédigé selon un mandat donné à Yves R. Hamel et Associés inc. par Pesca Environnement Inc. Ce document est basé sur des données provenant principalement de la base de données d’Industrie Canada et de tierces parties, pour lesquelles aucune validation terrain n’a été effectuée. Conséquemment, les renseignements et conclusions écrits dans ce document sont uniquement et strictement à titre informatif. Yves R. Hamel et Associés inc. ainsi que les personnes agissant pour son compte ne pourront être tenus responsables de tout dommage direct ou indirect relié au contenu de ce document.

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page ii Version : 2 Février 2021

TABLE DES MATIÈRES

1 INTRODUCTION ...... 1

2 DISCUSSION ...... 2

3 IDENTIFICATION DES SYSTÈMES ...... 4 3.1 SYSTÈMES DE DIFFUSION ...... 4 3.1.1 Stations de télédiffusion ...... 4 3.1.2 Stations de radiodiffusion FM ...... 6 3.1.3 Stations de radiodiffusion AM ...... 6 3.2 SYSTEMES D’AIDE A LA NAVIGATION ...... 7 3.2.1 Système VOR /Localizer ...... 7 3.3 SYSTÈMES MOBILES ...... 8 3.4 SYSTÈMES POINT À POINT ...... 8 3.5 SYSTÈMES POINT À MULTIPOINT ...... 10 3.6 SYSTÈMES RADAR ...... 10 3.7 SYSTÈMES SISMOLOGIQUES ...... 11 4 CONCLUSION ...... 13

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page iii Version : 2 Février 2021

PARC ÉOLIEN WKHPPP

ÉTUDE D’IMPACT PRÉLIMINAIRE IDENTIFICATION DES SYSTÈMES DE TÉLÉCOMMUNICATIONS

1 Introduction

Yves R. Hamel et Associés inc., consultants en télécommunications et radiodiffusion, a été mandatée par Pesca Environnement Inc., afin de vérifier l'impact potentiel de l'implantation d'un parc éolien sur les systèmes de radiodiffusion et de télécommunications présents en périphérie des communautés de Kuujjuarapik et de Whapmagoostui.

Ce rapport présente les résultats d’une étude visant à identifier les divers systèmes de télécommunications susceptibles de subir des perturbations suite à l’implantation du projet éolien WKHPPP. Ce travail consiste notamment en l’identification des systèmes de communications micro-ondes point à point qui croiseraient la zone d’étude et la définition des zones de consultation associées s’il y a lieu, ainsi qu’en l’identification des systèmes de radar et de navigation susceptibles de subir un impact et, finalement, en l’identification du potentiel d’interférence avec les signaux de télédiffusion.

Les résultats de cette étude suivent les recommandations des lignes directrices CCCR/CANREA.

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 1 Version : 2 Février 2021

2 Discussion

Des études traitant de ce sujet indiquent que de nombreux types de systèmes de télécommunications peuvent être grandement affectés par la présence des éoliennes dans leurs environs immédiats. Dans la réalité, une distance de quelques fois le diamètre du rotor est parfois suffisante pour éviter de perturber la plupart des systèmes.

L’interférence due aux éoliennes peut prendre deux formes : par obstruction des ondes électromagnétiques ou par réflexion des ondes électromagnétiques. Il en résulte une dégradation du signal reçu, ce qui affecte la performance et la fiabilité du service.

Plusieurs facteurs ayant trait à l’éolienne elle-même, tels que son type (vertical ou horizontal), le nombre et les dimensions des pales, la forme des pales et les matériaux utilisés pour leur fabrication, ainsi que la hauteur et le diamètre de la tour de support, peuvent influencer l’importance des impacts potentiels d’interférences électromagnétiques causés à des services de radiodiffusion et de télécommunications. D’autre part, certains paramètres des systèmes de télécommunications influencent leur vulnérabilité : la localisation de l’émetteur et des récepteurs par rapport aux éoliennes, la fréquence d’émission, la polarisation du signal, le type de modulation, le patron d’antenne, les caractéristiques de propagation et la topographie du terrain.

Les problèmes d’interférences associés aux éoliennes sont généralement causés par la conductivité des pales métalliques ou en fibres de carbone. Le plan de rotation des pales présente dans ces cas une grande surface conductrice causant obstruction ou réflexion du signal. L’utilisation de pales de fibre de verre/époxy ou de plastique réduit le risque d’interférences causées par la rotation des pales, mais ne l’élimine pas complètement. L’utilisation de câbles conducteurs afin de relier les parafoudres positionnés à l’extrémité des pales, suffit généralement pour que la pale réagisse pratiquement comme une pale métallique. Les structures de support des éoliennes présentent aussi un potentiel d’obstruction important et de réflexion à la transmission des signaux.

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 2 Version : 2 Février 2021

Les systèmes de télécommunications suivants ont été jugés vulnérables, sous certaines conditions, aux interférences dues à la présence d’éoliennes et seront analysés plus en détail dans la suite de ce document :

- Systèmes de diffusion radio (FM et AM) et télévision ; - Systèmes de réception télévisuelle pour câblodistribution ; - Systèmes d’aide à la navigation, VOR, LORAN-C ; - Systèmes de communications mobiles VHF et UHF, cellulaire et PCS ; - Systèmes radio point à point UHF, micro-ondes et liaisons par satellite ; - Systèmes point à multipoint, FWA, MMDS, LMCS ; - Systèmes de radar de navigation et de météo ; - Réseau national sismologique canadien.

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 3 Version : 2 Février 2021

3 Identification des systèmes

3.1 Systèmes de diffusion

3.1.1 Stations de télédiffusion La réception des signaux de télévision analogique est probablement le type de système le plus à risque de subir des interférences dues à la présence d’un parc éolien. L’interférence par les éoliennes cause une distorsion vidéo qui apparaît généralement comme une ou plusieurs images fantômes et le scintillement de ces images synchronisé avec la fréquence de passage des pales d’éoliennes. Il n’y a généralement pas d’impact perceptible sur la qualité du signal audio puisque celui-ci est transmis en modulation de fréquence (FM). Toutefois, depuis le 31 août 2011, une majorité des stations de télédiffusion analogique ont, soit été convertie à la technologie numérique qui est beaucoup plus robuste que la télévision analogique, soit cessée leurs opérations.

Malgré cette plus grande robustesse, la télévision numérique peut aussi être affectée sous certaines conditions. Il n’existe pas de règle simple permettant de déterminer la séparation minimale entre les éoliennes et les émetteurs et les récepteurs TV, qui assurerait une réception sans interférence. La topographie du terrain ainsi que la distance relative entre les installations sont des paramètres importants, toutefois avec la technologie numérique, la zone à risque se limitera généralement à une distance réduite des éoliennes. Une analyse détaillée est requise afin de prendre en considération les conditions particulières du site étudié.

Les règles qui régissent l’opération des stations de télédiffusion allouent à chaque station un contour de service protégé à l’intérieur duquel le brouillage provenant d’une autre station et qui pourrait affecter la qualité du signal reçu n’est permis qu’à l’intérieur d’une limite très restreinte. L’installation des éoliennes à proximité d’un site de télédiffusion demande beaucoup d’attention, car elle peut avoir un impact potentiellement nuisible sur l’intégrité du contour de service de la station. L’installation des éoliennes à l’intérieur du contour de service d’une station de télédiffusion peut avoir un impact sur la qualité du signal reçu à proximité du parc éolien nécessitant, selon les conditions locales, l’évaluation détaillée de l’interférence et la mise en place des mesures correctives, lorsque requis. La technologie numérique (ATSC) n’est pas affectée par les parcours multiples statiques, c'est-à-dire causés par les réflexions sur des surfaces fixes, tel que la tour de support, la

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 4 Version : 2 Février 2021

nacelle ou les pales lorsque l’éolienne est à l’arrêt. Les parcours multiples dynamiques sont aussi assez bien tolérés par la technologie numérique, toutefois, sous certaines conditions extrêmes, les variations d’amplitude du signal dépassent les capacités de traitement des circuits d’un récepteur typique.

Dans le cas du projet de WKHPPP, aucun contour de service théorique protégé de télédiffusion numérique ou de télédiffusion analogique ne couvrirait théoriquement, entièrement ou en partie, la zone visée pour l’implantation des éoliennes. Conséquemment, aucune station ne se trouve à l’intérieur de la zone d’étude.

L’impact d’un parc éolien sur la télédiffusion numérique n’est pas un phénomène connu avec précision. Toutefois, selon les données préliminaires actuellement disponibles, il est généralement reconnu dans l’industrie de la diffusion télévisuelle que la technologie numérique est beaucoup plus robuste que la technologie analogique, bien que l’on ne peut conclure que toutes les possibilités théoriques d’interférence soient éliminées.

Sur la base de l'évaluation préliminaire de la technologie ATSC et des informations disponibles concernant les performances de la télévision numérique en situation de propagation par trajets multiples, il est estimé que l’implantation d’un parc éolien ne devrait pas avoir d'impact significatif sur la qualité de réception des signaux de télévision numérique en ce qui concerne les structures statiques. Également, puisque les performances d’un récepteur ATSC en présence d’éoliennes n’ont pas encore été validées en détails, il n’est pas possible d’affirmer que jamais aucun impact ne sera observé. Cependant, il semble acquis que l’étendue de la zone d’impact potentiel sera considérablement réduite comparativement à la zone d’impact affectant un récepteur analogique NTSC, ce qui réduirait d’autant le risque de subir une dégradation de la qualité de réception.

Selon les données du recensement de 2016, n’y aurait que quelques bâtiments dans la région immédiate du projet éolien proposé. Environ 680 personnes habiteraient dans un peu plus de 280 résidences situées dans un rayon de 10 km de l’aire du parc éolien. Cette distance d’analyse de 10 km à partir de l’éolienne la plus rapprochée est suggérée dans la version de février 2020 des lignes directrices CCCR/CANREA.

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 5 Version : 2 Février 2021

3.1.2 Stations de radiodiffusion FM Des études et analyses effectuées dans le passé ont démontré que la réception des signaux de radiodiffusion en FM est généralement peu affectée par l’implantation de parcs éoliens en autant qu’une distance minimale de quelques centaines de mètres soit maintenue entre les éoliennes et le site d’émission ou encore les sites de réception. La dégradation du signal FM est généralement perçue comme un sifflement de fond synchronisé avec la fréquence de rotation des pales. Une dégradation perceptible de la qualité du signal reçu survient typiquement seulement aux extrémités de la région couverte par la station, où le rapport signal sur bruit est déjà marginal (de l’ordre de moins de 12 dB) et à faible distance des éoliennes. Ces conditions se trouvent majoritairement en dehors des contours de service.

Il n’y a pas de station de radiodiffusion FM située à l’intérieur ou à proximité de la zone du projet éolien, ainsi aucun impact n’est appréhendé. Veuillez noter qu’il y a 4 émetteurs FM situés dans trois stations différentes dans le village de Kuujjuarapik. Les transmitteurs FM sont dans le tableau ci-dessous. Tableau 1: Station FM Emplacement Latitude Longitude TX Opérateur (WGS84) (WGS84) (MHz) VF2438 Taqramiut Nipingat 55.27694 -77.7639 94.1 Kuujjuarapik inc. Whapmagoostui CKRQ-FM Aeyouch Whapmagootui/P. 55.27861 -77.7467 96.5 Telecommunications Bale Association CFFB-FM-4 55.27972 -77.7511 103.5 CBC/ Radio-Canada Kuujjuarapik CBFG-FM-2 CBC / Radio- 55.27972 -77.7511 105.1 Kuujjuarapik Canada

3.1.3 Stations de radiodiffusion AM Tout comme les signaux de télédiffusion, la radiodiffusion AM est modulée en amplitude et pourrait théoriquement subir des interférences dues à la présence des éoliennes. Les signaux de radiodiffusion en AM utilisent des fréquences plus basses et donc des longueurs d’ondes beaucoup plus importantes que les signaux TV et sont par conséquent moins sujettes aux réflexions sur les éoliennes. La réception des signaux AM ne devrait donc pas être affectée par la présence des éoliennes, à moins que le récepteur ne se trouve très près (à quelques mètres) des éoliennes. Cependant, la présence de grandes structures métalliques verticales (telles que les tours de support des éoliennes) dans les environs

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 6 Version : 2 Février 2021

immédiats des antennes de diffusion AM pourrait modifier le patron de rayonnement de ces antennes en agissant comme un élément rayonnant passif.

Aucune station de radiodiffusion AM existante ne se trouve à proximité ou à l’intérieur de la zone du projet éolien, ainsi aucun impact n’est appréhendé.

3.2 Systèmes d’aide à la navigation

3.2.1 Système VOR /Localizer Le VOR (VHF Omnidirectional Range) et les systèmes ILS/Localizer (Instrument Landing System) utilisent des signaux dans la bande de fréquences entre 108 et 118 MHz et une combinaison de modulation en fréquence et en amplitude afin d’aider la navigation aérienne. Les émetteurs VOR sont localisés principalement sur les terrains des aéroports, mais il arrive qu’ils soient localisés le long des principaux corridors de navigation afin d’aider à la navigation en route. Les stations Localizer sont quant à elles situées en bout de piste d’atterrissage. Il est nécessaire de ménager un espace d’au moins 500 m autour des stations VOR afin de ne pas affecter l’opération et la précision des récepteurs à bord des avions. Un espace encore plus étendu devrait en plus être exempt de bâtiment et structure de hauteur importante selon la topographie, afin de ne pas affecter les signaux d’azimut. Des recherches indiquent que les éoliennes peuvent être considérées comme des structures statiques par rapport à l’opération des systèmes VOR et ne nécessiteraient qu’une autorisation d’obstacle aérien de la part de Transports Canada, comme pour toute structure de hauteur importante. Toutefois, Nav Canada, étant responsable de l’opération de ces stations VOR, souhaite être avisée au plus tôt de tout projet d’implantation à moins de 15 km de l’une de ses stations, afin de pouvoir fournir des indications au promoteur éolien sur les possibilités de réduire l’impact sur l’opération de la station au cours du processus de positionnement des éoliennes.

Parmi les types de systèmes identifiés sont des systèmes mobiles opérant en mode simplex pour le contrôle et la communication aérienne. Aucune station VOR/DME (Distance Measuring Equipment) ne se trouve à proximité ou à l’intérieur de la zone du projet éolien, ainsi aucun impact n’est appréhendé.

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 7 Version : 2 Février 2021

3.3 Systèmes mobiles Tous les systèmes de communications mobiles fonctionnant dans les bandes VHF, UHF ainsi que les systèmes de téléphonie cellulaire et PCS dans les bandes de fréquences de 850 et 1900 MHz utilisent la modulation de phase ou de fréquence et, tout comme les systèmes de diffusion radiophonique en FM, ne sont pas sujets aux interférences causées par l’opération des éoliennes. Même si, théoriquement, il est possible que des interférences surviennent à proximité des éoliennes et lorsque le niveau de signal reçu est très faible, aucun cas documenté n’existe au sujet de ce type d’interférence. Nous n’anticipons donc pas de problème lié à ce type d’interférence.

Un système mobile se trouve à proximité ou à l’intérieur de la zone du projet éolien. Le site mobile est dans le tableau ci-dessous.

Tableau 2: Système Mobile Emplacement Latitude Longitude TX TX Opérateur (WGS84) (WGS84) (MHz) (MHz) KUUJJUARAPIK Université Laval ET WARD HUNT, 55.2986 -77.6986 154.935 154.935 Service des QC, CA [Sets: 4] Finances

Ce système mobile ne comprend que des mobiles et aucun répéteur. Nous n’envisageons aucune interférence pour ce système.

Nous avons transmis une requête à la GRC et sommes toujours dans l’attente d’une réponse.

3.4 Systèmes point à point Les systèmes de télécommunication point à point par micro-ondes sont utilisés entre autres pour relier les sites de diffusion à leurs studios (radiodiffusion et télédiffusion) ainsi que pour une multitude d’autres applications (radiotéléphonie, transmissions militaires ou de sécurité, etc.). Les réseaux de téléphonie et de transmission de données utilisent des liaisons micro- ondes point à point et les réseaux de téléphonie cellulaire utilisent ce type de liaisons pour relier les stations de base au centre de commutation. Les liaisons point à point dans les bandes de fréquence UHF et micro-ondes nécessitent des liaisons en ligne de vue et la présence de structures dans le parcours ou à ses abords peut engendrer des réflexions qui pourraient dégrader le signal reçu jusqu’au point d’interrompre la communication.

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 8 Version : 2 Février 2021

La construction d’éoliennes à proximité d’un parcours de liaison point à point est encore plus critique que l’érection d’une structure statique, car la rotation des pales pourrait engendrer un effet de modulation en amplitude et un effet Doppler. Selon les références sur ce sujet, un espacement latéral minimal équivalent à trois fois le rayon de la première zone de Fresnel est requis entre la ligne de vue optique de la liaison et toute éolienne située le long du parcours. Le rayon de la première zone de Fresnel dépend de la fréquence d’opération de la liaison ainsi que de la longueur totale de la liaison et de la position le long du parcours. Un espacement latéral équivalent au rayon du rotor de l’éolienne est également ajouté afin de s’assurer que les pales du rotor se trouvent entièrement en dehors de la zone d’exclusion.

Dans le cas du projet de parc éolien WKHPPP, deux liaisons point à point inscrit dans la base de données d’Industrie Canada traverse la région étudiée. Les sites micro-ondes sont dans le tableau ci-dessous.

Tableau 3: Sites PTP Emplacement Latitude Longitude TX TX Opérateur (WGS84) (WGS84) (MHz) (MHz) Whapmagoostui, 6034.15 6286.19 QC (Grande CGE448 55.3066 Bell Canada 6093.45 6345.49 Baleine RR) 6286.19 6034.15 Kuujjuarapik, QC CGE449 55.2797 Bell Canada 6345.49 6093.45 Baie-James, QC CGE450 54.55875 6286.19 6034.15 Bell Canada (Lac Julian)

L’éolienne T3 se trouve dans la zone de consultation de la liaison formé des sites de Grande Baleine RR et Lac Julian. Une consultation auprès de l’opérateur, Bell Canada, est recommandée.

Une requête a également été transmise aux différents services de sécurité publique afin qu’ils identifient les systèmes radio mobile et point à point qui pourraient se situer à l’intérieur ou en périphérie de la zone d’étude du projet éolien. Nous sommes toujours dans l’attente d’une réponse.

Les mêmes critères s’appliquent aux liaisons par satellite fonctionnant généralement dans les bandes de fréquences entre 4 et 14 GHz. Lorsque l’angle d’élévation et l’azimut d’une antenne terrestre par rapport à un satellite spécifique sont connus, la distance minimale par

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 9 Version : 2 Février 2021

rapport à une éolienne peut être évaluée. Selon les informations contenues dans la banque de données d’Industrie Canada, il n’y a aucune station de communication par satellite à l’intérieur de la zone étudiée, sauf possiblement des systèmes de réception télévisuelle de type résidentiel.

3.5 Systèmes point à multipoint Les systèmes de télécommunications point à multipoint sont un moyen de plus en plus populaire d’offrir l’accès Internet et la câblodistribution sans fil dans les régions rurales. Ces systèmes fonctionnent dans des bandes de fréquences situées entre 1,5 et 40 GHz et utilisent différents types de modulation. Dans le cas des systèmes point à multipoint de type grand public, la position des usagers est inconnue et la protection de ces systèmes ne peut se limiter qu’aux stations de base de ces systèmes. Une zone de consultation de 1 km est aussi associée à ces stations et, comme dans le cas des systèmes mobiles, l’installation d’éolienne pourra parfois être effectuée jusqu’à la limite de protection physique de la station radio.

Toutefois, dans le cas des systèmes point à multipoint dont les stations d’usagers nécessitent une licence d’Industrie Canada, ces systèmes sont traités comme des multiples systèmes point à point et, par ce fait, sont inclus dans le traitement des liaisons point à point et assujetties aux mêmes contraintes. Aucun système point à multipoint n’a été identifié dans l’aire proposée du projet éolien, ainsi aucun impact n’est appréhendé.

3.6 Systèmes radar Les systèmes radar fonctionnent généralement à des fréquences entre 1 GHz et 10 GHz ou plus et utilisent la réflexion des ondes radio afin de localiser et identifier des objets. Les systèmes de radar, autant civils que militaires, sont pour la plupart utilisés à des fins de contrôles aérien et maritime ainsi que pour établir des prévisions météorologiques. Toute structure se trouvant dans le champ de vision du radar retournera vers la source une partie du signal émis, qui sera traité par le récepteur radar.

La filtration et le traitement du signal reçu permettent de déterminer s’il provient d’une structure fixe comme un bâtiment ou d’une cible mobile comme un avion par exemple. Ce traitement du signal permet généralement d’éviter que les structures fixes n’apparaissent sur les affichages des récepteurs radar, facilitant ainsi la tâche des opérateurs. De plus, les

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 10 Version : 2 Février 2021

radars de navigation ont un angle de visée positif, réduisant la visibilité des structures localisées à une certaine distance des sites radars. Les radars météo par contre ont un angle de visée horizontal ou même pointent légèrement vers le bas afin de percevoir des nuages et précipitations le plus près possible du sol. Ainsi, des structures situées même au-delà de l’horizon peuvent êtres perçues par ce type de radar.

En ce qui concerne les structures mobiles comme les rotors et les pales d’éoliennes, leur fonctionnement engendre d’importantes perturbations des récepteurs des signaux radar puisque leur signature radar change constamment avec la vitesse de rotation des pales et la direction du vent. De plus, lorsque de nombreuses éoliennes sont localisées à proximité les unes des autres, il devient pratiquement impossible de filtrer et éliminer ces réflexions. Les tentatives de développement d’algorithmes de filtration n’ont pas obtenu de résultats probants jusqu’à présent. Les efforts de recherche visent présentement le développement des pales de rotor et nacelles en matériaux qui absorbent les signaux radar, mais ces éoliennes « invisibles » aux radars en sont encore à plusieurs années de leur possible mise en marché.

Aucune station radar météorologique n’a été identifiée à moins de 50 km et aucune station radar de navigation aérienne de Nav Canada n’a été identifiée à moins de 80 km de la zone du projet éolien proposé.

Aucun système de navigation maritime n’a été identifié à proximité de la zone d’étude. Nous avons aussi transmis une requête au ministère de la défense nationale afin qu’ils identifient les systèmes de communication et d’aide à la navigation, radar ou autre, qui pourraient se situer dans un rayon de 100 km du parc éolien proposé. Nous sommes toujours dans l’attente d’une réponse de leur part.

3.7 Systèmes sismologiques Bien que les stations sismologiques du Réseau national sismologique canadien ne soient pas en soi des systèmes de télécommunications, les discussions en cours entre l’Association canadienne de l’énergie éolienne (ACEE) et le Conseil consultatif canadien sur la radio (CCCR) suggèrent d’inclure l’analyse de l’impact potentiel sur ces stations dans le cadre de l’étude d’impact sur les systèmes de télécommunications. En effet, les instruments d’une grande sensibilité permettant de détecter de légers tremblements de terre, même imperceptibles à la population, pourraient être affectés par le bruit causé par les vibrations

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 11 Version : 2 Février 2021

transmises au sol lors de l’activité d’une éolienne à proximité d’une de ces stations sismologiques.

Une station sismologique du Réseau national sismologique canadien a été identifiée à moins de 4.2km du projet éolien proposé. La station sismologique est dans le tableau ci-dessous.

Tableau 4: Système Sismologique Emplacement Latitude Longitude TX TX Opérateur (WGS84) (WGS84) (MHz) (MHz) Ressources Kuujjuarpik 55.27687 -77.74548 N/A N/A Naturelles (Polaris: KJKQ) Canada

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 12 Version : 2 Février 2021

4 CONCLUSION

Cette étude visait à effectuer l’identification et l’analyse préliminaire des systèmes de télécommunications inscrits dans la base de données d’Industrie Canada et situés dans un rayon de 100 km du projet éolien proposé, qui seraient à risque de subir des interférences dues à l’opération du parc éolien WKHPPP. Cette analyse inclut certains systèmes de sécurité publique qui ne sont pas inclus dans la base de données d’Industrie Canada.

Aucune station de télévision numérique ou de télévision analogique ne couvrirait théoriquement la région du parc éolien proposé.

Aucun système de transmission de radiodiffusion AM, FM et MMDS ne se trouve à l’intérieur ou à proximité de la zone d’étude du projet éolien proposé.

Deux liaisons micro-onde point à point de Bell Canada ont été identifiées. L’éolienne T3 se trouve dans une zone de consultation de la liaison. Une consultation auprès de l’opérateur est recommandée.

Une station de base radio mobile a été identifiée à proximité de la zone d’étude. L’éolienne T1 se trouve à proximité du site identifié, mais aucune interférence n’est prévue puisqu’il s’agit de mobile seulement.

Aucune station radar météorologique n’a été identifiée à moins de 50 km, ni de radar de navigation aérienne à l’intérieur d’un rayon de 80 km de la zone d’étude.

Aucun système de navigation maritime n’a été identifié.

Une station séismologique est située à moins de 10 km. Une consultation avec Ressources Naturelles Canada est recommandée.

Nous sommes toujours dans l’attente de la réponse de la Gendarmerie royale du Canada ainsi que du ministère de la défense nationale.

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 13 Version : 2 Février 2021

Toutes ces évaluations, ainsi que les conclusions de ce rapport, sont essentiellement basées sur les informations publiées dans les banques de données d’Industrie Canada ou autres sources. Il faut cependant noter que la banque de données d’Industrie Canada n’est pas toujours mise à jour aussi rapidement que la mise en service de nouvelles stations radio et qu’il pourrait y avoir de nouvelles stations mises en service récemment qui n’y apparaitront que dans quelques mois. Il nous est impossible d’identifier ces stations avant qu’elles soient ajoutées à la banque de données, pas plus d’ailleurs que les stations utilisant du spectre sans licence, qui ne sont répertoriées dans aucune banque de données publique.

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 14 Version : 2 Février 2021

Références

Dipak L. Sengupta, Thomas B. A. Senior, “Electromagnetic Interference from Wind Turbines” in Wind Turbine Technology: Chapter 9, David A, Spera (Ed), ASME Press, 1994.

David F. Bacon, “Fixed-link Wind-Turbine exclusion zone method”, D.F. Bacon, 2002.

M. M. Butler, D. A. Johnson, “Effect of windfarm on primary radar”, DTI PUB URN No. 03/976, 2003.

RABC/CANREA “Technical Information and Coordination Process Between Wind Turbines and Radiocommunication and Radar Systems”, Draft version 6, February 2020.

Conseil de la Radiodiffusion et des Télécommunications Canadiennes, Décision de radiodiffusion CRTC 2011-494’’, 16 août 2011.

ATSC Standard, ‘’ ATSC Recommended Practice: Receiver Performance Guidelines’’, Document A/74, June 2004 with corrigendum July 2007.

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 15 Version : 2 Février 2021

Annexe 1

Aperçu général projet éolien WKHPPP

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 16 Version : 2 Février 2021

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 17 Version : 2 Février 2021

Tableau 5: Systèmes à l’intérieur de la carte Numéro Numéro Emplacement Latitude Longitude Propriétaire

KUUJJUARAPIK ET Université Laval Système Mobile 1 WARD HUNT, QC, 55.2986 -77.6986 Service des CA [Sets: 4] Finances

Whapmagoostui, QC Point à Point 2 55.3066 -77.6701 Bell Canada (Grande Baleine RR)

Point à Point 3 Kuujjuarapik, QC 55.2797 -77.7511 Bell Canada

Kuujjuarpik (Polaris: Ressources Station Sismologique 4 55.27687 -77.74548 KJKQ) Naturelles Canada

Aéroport de Aéroport 5 55.281454 -77.765142 NavCan Kuujjuarpik

Whapmagoostui CKRQ-FM Aeyouch FM 6 Whapmagootui/P. 55.27861 -77.7467 Telecommunications Bale Association CFFB-FM-4 FM 7 55.27972 -77.7511 CBC/ Radio-Canada Kuujjuarapik CBFG-FM-2 CBC / Radio- FM 7 55.27972 -77.7511 Kuujjuarapik Canada Taqramiut Nipingat FM 8 VF2438 Kuujjuarapik 55.27694 -77.7639 inc. Mât de Mesure de 9 55.294876 55.294876 Vent

Éolienne T1 55.300954 -77.695851

Éolienne T2 55.293250 -77.676525

Éolienne T3 55.294281 -77.672549

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 18 Version : 2 Février 2021

Annexe 2

Réponses des diverses agences de sécurité publique

concernant leurs

systèmes de radiocommunication

et d’aide à la navigation

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 19 Version : 2 Février 2021

Projet éolien WKHPPP - Rapport de l'étude préliminaire_V2.doc Projet: P-2021108

Yves R. Hamel et Associés Inc Page 20 Version : 2 Février 2021

KWREC Whapmagoostui Kuujjuaraapik Hybrid Power Plant Project Environmental and Social Impact Assessment: Volume 1 Appendices

Appendix E Report on Public Consultations

PESCA Environment E-1 March 31, 2021

CONSULTATION REPORT

Whapmagoostui-Kuujjuaraapik Hybrid Power Plant Project (WKHPPP)

CONSULTATION TEAM Benjamin Masty Daphne Calvin Lisa Petagumskum Sam W. Gull Matthew Mukash

March 31st, 2021

KWREC CONSULTATION REPORT 1 Consultation Team March 31, 2021

Table of Contents

1. Introduction ...... 3 2. Purpose and Approach ...... 3 3. Communication Plan ...... 4 3.1 Objectives ...... 4 3.2 Delivery Channels ...... 4 3.2.1. Our Press Release ...... 5 3.2.2. Our Brochure ...... 6 3.2.3. Our Website ...... 7 3.2.4. Our Facebook Page ...... 7 3.2.5. Radio Announcements ...... 8 4. Community Consultations and Participation ...... 8 4.1 Methodology ...... 8 4.1.1. Invitations ...... 8 4.1.2. Workshop Sessions Agenda ...... 9 4.2 Workshop – Cree Youth (December 16th, 2020) ...... 9 4.3 Workshop – Inuit Youth ...... 11 4.4 Workshop – Inuit Women (February 19th, 2021) ...... 11 4.5 Workshop – Inuit Men ...... 11 4.6 Workshop – Cree Women (February 17th, 2021) ...... 12 4.7 Workshop – Cree Men (February 18th and 23rd, 2021) ...... 13 4.8 Workshop – Cree Local Businesses (February 25th, 2021) ...... 14 4.9 Workshop – Cree Assembly (March 4th, 2021) ...... 14 4.10 Workshop – Inuit Assembly (March 9th, 2021) ...... 17 4.11 Workshop – Online Session with Cree Regional Entities (March 10th, 2021)...... 18 4.12 Workshop – Online Session with Inuit Regional Entities (March 11th, 2021) ...... 20 4.13 Community Survey ...... 22 5. Expected Outcome ...... 22 6. Conclusion ...... 23

APPENDIX 1 ‐ PowerPoint Presentation APPENDIX 2 ‐ Articles related to the project

KWREC CONSULTATION REPORT 2 Consultation Team March 31, 2021

1. Introduction In 2012, Nimschu Iskudow Inc., a subsidiary of the Whapmagoostui First Nation (WFN), was incorporated and mandated to develop a sustainable energy project component to the local diesel powerplant owned and operated by Hydro-Quebec Distribution (HQD). The project, officially referred to as Whapmagoostui-Kuujjuaraapik Hybrid Power Plant Project (WKHPPP), was then developed with the involvement of Sakkuq Landholding Corporation (SLHC). The intent was to form a Cree/Inuit partnership in the development, ownership and maintenance of the Project. The Project has now received support of HQD, Northern Village of Kuujjuaraapik (NVK) and the Whapmagoostui First Nation. Consequently, a new legal entity under the name “Kuujjuaraapik Whapmagoostui Renewable Energy Corporation (KWREC)” has been incorporated to represent Cree/Inuit partnership of the WKHPPP.

A Project Notice has been submitted to the Evaluating Committee (COMEV) to determine whether or not the WKHPPP (hereafter “the Project”) is subject to Section 22 of the James Bay and Northern Quebec Agreement (JBNQA) concerning Environmental & Social Impact Assessment (ESIA). In response, the COMEV decided that the Project, though it’s in the “Grey Zone” according to the JBNQA, will undergo the Environmental & Social Impact Assessment and Review Procedure. Directives were then issued for the carrying out of the ESIA with specific considerations to impacts on wildlife, wetlands, land use, archeological, social and economic repercussions.

Since the WKHPPP will be community-owned, it was important to ensure that community members are well-informed of the Project, its purpose, its potential impacts, and how it will benefit the community socially and economically. Communicating effectively to the community the processes and the results of diligent project planning, development and promotion - was important to ensure the community is well-informed and that there is a high degree of community support. In this regard, KWREC developed its Communications Plan with specific objectives that considered the responsibilities of partners, feedback measures, success criteria and any area of potential risks and concerns raised by the community members and other stakeholders.

This report presents the purpose, approach, communication strategies, the results of the workshop sessions and the perceived outcome of the public consultation.

2. Purpose and Approach The purpose of the community consultations is to inform the community and engage its members by generating a dialogue concerning the Project, and to record all questions, issues and concerns raised by it and provide answers for these. A special attention has been paid to communicate with the communities in their languages (Cree and Inuit), as well as in English.

KWREC CONSULTATION REPORT 3 Consultation Team March 31, 2021

During the consultation planning stage, certain objectives were developed to ensure the community is well informed about the project and the consultation process. In this regard, the following objectives of the public consultation were established:

. To meaningfully inform the public and other stakeholders regarding the proposed project and its impacts, culturally, socially, environmentally, and economically for employment and training opportunities; . To consult with youth, women’s and men’s associations, local interest groups, elders, trappers/hunters, the business community and leadership authorities using various methods of engagement, including information workshops, meetings and assemblies; . To seek input and obtain feedback from community members, interested groups and community leaders with regard to cultural, archeological, social and other impacts; . To explore opportunities for youth to learn about the project, the employment and training opportunities; . To determine overarching themes and key points about the project; . To understand how feedback can be addressed/incorporated, particularly regarding Eeyou Indigenous Knowledge, into the planning and project implementation; and . To communicate with community members of both communities, in Cree, English and Inuit when required, in a transparent and open manner about the proposed project as well as the engagement process.

3. Communication Plan In August 2020, KWREC developed a Communications Plan on how to effectively conduct the public consultation on the Project.

3.1 Objectives Our objectives for effective consultations were the following: . To increase and maintain stakeholder awareness of all aspects of the Project; . To build and maintain an effective community consultation process for the Project; . To gain project sponsorship and buy-in; . To ensure that all decisions regarding the project are presented; . To build and strengthen Cree/Inuit partnership in sustainable energy development and other sectors of the economy; and . To improve project development team culture and behaviour.

3.2 Delivery Channels The following delivery channels were deemed appropriate for effective public consultation and used for disseminating information about the Project: . Press Release . Endorsements . Brochure . Posters . Website . Banners . Facebook Page & social media . Video presentations campaign . Leaflets, flyers . Community meetings/workshops . Surveys . PowerPoint presentation KWREC CONSULTATION REPORT 4 Consultation Team March 31, 2021

3.2.1. Our Press Release As a way to inform the local public about the upcoming public consultation concerning the project, the following Press Release was issued. It was relayed in two articles published in the following weeks in Nunatsiaq News and Nation Magazine (see Appendix 2).

KWREC CONSULTATION REPORT 5 Consultation Team March 31, 2021

3.2.2. Our Brochure The brochure below was published for the purpose of providing the community members basic information about the Project. This brochure was distributed by local Canada Post mail.

KWREC CONSULTATION REPORT 6 Consultation Team March 31, 2021

3.2.3. Our Website The following website was developed with all information about the project: http://kwrec.ca/. The content, currently in English, is being translated in Cree and Inuit within the next weeks.

3.2.4. Our Facebook Page A KWREC Facebook Page was also developed for basic information about the project. https://www.facebook.com/KWREC. The site is reaching over 2000 followers.

KWREC CONSULTATION REPORT 7 Consultation Team March 31, 2021

3.2.5. Radio Announcements Throughout the consultation period, local radio announcements were made to deliver basic information about the project, the purpose of the public consultation and its expected results. The community was informed about the website and the Facebook page, where they could find information about the project, the results of the workshops, the questions and issues raised and the answers from the KWREC technical team.

4. Community Consultations and Participation 4.1 Methodology In terms of methodology used during the consultation process, workshops with specific groups in the community and Inuit and Cree assemblies were held. Community surveys were also done for both Inuit and Cree sides. 4.1.1. Invitations Invitations were done through radio announcement and by posting of posters in public places. A social media campaign was also used that generated over 300 positives interactions supporting the project:

KWREC CONSULTATION REPORT 8 Consultation Team March 31, 2021

4.1.2. Workshop Sessions Agenda The agenda was the same for all workshops, assemblies and online sessions:

1. Opening Remarks 2. Teaser Trailer 3. PowerPoint Presentation 4. First Draft of Video 5. Review of KWREC Website 6. Discussion of Maps 7. Exercises on Land Use around the site 8. Questions and Comments 9. Closing

The PowerPoint Presentation is presented in Appendix 1. The workshops were conducted in Cree English and Inuit when required.

4.2 Workshop – Cree Youth (December 16th, 2020)

Invitation was done through local radio announcement and by posting of posters in public places.

There were nine (9) attendees.

Table 1 Key Issues, Feedbacks, and Concerns during the Workshop with Cree Youth Issues and Concerns Raised Response from KWREC Will technicians be required for the Yes, technicians and mechanics will be needed. Project? Youth will be solicited for training and employment. When will the training begin? The training will begin in 2022 and will go over 3 years. Can we have all information of the Project This will be considered. of USB or post the information on Facebook?

KWREC CONSULTATION REPORT 9 Consultation Team March 31, 2021

Issues and Concerns Raised Response from KWREC Where will the Project be located? The wind turbines will be located on a hill south of the one where the Bell Canada tower is located, about 7 km by road from the community. I’ve seen a documentary where there was Fire from wind turbines is very rare (1 per fire erupting from a wind turbine, if this 2,000 turbines). Sometimes it is a result of happens here, how will the fire be lightning hitting the turbine. The turbines are extinguished. Could such incident cause a approximately 80 meters long and each turbine major fire hazard? is protected by special grounding equipment. The safest way to deal with fire in a turbine is to let it burn until the fire goes out. Then it can be inspected. How should we prepare for such accidents The local firefighters and first responders will as fire? be trained to deal with accidents resulting from the turbines and other equipment. Where will the training for the maintenance The training will first take place in Gaspé, QC of this project take place. where the trainees will learn how about renewable energy and wind in particular. The second phase of the training will be in the community where trainees will learn about how wind turbines are constructed, operated and maintained. The last phase will be provided to the selected trainees that will assist technicians during construction of the turbines and will consist of specific training with the installed equipment.

KWREC CONSULTATION REPORT 10 Consultation Team March 31, 2021

4.3 Workshop – Inuit Youth It is important to note here that the Workshop with Inuit Youth, although it was scheduled, did not take place. We were informed that the youth would be present at the Inuit assembly that was scheduled for a later date (March 9th, 2021 – see section 4.10).

4.4 Workshop – Inuit Women (February 19th, 2021) Invitation was done through local radio announcement and by posting of posters in public places. There were two (2) attendees.

Table 2 Key Issues, Feedbacks, and Concerns during the Workshop with Inuit Women Issues and Concerns Raised Response from KWREC Would we still be using diesel? The Project will replace 40% of the current diesel required to produce electricity. Over the 25-life of the Project, we hope that we can reduce 50% of the use of diesel. Will the Project only affect this community? Yes, only Whapmagoostui-Kuujjuarapik community will be affected. Will this Project help reduce the need to During the campaign to stop the GWR dam rivers? How does wind technology Hydroelectric Project, we were always asked if help? the Crees and Inuit have an alternative. Well, now we do. In China, wind technology is coupled with hydroelectric projects and nuclear power plants. This can be done in Quebec regarding the current hydroelectric installations and, yes, wind technology will reduce the need to dam rivers.

4.5 Workshop – Inuit Men It is important to note here that the Workshop with Inuit Men, although it was scheduled, did not take place. We were informed that the men would be present at the Inuit assembly that was scheduled for a later date (March 9th, 2021 - see section 4.10).

KWREC CONSULTATION REPORT 11 Consultation Team March 31, 2021

4.6 Workshop – Cree Women (February 17th, 2021) Invitation was done through local radio announcement and by posting of posters in public places. There were three (3) attendees.

Table 3 Key Issues, Feedbacks, and Concerns during the Workshop with Cree Women Issues and Concerns Raised Response from KWREC What will be impact of the Project on the There will be two main impacts – the visual surrounding territory? and sound impacts but these will be very small. Is there going to be fence around the area? Yes, we are planning to install a fence and marking signals for security. Where will the dividends go? How will it be Since the Project is jointly owned between the distributed to the community? Inuit and Cree sides of the community, dividends will be split 50/50 and it will be up to each community where the money goes. How will this Project impact our current The Project will contribute 40% of the source of energy? Will we still need the electricity produced, so green-house-gas diesel generated power? emissions from diesel production will also drop by 40%. Will this change what each household pays Hydro-Quebec has a specific rate that it for electricity? charges to each household regardless of where it is in the province, so the project will not affect what each household pays for electricity. The reason I’m putting this forward (lower Electricity produced by the wind turbines is Hydro bill) is that I wouldn’t mind paying expected to be cheaper than electricity for this source of energy instead of diesel- produced by the diesel power plan. There is a generated electricity. second phase of the WKHPPP which includes the use of biomass to get rid of all diesel- generated electricity. The Cree community of Oujé-Bougoumou gets its energy for heating from a biomass plant. It might take a few years for us to do the same, but it is in our plan for the future. Are there wind projects in the North now? Yes, there is one at the Raglan Mine, Nunavik, QC, and there are a number of them in the Scandinavian countries which are higher in terms of latitude than our community. Is this Project considered as an alternative Quebec had indicated that wind energy will be to what has happened in the past (GWR considered as a component to installed capacity Project)? Is it a sure safety net to avoid what from hydroelectric projects. In the long run, was previously proposed for the river? yes, wind technology may be considered an alternative to mega hydroelectric development.

KWREC CONSULTATION REPORT 12 Consultation Team March 31, 2021

Issues and Concerns Raised Response from KWREC Since we’re heading for sustainable energy The ruling of the Energy Board of Quebec calls development, can individual community for investment of energy projects by members invest in the Project? communities that are using them. Since the Project will be by Whapmagoostui- Kuujjuarapik through KWREC, the two communities are already investing in the project. Respective leadership will decide how to distribute the project’s dividends.

4.7 Workshop – Cree Men (February 18th and 23rd, 2021) Invitation was done through local radio announcement and by posting of posters in public places. There were six (6) attendees.

Table 4 Key Issues, Feedbacks, and Concerns during the Workshop with Cree Elders/Hunters Issues and Concerns Raised Response from KWREC Often, in the case of certain community Ikayu, the Inuit company that will be operating projects, the equipment and material the equipment has a partner, Tugliq, that has bought from the outside is not the right successfully operated wind turbines in quality or type for the intended purpose and Glencore’s Raglan mine in Nunavik. Tugliq is this becomes a serious issue for our isolated involved in the process of selecting the community. How can we be sure that the equipment for the Project and will make sure equipment and material for the proposed that it meets the project specifications. wind project will be the right one and not end up with one that does not meet project specifications?

How accumulating ice from freezing rain This was taken into account in the selection of and winter mist affect the wind turbines, the class of wind turbine. The selected turbine given that we live near saltwater sea? is built to run for the duration of the project (25 years), and all metallic parts are treated against corrosion and internal systems protected from the saltwater mist with proper filters. For ice formation, the turbines are equipped with a protection system that shut them down in case of heavy loads of ice on the blades. KWREC is considering the installation of an additional de-icing system on the turbines.

KWREC CONSULTATION REPORT 13 Consultation Team March 31, 2021

4.8 Workshop – Cree Local Businesses (February 25th, 2021) Invitation was done through local radio announcement and by posting of posters in public places. There were two (2) attendees.

Table 5 Key Issues, Feedbacks, and Concerns during Online Workshop Sessions with Cree Business Reps Issues and Concerns Raised Response from KWREC When will the work on the Project begin? The work will begin as soon as we receive the Permit for the Project. Who will carry out the work? The Project is in different stages and the work will vary accordingly. Heavy equipment operators, truck drivers, crusher operators, carpenters, electricians and labourers will be needed at various stages of the Project. Local contractors, operators, drivers and others will get priority. Who will award the work? The technical part will be handled by TCI the main contractor for the Project. The rest will be awarded by KWREC.

4.9 Workshop – Cree Assembly (March 4th, 2021)

Invitation was done through local radio announcement and by posting of posters in public places.

There were seven (7) attendees.

In addition to the KWREC’s technical team, representatives of Hydro-Québec were present on- line to answer questions and provide details or information.

KWREC CONSULTATION REPORT 14 Consultation Team March 31, 2021

Table 6 Key Issues, Feedbacks, and Concerns during the Cree Assembly Issues and Concerns Raised Response from KWREC I have concerns with how the aging The overall condition of the turbines will be equipment can survive throughout the 25- assessed after 12 years of operation or when year lifespan of the Project? How will this the equipment reaches a period half-way to its be maintained? lifespan. All worn parts will be replaced, in effect the turbines will be refurbished to make sure the system reaches its 25-year lifespan. How will the accumulation of ice on the The turbines are equipped with a protection blades be addressed? system that shut them down in case of heavy loads of ice on the blades. KWREC is considering the installation of an additional de- icing system on the turbines. For falling ice, we are planning to install a fence and marking signals to provide safety for personnel and visitors. How will the turbines survive in extreme The turbines are equipped with cold climate cold winter temperatures? heating packages to protect them in two ways. The first system permits operation of the turbine up to -30 °C. The second system puts the turbine in survival mode and heats its internal system and controls to ensure these are not affected. What will be the impact on the migratory A study on this was conducted a few years ago birds such as geese and ptarmigan? Will and the results of the study will be part of the there be lights on the turbines for birds to EIA for the Project. Impacts on migratory birds know at night travel the location of the were deemed minimal and, yes, there will be turbines? lights on the hub of the turbines. For the people who will be working on these Yes, there will be a cultural safety training for turbines, will be cultural safety training. all non-Cree or non-Inuit workers. Most of the non-Indigenous workers are those that have already worked with the Inuit up North. How will the sound from the turbines be The sound will affect the immediate addressed? surrounding area. This impact is addressed in the EIA, including a noise modeling. Is there going to be compensation for those A percentage of the Project will be set aside for directly impacted by the Project? remedial measures for direct impacts. For those to be employed by the Project, are Yes, there are going to be refreshers every year there going to be checkups or certificate for technical, health & safety side, especially updates every year? for those working in a closed environment.

KWREC CONSULTATION REPORT 15 Consultation Team March 31, 2021

Issues and Concerns Raised Response from KWREC As a representative of the youth of our The Cree and Inuit youth of today will be the community, I would like to see adolescents generation that will benefit from this Project. and children being educated about the We agree that an education program regarding energy development of our community. Will energy development should be developed and this be done? KWREC will support it. The schools can be part of this education program. With respect to tourism, can tourists visit The responsibility to develop tourism rests turbines and the surrounding area? with the Whapmagoostui Eeyou Enterprises Development Corporation (WEEDCo), KWREC will relay the potential for tourism and other economic spinoffs to the organization. We agree that there is interest to develop tourism for the community. The proposed location of the turbines In a Project like this, we have to comply with happens to be close to the flight path of bush Transport Canada regulations concerning flight planes that take hunting families to their paths. That is why the turbines are not close to respective traditional hunting grounds in the community. Regarding bush planes, they the territory, will this affect route to fly will be informed of the location of the turbines people to their camps? and will need to learn to avoid that path as they did with the Bell tower. Would it be possible for a video to be shown This is certainly possible. On the website of perhaps on the KWREC website of people our partner Tuglig Energy they have some talking about the impacts of living close to videos that may be worth watching to learn wind turbines? It’s important for people to about wind turbines and their impact socially anticipate the size of the turbines and that it and environmentally. will bring change for us since this is https://tugliq.com/galerie/ something entirely new to the community. In relation to the three-year training We already have support for the proposed program, who will finance it. Are there any training program. For the technical aspect, it discussions with the Cree School Board and will be given in Gaspé, QC. The trainers will Kativik School Board for the financing of also come to Whapmagoostui-Kuujjuaraapik to the proposed training program? train the young people here. As for the cost of the training, it has been calculated into the project cost. As for living allowances for the trainees, the This matter will be assessed, and a solution rates for the Cree are different from the will be sought with the School Boards and the Inuit. How will this be addressed? CNG Apatisiiwin Department. Is there a possibility to hook up cabins In the first phase, we will connect the power to located along the access road to be built for the local powerplant with one line. In order to the Project? consider connecting the cabins, we would need a second line. We are working on such provisions in the second phase.

KWREC CONSULTATION REPORT 16 Consultation Team March 31, 2021

Issues and Concerns Raised Response from KWREC Listening to the information about the Even after the consultations, we will continue project, more community members need to to provide information to the community attend these sessions especially those serving through radio, podcasts, video and print media. our community (the Band office), will there A General Assembly of the WFN will be be an official session with the community at required to approve the land-use for the some point. Project. This will take place in July or August. In preparation for our presentation, we will make sure that the community is well informed about the project so an informed decision can be made regarding land use for the Project. Regarding dissemination of information Public education about the Project will about the Project to the community, people continue even after the public consultations. in different age groups should be hired or be For this to happen effectively, we need role part of the process. Many people cannot models to be part of the process. As well, all attend these sessions for various (good) information about the project, the results of the reasons, but they still need to be informed consultations, video, podcasts will be put on about the Project. What can be done to the KWREC website and on USB drives and improve community dialogue? circulated to the community.

4.10 Workshop – Inuit Assembly (March 9th, 2021)

Invitation was done through local radio announcement and by posting of posters in public places.

There were thirty-four (34) attendees.

KWREC CONSULTATION REPORT 17 Consultation Team March 31, 2021

Table 7 Key Issues, Feedbacks, and Concerns during the Inuit Assembly Issues and Concerns Raised Response from KWREC Could additional turbines be added if This Project will deliver 40% of the electricity demand rises in the future? produced by the diesel powerplant. As the community grows over time, yes, more turbines may be added to accommodate the demand. You mentioned that solar and biomass Biomass is organic matter used for fuel to technology could eventually be a component generate electricity. It can be wood, waste from to the local powerplant to generate forests, or crops. It’s used to produce clean electricity, what is biomass? energy. At what’s the minimum age for applying for It’s preferable that you be at least 18 to apply the training for the Project? for the training. We need young people to apply for the training. What job opportunities will be available for During the construction period, we will need this Project? about 30 workers. These are carpenters, electricians, heavy equipment operators, truck drivers, technicians, crusher operators and others. Contracts will be awarded to local contractors and sub-contractors. How will the profits from this Project be The dividends will be split 50/50 between the reinvested into the community? Cree and the Inuit side of the community. It will be up to the leaders to decide where this money will be invested. As remedial works, it could go to improving of ATV and Skidoo trails to help the hunters.

4.11 Workshop – Online Session with Cree Regional Entities (March 10th, 2021) Invitation was done via emails and telephone calls. Cree Regional Entities invited were:

. Cree Regional Economic Enterprises Company (CREECO); . Gestion ADC; . Cree Outfitting and Tourism Association (COTA); . Cree Nation Government (CNG) – Department of Commerce and Industry; . Cree Nation Government (CNG) – Apatisiiwin Skills Development; . Cree Nation Government (CNG) – Department of Environment; . Regional Cree Trappers Association (CTA); . Cree Women Associations; . Cree Nation Youth Council; . Cree Health board; . Cree School board.

KWREC CONSULTATION REPORT 18 Consultation Team March 31, 2021

There were twenty-one (21) participants. The CNG Department of Environment refused to participate to this consultation activity. Cree School board and Cree Health board couldn’t join the meeting. A private session is planned within the next months with these entities.

Table 8 Key Issues, Feedbacks, and Concerns during Online Workshop Sessions with Cree Regional Entities Issues and Concerns Raised Response from KWREC CREECO: Concerning the transportation of The equipment will be barged in from the equipment for the Project, how will it be Wemindji and the food and supplies for done? personnel will be flown in by air. CREECO: If interested suppliers or This will be done through Transelec Common companies would like to submit tenders on (TCI) Inc. We will provide you with a contact various aspects of the project, how would person there. TCI will have the contracting they get in touch with you? power regarding the Project. CREECO: The Whapmagoostui First The financial model of the WKHPPP is based Nation (WFN) has invested $1M in Eeyou on government grants and a loan for an off-grid Power for wind projects south of the project. The funding for this Project has been community, will this investment affect the secured. The WFN’s $1M investment was for WKHPPP? projects that would be connected to the provincial power grid. There is no conflict between the two projects. COTA: Is there a plan for tourism At present, there is no concrete tourism plan connected to the Project? Tourists for sure being developed. Once the project is approved, would be interested visiting the community. Whapmagoostui and Kuujjuaraapik will most likely want to explore a joint effort in developing tourism for the community. CNG Apatisiiwin: When will the training The first part will begin in 2022. It’s a three- program begin? And how many trainees year program. 20 youths are expected to be will there be? accepted – 10 Inuit and 10 Cree candidates. REGIONAL CTA: Regarding the The Evaluating Committee, COMEV, has Environmental & Social Impact Assessment, ruled that the Project is subject to ESIA in who will be conducting it? accordance with Section 22 of the JBNQA. PESCA is the organization that coordinates the process and will submit its report to the Regional Administrator for Section 22 of the JBNQA. The Impact Assessment will be reviewed by the COMEX (Review Committee).

KWREC CONSULTATION REPORT 19 Consultation Team March 31, 2021

Issues and Concerns Raised Response from KWREC REGIONAL CTA: If the energy demand HQ will buy the power produced. The profit increases, does it decrease the dividends? gained from the Project does not factor into the You said your estimate for profit is need for energy, it is based on the production conservative, are you expecting it to be of energy by the wind component of the higher than currently estimated? powerplant that serves the community. Our goal is to have this reflected in the Power Purchase Agreement (PPA). Our baseline is to produce and sell 40% power to HQD on a take- or-pay basis. REGIONAL CTA: What is the impact of All concerns of potential impacts on wildlife the Project on wildlife? will be part of the report prepared by PESCA to be submitted to the Regional Administrator and reviewed by the COMEX at the end of the month (March 2021). The information from community members/hunters has already been gathered for the purpose of the evaluating the potential impacts on wildlife.

4.12 Workshop – Online Session with Inuit Regional Entities (March 11th, 2021) Invitation was done via emails and telephone calls. Inuit Regional Entities invited were:

. Kativik Regional Government (KRG); . Fédération des coopératives du Nouveau-Québec (FCNQ); . Makivik Corporation.

There were fourteen (14) participants.

Table 9 Key Issues, Feedbacks, and Concerns during the Workshop with Inuit Regional Entities Issues and Concerns Raised Response from KWREC KRG: Have the information sessions with Yes, we had about 40 in attendance the local Inuit community taken place already? KRG: Have you communicated with the Matthieu Féret of PESCA was in contact with Environment and Land Use Department of the KRG department. Since the Project has the KRG regarding this Project? only a 4KV line that would run about 500 meters on Inuit Category I land, a full review process is not required.

KWREC CONSULTATION REPORT 20 Consultation Team March 31, 2021

Issues and Concerns Raised Response from KWREC FCNQ: Have you consulted with the local We did not specifically meet with the local COOP Board regarding this project? This is Coop Board but some of their members were important because the Regional Board of present at our consultation session with the FCNQ is working towards partnership with Inuit side of the community. Looking forward, you. FCNQ will experience losses as the need for diesel drops. Discussions with FCNQ and Nimschu Iskudow (shareholder of KWREC) are on-going not only to partner in energy transition in the North but also on the transportation sector of the economy. FCNQ: In order to alleviate the negative The federal government has announced that by impact of the COOP, as you know, it’s a 50- 2050, they want to do away with diesel fuel in 50 Cree/Inuit membership, is there a way to the North. A substantial reduction is already accommodate the local COOP in the targeted for 2030, so we have to work toward a business structure to be developed? solution. The planning must begin now as the demand for diesel fuel drops and already 40% of diesel used for electricity production will drop as a result of the proposed Project. Yes, the local COOP must be involved in the planning process. KRG: Does KWREC have an office where KWREC does not have an office yet locally, meetings take place regularly? we all work from home. We do have an office in Montreal where our technical team meets. By next summer we should have a local office. KRG: What is the next step after the The Environmental & Social Impact community consultations? Assessment Report should be completed by March 31, 2021. The report will be reviewed by the COMEX (Review Committee). Based on the COMEX’s recommendations, the Regional Administrator will decide whether or not to grant the certificate of authorization to go ahead with the Project. The Whapmagoostui First Nation will then grant an agreement for the land use for the Project. Our goal is to close the financing in July and then everything should goforward from there on. KRG: It would be appropriate for the Yes, a copy of the Report will be sent to the Kativik Environmental Advisory Committee KEAC, as with all regional entities that to get a copy of the ESIA Report. participated in our consultation sessions. It was already part of our plan.

KWREC CONSULTATION REPORT 21 Consultation Team March 31, 2021

4.13 Community Survey In addition to the workshops, meetings, assemblies, we also conducted community surveys on both sides of our community. There were 50 Crees and 22 Inuit interviewed. The general concerns of community members interviewed are listed below:

. Impacts on the Environment / Health / Wildlife / Migratory Birds (Geese); . Impacts on traditional activities, especially hunting, berry-picking and camping; . Impact related to the noise; . Benefit for both Communities; . Effects of strong winds, ice or mist on the turbines; . Security and Emergency Plan (fire, falling ice); and . Solid Waste Management.

5. Expected Outcome The expected outcome for the public consultations is the following:

a. Cree and Inuit community members and interested stakeholder groups feel sufficiently informed and consulted about the proposed wind project. b. Given the need to adhere to COVID-19 restrictions during the consultations period, the various engagement methods used were useful, safe, and allowed a range of people to learn about the project, ask questions and provide input. c. The various engagement methods provided simple and straightforward ways for community members and interested groups to get involved in the consultation process. d. The opportunity to engage with community youth, women, men, elders, the community leaders and the Cree/Inuit regional organizations allowed the Project proponent to gain valuable knowledge from the experience. e. Community members and interested stakeholders overall felt the engagement and feedback processes were clear and easy to understand. f. Community members and stakeholders and the project proponent are clear about the outcomes of the consultations process and how feedback was incorporated for the purpose of seeking the support of the decision-makers (COMEV, Minister, and the Quebec Energy Board).

KWREC CONSULTATION REPORT 22 Consultation Team March 31, 2021

6. Conclusion Due to the COVID-19 pandemic restrictions, it has been difficult to carry out the consultation process. As a result, attendance of workshop sessions was understandably low; however, with the workshops and a community survey conducted, critical information required for the purpose of the Environmental & Social Impact Assessment of the Project was collected and documented. However, the social media campaign indicates over 300 interactions supporting the project.

The various engagement methods used to ensure community participation were effective and allowed the two sides of the community to learn about the Project, ask questions, raise concerns, and provide input. In this regard, we are confident about the outcomes of the engagement process and the feedback received from various groups, including regional Cree and Inuit entities serving their people.

The consultation process for the Project opened many doors of opportunities for the Cree and Inuit people to work together to prepare for future social and economic growth and establish partnerships in this regard.

We thank all participants, local and regional, to this important aspect of Project development.

KWREC CONSULTATION REPORT 23 Consultation Team March 31, 2021

Appendix 1 - PowerPoint presentation

WHAPMAGOOSTUI KUUJJUARAAPIK RENEWABLE ENERGY CORPORATION

A Proposal for a Sustainable Wind Renewable Energy Project Agenda

1. Community Consultation Process 2. Community Consultations: Workshops and Assembly 3. Proposed Wind Energy Project Description 4. Legal Framework: James Bay & Northern Quebec Agreement: section 22 5. Environmental Review Process 6. History of Project 7. Project Scope 8. Maps of the Proposed Site Area, Road Details & Proposed Building 9. Schedule 2020 – 2023 10. Financial Impacts 11. Economic Impact & Employment & Training 12. Questions & Answers COMMUNITY CONSULTATION

• KUUJJUARAAPIK WHAPMAGOOSTUI RENEWABLE ENERGY CORPORATION (KWREC) is committed to meaningfully inform the public to participate in community consultation workshops and community assembly.

• The consultation process will inform the public of the proposed Wind Energy Project and the proposed road extension and road improvements.

• It wants to ensure the general public is fully informed and educated about the proposed project and its impacts, environmentally, socially, and economically for employment and training opportunities.

• KWREC is planning to consult with the Youth, Women & Men Associations, Local Interest groups, Elders, Trappers, the Business Community and local leadership authorities. ENVIRONMENTAL IMPACT ASSESSMENT AND COMMUNITY CONSULTATION

December • Inuit & Cree Youth Consultation 15 -16, 2020

• Women & Men Associations February 16 • Consultation: Youth &Tourism & Businesses • Cree Elders, Hunters, Trappers - 25 , 2021 • Inuit Elders, Hunters, Trappers

MARCH 3 - • Cree & Inuit Assembly & Authorities 4 2021 PROPOSED WIND ENERGY PROJECT

• The proposed wind energy project for the twin sister community of Kuujjuaraapik and Whapmagoostui consists of two turbines of 1.5 Megawatts each.

• A 4.6 kilometers road will be upgraded and a 2.4 kilometers of new road will be constructed.

• A production of 6 gigawatt-hours (6 million kilowatt-hours (kWh) per year) of wind energy per year.

• 40% to 50% of the saving of Diesel fuel per year.

• The communities will save 40% to 50% of Green House Gases (GHG) emissions to the atmosphere. LEGAL FRAMEWORK

• James Bay and Northern Quebec Agreement (JBNQA) in 1975, the first modern day treaty was signed between Canada, Quebec and the Cree and Inuit.

• Under the JBNQA, Section 22 Schedule 1 states: Future Development maybe subject to Environment Impact Assessment.

• Wind Energy Projects are not included in any of the above sections. Consequently, Wind Energy is considered a “grey Zone” project. However, COMEV directed the project to perform an Environment Impact Assessment. ENVIRONMENTAL IMPACT ASSESSMENT PROCESS: JAMES BAY & NORTHERN QUEBEC AGREEMENT OF 1975: SECTION 22 KWREC

Submits CNG ADMINISTRATOR Preliminary information to CNG Administrator COMEV ASSESS PROJECT CNG Transmits Administrator, Preliminary CNG ADMININSTRATOR JULY 8, 2020 Recommendation Information to from COMEV on COMEV Directives for Makes a Decision KWREC Review October & Notifies 28, 2020 Directives to Prepares EIS and KWREC, Community OCTOBER 29, Consultation. 2020 KWREC Prepares community Consultation from November,2020 to January, 2021 BACK GROUND Presenta Nimschu Iskudow tion to created to HQD KWREC the develop the Negotiations 2020 Energy WKHPPP Board 02 05 07

2011 2012 2015 2017

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

01 03 04 06 Financing Cree Front Energy of 36M Whapmagoostui United End Board No General Assembly Power Ruling Guarantees approves to Engineer develop a created Design Supports Required renewable for Study WKHPPP energy Project Chinese investors PROJECT SCOPE

• KWREC, a corporation owned by Kuujjuaraapik – Whapmagoostui, has conducted several studies to validate the project's environment, its financial and social sustainability and acceptability for the next twenty-five years.

• Two proposed wind turbines are to be constructed over 7km away from the community.

• The Community road will be up graded and a new 2.4 km road will be constructed to the top of the hill where the proposed towers will be located. A Kuujjuaraapik Whapmagoostui

Ch em Renewable Energy Corporation in T uk im ua qt uk Whapmagoostui Kuujjuaraapik luk i v Hybrid Power Plant Project U

n i

m e h 3.C Access Road & Turbine site Potential Wind Turbine Location

Alternative Wind Turbine Location

Access Road to Build T1 070m Existing Road to Improve

Existing Trail

Transmission Line - 4 kV

Transmission Line - 25 kV

Control & Maintenance Center

Meteorological Mast

Hudson Bay Hydrography T3 Stream

Waterbody T2 Swamp

Contour Line

A

Whapmagoostui Kuujjuaraapik

Great Whale River

Figure 1

Project Location

Source: BDVQ, 1/2 000 0220440m Canvec Google Earth, 2019 Nad 83, UTM, Zone 18

2020-11-23

N/Réf.: WKHPPP_1031_f1_ProjectLoc_201123a Turbine Road

POWER LINES:

Line @ 4KV

HQD station to Substation = 500m

Line at 25KV

Substation to road: = 2,4 km Main road to turbine:= 2,2 km Turbine road: = 2,4 km Subtotal = 7,0 km

Total = 7,5 km SUB-STATION & CONTROL STATION Land Use Detail

• 20,000 sqft lot for control center (with water & sewage connection);

• 280 electrical post plots;

• 2 turbines sites of 50m x 50m (T2 & T3);

• Anemometer tower site 25m x 25m (near T2 & T3);

• Turbine road (2,400m x 7m). Proposed Schedule 2020 - 2023

- 2020 Detail Designed and Financial Model Community Consultation;

- 2021 Contracts & Financial closing Detail design & preparation works

- 2022 Civil works;

- 2023 Line & Wind Turbine foundation & Electrical works;

- 2024 Wind Turbine assembly & Commissioning. Financial Model

• Final Financial model will be completed by March 20 21 and will be audited by BDO Canada;

• Non – Recourse Loan (NO GUARANTEE by WFN or Kuujjuaraapik);

• Dividend to WFN and Kuujjuaraapik = $24,000,000;

• The total project development cost is estimated at $40,000.000.00 Million; EMPLOYMENT AND TRAINING

• The training will be offered by NERGICA, a renewable energy research and training center in Gaspé, Quebec. It will be given in three phases:

• The first phase will be in the summer of 2022, in Gaspé, and will be given to between 10 to 20 participants to raise awareness and interest on various renewable energies that can be used in the North.

• The second phase will be given in 2023 to successful participants and will consist of basic training blocks in terms of health and safety at work, concepts of electricity and mechanic applied to wind turbines.

• The third phase will be provided during construction of the wind turbines in 2024 to reinforce the concepts learned. This phase also includes specific training blocks in working at height and in confined spaces in different locations. The complete training will facilitate access to a full electromechanical technician curriculum offered in the province to become certified technicians in operation and maintenance of wind turbines (three-year course).

• General Comments & Questions

• Exercise to review the road details: Map

• Exercise Land use activities: A blank map of area and land use activities to draw on.

• Validate what has been said and confirm with participants. Nakurmik Meegwetch Project is owned by the Cree and Inuit. It will produce 3mw power

2 wind Hydro-Quebec turbines will be will purchase located 7k the power for from the 25 years community

Estimated Construction Project Cost of 3.4 km of $45M new road

Employment Will require and Training 20k sq. ff of for Cree/Inuit land on Cat. IA Youth Land

Appendix 2 – Articles related to the project

IQALUIT KUUJJUAQ 2° 9° light snow / wind mostly cloudy

WEDNESDAY, APR 7, 2021

JOBS NOTICES ADVERTISE ARCHIVES ABOUT CONTACT   

TOPICS REGIONS OPINION FEATURES WEEKLY EDITION NEWS TAISSUMANI ᐃᓄᒃᑎᑐᑦ 

ENVIRONMENT FEB 15, 2021 – 8:15 AM EST Pair of northern Quebec communities look to wind power Project could produce about 40 per cent of Kuujjuaraapik and Whapmagoostui’s energy needs, according to organizers

An artist’s rendering of a wind turbine installed northwest of the joint communities of Kuujjuaraapik and Whapmagoostui. (Image courtesy of KWREC)

By Sarah Rogers

A proposed joint Inuit-Cree project is looking to the wind to meet a pair of northern Quebec communities’ energy needs.

The Nunavik community of Kuujjuaraapik shares its town site with the neighbouring Cree community of Whapmagoostui.

In 2011, the twinned communities decided to look at wind energy as an option to help power the two communities, which have a joint population of about 1,700. The Kuujjuaraapik Whapmagoostui Renewable Energy Corp. was incorporated in 2020, and has since identied two potential sites for wind turbines northwest of the community.

The corporation will now host community consultations starting Feb. 16.

“This project is important for the community in that it will help reduce greenhouse gas emissions that contribute to global climate change,” said Anthony Ittoshat, vice-president of the corporation and mayor of Kuujjuaraapik, in a news release.

The proposed project would generate approximately six gigawatt-hours of electricity annually over 25 years, the estimated life of the project.

The corporation estimates the turbines could produce about 40 per cent of the communities’ energy needs.

Nimschu Iskudow Inc., a subsidiary of the Whapmagoostui First Nation, was launched in 2012 to develop the project, with the help of Kuujjuaraapik’s Sakkuq Landholding Corp.

The Kuujjuaraapik Whapmagoostui Renewable Energy Corp. will have to work with Hydro Québec — the sole distributor of electricity in the province and operator of the communities’ diesel power plant — to integrate the wind turbines into its power grid.

The corporation hasn’t said how it hopes to secure any of the estimated $36 million cost of the project.

It still has a number of steps to follow before the project has a green light to go ahead. Following community consultations, project leaders will have to submit details to Quebec’s Ministry of Environment, which could then recommend submission to the Quebec Energy Board for approval.

Kuujjuaraapik residents can attend project workshops and consultations starting Feb. 16; details are in the poster below.

SHARE THIS STORY

(0) Comments

07/04/2021 Nation - Whapmagoostui’s path to a future of clean renewable energy

SECTIONS SUBSCRIBESUBSCRIBESUBSCRIBE

NEWS ᑎᐹᒋᒧᐧᐃᓐ Whapmagoostui’s path to a future of clean renewable energy

BY PATRICK QUINN FEB 26, 2021

A new wind energy project in Whapmagoostui-Kuujjuaraapik is launching environmental and social impact assessments for the twin communities’ Cree and Inuit populations. Community consultations that began February 16 will determine the social acceptability of the project, which proposes to partly replace the use of diesel-powered electricity with renewable energy.

“This project is important for the community in that it will help reduce greenhouse gas emissions that contribute to global climate change,” said Anthony Ittoshat, mayor of Kuujjuaraapik and vice-president of the newly created Kuujjuaraapik-Whapmagoostui Renewable Energy Corporation (KWREC).

When Hydro-Québec notified the two villages of plans to upgrade the existing diesel powerhouse in 2011, they mobilized to pursue a sustainable energy alternative. Nimschu Iskudow, a subsidiary of Whapmagoostui Cree Nation, was created to join Kuujjuaraapik’s Sakkuq Landholding Corporation in studying solar, biomass and other energy alternatives – eventually opting for wind.

nationnews.ca/news/whapmagoostuis-path-to-a-future-of-clean-renewable-energy/ 1/6 07/04/2021 Nation - Whapmagoostui’s path to a future of clean renewable energy

SECTIONS Corporation in studying solar, biomass and other energy alternatives – eventually opting for wind. SUBSCRIBESUBSCRIBESUBSCRIBE

negotiations with Hydro-Québec led to interventions from the Quebec Energy Board, which directed the crown corporation to collaborate with

On a trip in 2014 to China, the world leader in wind-power generation, they found two companies willing to invest in the project. Stalled negotiations with Hydro-Québec led to interventions from the Quebec Energy Board, which directed the crown corporation to collaborate with both communities.

“We’re producing energy and Hydro-Québec has agreed to buy that power,” KWREC president Matthew Mukash told the Nation. “We brought up the blackout issue in our community – 20 a year, especially in wintertime. One time the powerhouse caught on fire. We’re negotiating the power- purchasing agreement, which will be concluded in March.”

With diesel’s pollution and rising costs, KWREC hopes to eventually relegate the old power plant built by the Canadian Army in the 1950s to an emergency backup supply. The proposed wind turbines will generate approximately six gigawatt-hours of electricity annually over the project’s estimated 25-year lifespan, contributing about 40% of the community’s energy needs.

“We wanted to displace the most electricity possible, which will require a big battery installed by Hydro-Québec, because some days you have wind and some you don’t,” said Jean Schiettekatte, Nimschu Iskudow’s technical advisor. “It will be the largest big battery installed in northern Canada. The quantity of CO2 this is replacing is the equivalent of the consumption of 4,000 cars per year.”

As the “first northern green multi-energy off-grid power plant,” KWREC intends to send power from the diesel generator, wind turbines and battery storage system to a central control unit. With the battery capable of providing nearly an hour of community electricity needs, Schiettekatte expects power outages will become a thing of the past.

“People will probably see improvements in the quality of service,” said Schiettekatte. “Over the last years, we did some technical studies. We looked at where we have the most wind, also at constraints like the airport and bird issues – we don’t want to install the turbine by the coast where there is a bird-migration corridor.”

The recommended sites are in mountains seven km from the community where high volumes of wind are registered and environmental impact is minimized. The project originally identified three potential sites, but early consultation with hunters raised concerns about one, so two turbines are currently proposed.

“The only thing we’ll lose is that beautiful scene we had on the ridge,” Mukash remarked. “Geese would be impacted – we’d like to hear from the hunters what they think about that. As with any large-scale project, the affected community must be well informed and have a say to make an informed decision regarding the proposed project.”

Consultations with various community groups began in December and a large assembly is planned for Crees March 4, depending on pandemic restrictions. Environmental impact consulting company Pesca is managing the assessment under Section 22 of the JBNQA. It is expected to conclude by the end of March.

Completing this assessment before signing an agreement with Hydro-Québec is a significant difference from previous projects imposed on communities.

Decreasing costs are giving wind power a higher profile in Quebec’s energy strategy, with existing hydroelectric infrastructure capable of becoming power storage systems. Building on KWREC’s pilot project, Tarquti Energy Corporation was created between Makivik and the Inuit co- ops to develop similar installations in other Nunavik villages. Although Covid has delayed implementation, Tarquti is currently at the wind- measurement stage.

“Our communities may be the example for other northern communities,” suggested Mukash. “There’s already two wind turbines at the Raglan Mine north of us. Wind development is very much alive in Scandinavian countries, so we know they’re good for this type of weather.”

Selected turbines are expected to have blade-heating systems to prevent ice damage, particularly during periods of freezing rain. While extensive research has determined the optimal turbine model and installation site, the consultation sessions will play a critical role in confirming the final designs.

nationnews.ca/news/whapmagoostuis-path-to-a-future-of-clean-renewable-energy/ 2/6 07/04/2021 Nation - Whapmagoostui’s path to a future of clean renewable energy

“You have to compensate [the turbine location] with the cost of doing the line and access road,” Schiettekatte asserted. “An interconnection line in the north is about a million dollars a kilometre. The cost of doing roads in that area is very expensive so it might be a nice site to eventually have a SECTIONS tourism area. The idea is to create local jobs.” SUBSCRIBESUBSCRIBESUBSCRIBE

“You have to compensate [the turbine location] with the cost of doing the line and access road,” Schiettekatte asserted. “An interconnection line in the north is about a million dollars a kilometre. The cost of doing roads in that area is very expensive so it might be a nice site to eventually have a tourism area. The idea is to create local jobs.”

As the expanding community prepares to welcome wind energy by 2024, the incoming road may stimulate other development aligned with the region’s burgeoning tourism industry, especially since the proposed site is an optimal viewpoint for watching the northern lights.

“We’re an isolated community so if there’s a road for sure you’ll see big traffic because people like to drive out,” Mukash added.

Patrick Quinn lives in Montreal with his wife and two small children. With a passion for words and social justice, he enjoys sharing Eeyou Istchee's stories and playing music.

nationnews.ca/news/whapmagoostuis-path-to-a-future-of-clean-renewable-energy/ 3/6