Biology of Organisms

Total Page:16

File Type:pdf, Size:1020Kb

Biology of Organisms Biology of Organisms • Why is an introduction to life’s diversity important? Comparative Biology • Uses phylogenetic relationships to study the features that unite and distinguish different groups. • Allows us to understand everything in biology from genes to behavior to anatomy to ecology to distributions in a holistic manner. Escherichia coli Saccharomyces cerevisiae Arabidopsis Zea mays thaliana Caenorhabditis elegans Drosophila melanogaster Danio rerio Xenopus laevis Mus musculus Macaca mulatta Comparative Biology • This is why we can study human diseases using mouse models. • This is why principles of genetics derived from fruit flies are generalizable. • This all goes back to the unity of life. Comparative Biology • Some of the most exciting recent discoveries in biology include the elucidation of common genetic elements of animal development. • HOX genes. Biology of Organisms • Interactions between life’s diversity underlie essentially all of biology. • How might this be relevant to your future interests? • Medicine? Biology of Organisms • Interactions between life’s diversity underlie essentially all of biology. • How many interactions are going on here? Ceno- zoic Humans Colonization of land Animals Origin of solar Today, system and Earth Module 1: Origins, 1 4 History, & Proterozoic Archaean Prokaryotes Unity of Life 2 3 Multicellular eukaryotes Single-celled eukaryotes Atmospheric oxygen What is life? • What would we look for in a life form? • What defines life? • It’s been around for 3.8-3.5 billion years – Oldest rocks are 4.0-3.8 billion years • Any thoughts? What is life? • Reproduction Asexual Sexual What is life? • Reproduction • Metabolism: – the set of chemical reactions that occur in living organisms that manage the material and energy resources of the cell. What is life? • Reproduction • Metabolism • Organization – Non-random – Hierarchies – Emergent properties What is life? • Reproduction • Metabolism • Organization • Growth & Development – Heritability – Cells What is life? • Reproduction • Metabolism • Organization • Growth & Development • Homeostasis – Regulating internal environment What is life? • Reproduction • Metabolism • Organization • Growth & Development • Homeostasis • Responds to the environment – Temperature, moisture, sunlight, substrate What is life? • Reproduction • Metabolism • Organization • Growth & Development • Homeostasis • Responds to the environment • Evolution, Adaptation, & Extinction III. A hierarchy organelle of organization atom molecule • From atoms to grasslands • There are increasing levels of complexity tissue cell – An upside-down pyramid of organ increasing structural and functional complexity. • At each increasing level, the whole is more than the sum Population/ organism of its parts Species organ system biome ecosystem Community IV. Emergent Properties • With increasing complexity the hierarchical level becomes more than the sum of its parts. • These are known as emergent properties. • These are novel properties that emerge from interactions at lower levels. • How is this cathedral termite mound an example of an emergent property? IV. Emergent Properties • As biologists, to understand the whole we need to break it down and examine its parts. • Reductionist perspective. • But we always must keep in mind that when we do this that the whole loses its emergent properties. V: Correlation: structure, function, diversity • Divergence through evolution. – a.k.a. descent with modification. • Organisms have both a shared ancestry and new attributes. Mammalian Forelimb V: Correlation: structure, function, diversity • The pentamerous (five-digit) arrangement of the mammalian forelimb indicates homology. – Features that are similar as a result of descent. Mammalian Forelimb V: Correlation: structure, function, diversity • This pentamerous arrangement has been subsequently been modified through adaptation. VI. Unity in diversity • Sometimes it is difficult to see unity in diversity. • What, for example, could a hummingbird and a mushroom have in common? VI. Unity in diversity • Fungi and Animals diverged some 965 million years ago! • Evolution will, of course, obscure these relationships. • But they are all part of the hierarchy of life. VI. Unity in diversity • Over 1.5 million species are named. • But more than 98% of all species that have ever existed have become extinct. • This also obscures relationships. VI. Unity in diversity: Phylogenetics and Taxonomy • The study of diversity is known as SYSTEMATICS. • Phylogenetics is the practice of elucidating relationships. • Taxonomy is the practice of naming organisms. • Classification arranges organisms. VII: Pattern & Process • Pattern: Description of the WHAT? • Process: Description of the HOW? • This course will mainly be about the description. • Because we must know what exists before we attempt to explain I. Fossils & Sedimentation • Fossils are the most readily observable record of the history of life. • Key to the field of macroevolution. • Paleontology is the study of fossils. I. Fossils & Sedimentation • Unfortunately, the fossil record is both biased and incomplete. • Why would it be biased? • Why would it be incomplete? I. Fossils & Sedimentation • Taphonomic conditions must be appropriate. – These are the conditions that permit decaying organisms to become fossilized. Will this wombat skeleton fossilize? I. Fossils & Sedimentation • Taphonomic conditions depend upon: • Geological processes • Type of fossil • Age of fossils Shales are particularly good for preserving fossils I. Fossils & Sedimentation • Geological Processes • Most fossils are found in sedimentary rock. • How are sediments formed? What are the implications of this for the abundance of fossils? • Also mineralized amber and ice. I. Fossils & Sedimentation • Types of Fossils • The vast majority are of hard parts. Why? I. Fossils & Sedimentation • Types of Fossils • Trace fossils provide information on interactions, ecology, behavior, functional morphology. • How? • These are rare! Dinosaur tracks Leaf-mining insects I. Fossils & Sedimentation • Ages of Fossils • Older fossils are much more rare. • Why? Stromatolites Fossilized stromatolite I. Fossils & Sedimentation • The rarity of appropriate taphonomic conditions results in this bias and incompleteness. • Despite this, the fossil “eBay insect fossil is new species” record provides remarkable insights into the history of life on earth. II. Dating of major events • How do paleontologists estimate fossil/strata ages? – Relative – Absolute One second before the end of the dinosaurs… II. Dating of major events • Relative dating: • Usually older fossils at bottom of strata, younger towards top. II. Dating of major events • Absolute dating. • Radioactive elements: isotopes that decay at a constant rate. • The ratio of these versus the stable isotopes that they decay into gives us a metric of the age that the sediment was formed – or the fossil itself if any organic Carbon is lucky enough to be preserved. II. Dating of major events Common isotope ratios used in radiometric dating II. Dating of major events • Generalizations: • Index fossils help correlate ages of strata over wide areas. • Based on well- documented fossils of short-lived (but abundant) species. Viviparus glacialis is an index fossil for 2.3-1.8 mya III. The Geological Time Scale IV. Major Episodes • A combination of: – Relative dating – Absolute dating – Major events in the history of life • Give us the Geological Time Scale – You should become familiar with the names, dates, and major events in this time scale. I highly recommend that you study Table 25.1 from your book! The geologic record is divided into the Archaean, the Proterozoic, and the Phanerozoic eons. The Archaean & Proterozoic together are commonly known as the Precambrian Era The Archaean: 4.6-2.5 bya • Probably absent of life until 3.5 bya (first rocks 3.8 bya) • Prokaryotes appear (3.5 bya) • Massive increase in Oxygen (of biological Stromatolites origin) and first significant extinction at Fossilized end of Archaean 2.5 stromatolite bya The Proterozoic: 2500-542 mya • First Eukaryotes and multicellular organisms appear. • Familiarize yourself with pages 516-517 and figure 25.9 in the textbook for this. The Proterozoic: 2500-542 mya • First Eukaryotes and multicellular organisms appear. • Low diversity early (Snowball Earth) • Later characterized by the “Ediacaran” or “Vendian” biota. • Mass extinction of these forms at the end of this boundary. • Why? Phanerozoic: 542 mya-present • The Phanerozoic encompasses multicellular eukaryotic life • The Phanerozoic is divided into three eras: the Paleozoic, Mesozoic, and Cenozoic • Major boundaries between geological divisions correspond to extinction events in the fossil record The Paleozoic Era: 542-251 mya • Began with the Cambrian Explosion. • Sudden appearance of modern animal phyla in the fossil record. • Localized fossils and DNA evidence suggest earlier origins (Conway Morris’ long fuse). • BUT the explosion refers to their widespread emergence and dominance. The Paleozoic Era: 542-251 mya • Major features: – Colonization of land – Appearance of vascular plants – Origins of seed plants – Diversification of insect orders – Radiation of vertebrates The Paleozoic Era: 542-251 mya • Ended with the PERMIAN extinction. • Correlated with formation of PANGEA. Continental Drift • The movement of earth’s continents relative to each other. • Based on the theory of plate tectonics. • Tectonic plates move in relation to each other causing
Recommended publications
  • Lecture 20 - the History of Life on Earth
    Lecture 20 - The History of Life on Earth Lecture 20 The History of Life on Earth Astronomy 141 – Autumn 2012 This lecture reviews the history of life on Earth. Rapid diversification of anaerobic prokaryotes during the Proterozoic Eon Emergence of Photosynthesis and the rise of O2 in the Earth’s atmosphere. Rise of Eukaryotes and the Cambrian Explosion in biodiversity at the start of the Phanerozoic Eon Colonization of land first by plants, then by animals Emergence of primates, then hominids, then humans. A brief digression on notation: “ya” = “years ago” Introduce a simple compact notation for writing the length of time before the present day. For example: “3.5 Billion years ago” “454 Million years ago” Gya = “giga-years ago”, hence 3.5 Gya = 3.5 Billion years ago Mya = “mega-years ago”, hence 454 Mya = 454 Million years ago [Note: some sources use Ga and Ma] Astronomy 141 - Winter 2012 1 Lecture 20 - The History of Life on Earth The four Eons of geological time. Hadean: 4.5 – 3.8 Gya: Formation, oceans & atmosphere Archaean: 3.8 – 2.5 Gya: Stromatolites & fossil bacteria Proterozoic: 2.5 Gya – 454 Mya: Eukarya and Oxygen Phanerozoic: since 454 Mya: Rise of plant and animal life The Archaean Eon began with the end of heavy bombardment ~3.8 Gya. Conditions stabilized. Oceans, but no O2 in the atmosphere. Stromatolites appear in the geological record ~3.5 Gya and thrived for >1 Billion years Rise of anaerobic microbes in the deep ocean & shores using Chemosynthesis. Time of rapid diversification of life driven by Natural Selection.
    [Show full text]
  • The Mesozoic Era Alvarez, W.(1997)
    Alles Introductory Biology: Illustrated Lecture Presentations Instructor David L. Alles Western Washington University ----------------------- Part Three: The Integration of Biological Knowledge Vertebrate Evolution in the Late Paleozoic and Mesozoic Eras ----------------------- Vertebrate Evolution in the Late Paleozoic and Mesozoic • Amphibians to Reptiles Internal Fertilization, the Amniotic Egg, and a Water-Tight Skin • The Adaptive Radiation of Reptiles from Scales to Hair and Feathers • Therapsids to Mammals • Dinosaurs to Birds Ectothermy to Endothermy The Evolution of Reptiles The Phanerozoic Eon 444 365 251 Paleozoic Era 542 m.y.a. 488 416 360 299 Camb. Ordov. Sil. Devo. Carbon. Perm. Cambrian Pikaia Fish Fish First First Explosion w/o jaws w/ jaws Amphibians Reptiles 210 65 Mesozoic Era 251 200 180 150 145 Triassic Jurassic Cretaceous First First First T. rex Dinosaurs Mammals Birds Cenozoic Era Last Ice Age 65 56 34 23 5 1.8 0.01 Paleo. Eocene Oligo. Miocene Plio. Ple. Present Early Primate First New First First Modern Cantius World Monkeys Apes Hominins Humans A modern Amphibian—the toad A modern day Reptile—a skink, note the finely outlined scales. A Comparison of Amphibian and Reptile Reproduction The oldest known reptile is Hylonomus lyelli dating to ~ 320 m.y.a.. The earliest or stem reptiles radiated into therapsids leading to mammals, and archosaurs leading to all the other reptile groups including the thecodontians, ancestors of the dinosaurs. Dimetrodon, a Mammal-like Reptile of the Early Permian Dicynodonts were a group of therapsids of the late Permian. Web Reference http://www.museums.org.za/sam/resource/palaeo/cluver/index.html Therapsids experienced an adaptive radiation during the Permian, but suffered heavy extinctions during the end Permian mass extinction.
    [Show full text]
  • A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
    Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks
    [Show full text]
  • Ediacaran Algal Cysts from the Doushantuo Formation, South China
    Geological Magazine Ediacaran algal cysts from the Doushantuo www.cambridge.org/geo Formation, South China Małgorzata Moczydłowska1 and Pengju Liu2 1 Original Article Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE 752 36 Uppsala, Sweden and 2Institute of Geology, Chinese Academy of Geological Science, Beijing 100037, China Cite this article: Moczydłowska M and Liu P. Ediacaran algal cysts from the Doushantuo Abstract Formation, South China. Geological Magazine https://doi.org/10.1017/S0016756820001405 Early-middle Ediacaran organic-walled microfossils from the Doushantuo Formation studied in several sections in the Yangtze Gorges area, South China, show ornamented cyst-like vesicles Received: 24 February 2020 of very high diversity. These microfossils are diagenetically permineralized and observed in pet- Revised: 1 December 2020 rographic thin-sections of chert nodules. Exquisitely preserved specimens belonging to seven Accepted: 2 December 2020 species of Appendisphaera, Mengeosphaera, Tanarium, Urasphaera and Tianzhushania contain Keywords: either single or multiple spheroidal internal bodies inside the vesicles. These structures indicate organic-walled microfossils; zygotic cysts; reproductive stages, endocyst and dividing cells, respectively, and are preserved at early to late Chloroplastida; microalgae; animal embryos; ontogenetic stages in the same taxa. This new evidence supports the algal affiliations for the eukaryotic evolution studied taxa and refutes previous suggestions of Tianzhushania being animal embryo or holo- Author for correspondence: Małgorzata zoan. The first record of a late developmental stage of a completely preserved specimen of Moczydłowska, Email: [email protected] T. spinosa observed in thin-section demonstrates the interior of vesicles with clusters of iden- tical cells but without any cavity that is diagnostic for recognizing algal cysts vs animal diapause cysts.
    [Show full text]
  • CO2 As a Primary Driver of Phanerozoic Climate
    The role of CO2 in regulating cli- CO as a primary driver of mate over Phanerozoic timescales has 2 recently been questioned using δ18O records of shallow marine carbonate Phanerozoic climate (Veizer et al., 2000) and modeled pat- terns of cosmic ray fluxes (Shaviv and Dana L. Royer, Department of Geosciences and Institutes of the Environment, Veizer, 2003). The low-latitude δ18O Pennsylvania State University, University Park, Pennsylvania 16802, USA, compilation (Veizer et al., 1999, 2000), [email protected] taken to reflect surface water tempera- Robert A. Berner, Department of Geology and Geophysics, Yale University, New tures, is decoupled from the CO2 record Haven, Connecticut 06520, USA and instead more closely correlates with the cosmic ray flux data. If correct, Isabel P. Montañez, Department of Geology, University of California, Davis, cosmic rays, ostensibly acting through California 95616, USA variations in cloud albedo, may be Neil J. Tabor, Department of Geological Sciences, Southern Methodist University, more important than CO2 in regulating Dallas, Texas 75275, USA Phanerozoic climate. Here we scrutinize the pre-Quaternary David J. Beerling, Department of Animal and Plant Sciences, University of Sheffield, records of CO , temperature, and cos- Sheffield S10 2TN, UK 2 mic ray flux in an attempt to resolve current discrepancies. We first compare proxy reconstructions and model pre- ABSTRACT INTRODUCTION dictions of CO2 to gauge how securely Recent studies have purported to Atmospheric CO2 is an important we understand the major patterns of show a closer correspondence between greenhouse gas, and because of its short Phanerozoic CO2. Using this record of reconstructed Phanerozoic records of residence time (~4 yr) and numerous CO2 and Ca concentrations in cosmic ray flux and temperature than sources and sinks, it has the potential Phanerozoic seawater, we then modify between CO2 and temperature.
    [Show full text]
  • Evolution, Evolution, Phanerozoic Phanerozoic Life and M E Ti Ti
    Evolution, Phanerozoic Life and Mass Ex tincti ons Hilde Schwartz [email protected] Body Fossils Trace Fossils FOSSILIZED Living bone Calcium hydroxyapatite Ca10(PO4)6(OH,Cl, F, CO3)2 FilbFossil bone Fluorapatite Ca10(PO4)6(F,CO3,OH,Cl)2 EVOLUTION Descent with modification. …via tinkering with the natural genetic and phenotypic variations found in nearly all biologic populations. Wollemi pine: zero genetic variability Evidence: comparative anatomy, molecular genetics, vestigal structures, observed natural selection, and so on. Evolutionary Mechanisms Mutation Gene flow Natural selection adaptive Genetic drift random Hawaiian honeycreepers Microevolution MliMacroevolution Phanerozoic Milestones Hominids (5-(5-66 Ma) Mammal ‘explosion’ Primates Birds, Flowering plants Mammals, dinosaurs, turtles, pterosaurs, etc… Modern corals Land plant ‘explosion’ Reptiles Amphibians, giant fish, vascular plants Life on land (Plants, insects) ‘Jaws’ Vertebrates (jawless ‘fishes’) Animal ‘explosion’ Drivers of evolution Biological innovations Plate tectonics Evolvinggg global chemistry Global temperature Evolution of degradation- resistant vascular plants Berner, R. A. (2003) The long‐term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–326. Cool horse Hot horse Patterns of Phanerozoic Evolution 1.9 – 100 million species of macroorganisms Bent o n, 1985 1. Diversity has increased through time Can we trust the fossil record? Biological characteristics HbittHabitat Taphonomic processes Time The “Pull of the Recent”? Peters, 2005 Based on data in Sepkoski, 1984 (A), Niklas et al., 1983 (B), and Benton, 1985 (C,D) Number of species preserved in Lagerstatten Patterns of Phanerozoic Evolution 2. The locus of diversity has changed through Benton and Harper, 1997 time 0% of macroscopic 8585--9595% of macroscopic species are terrestrial species are terrestrial Vermeij and Grosberg, 2010 Patterns of Phanerozoic Evolution 3Etiti3.
    [Show full text]
  • Rates of Species-Level Origination and Extinction: Functions of Age, Diversity, and History
    Acta Palaeontologica Polonica Vol. 36, No 1 pp. 3947 Warszawa, 1991 JENNIFER A. KITCHELL and ANTON1 HOFFMAN * RATES OF SPECIES-LEVEL ORIGINATION AND EXTINCTION: FUNCTIONS OF AGE, DIVERSITY, AND HISTORY KITCHELL, J. A. and HOFFMAN, A.: Rates of species-level origination and ex- tinction: Functions of age, diversity, and history. Acta Palaeont. Polonica, 39--61. 38, 1, 1991. Global-scale data on the Oligocene to Recent planktic foraminifers and coccoliths from the tropical Pacific and Atlantic Oceans are employed for quantitative testing of alternative models (Red Queen and Stationary Hypotheses) of the rela- tionship between speciation rates, extinction rates, taxonomic diversity, abiotic events, and history of the paleosystem. The results demonstrate that although the Law of Constant Extinction is supported by the data, the theoretical implica- tions are quite ambiguous because the two considered models appear as end- members of a continuum. K e y w o r d s: Evolution, extinction, Red Queen Hypothesis, Foraminiferida, Coccolithophorida. Jennifer A. Kitchell, Museum of Paleontology, University of Michigan, Ann Arbor, Michigan #lo@, USA; Anton1 Hoffman, Instytut Paleobtologti, Polska Akademia Nauk, Al. Zwirki i Wigury 93, 02-089 Warszawa, Poland. Received: April 1990. INTRODUCTION Numerous interacting determinants characterize evolving biological systems. A common partitioning of the character-environment interaction, essential to studies of natural selection (Sober 1984), separates abiotic from biotic factors of 'environment'. Causal prominence to the biotic factors of the selective regime is given by the Red Queen Hypothesis of Van Valen (1973). This hypothesis is based on a zero-sum assumption that what one species gains, other species must lose or counter with evolution- ary change.
    [Show full text]
  • Evolutionary History of Life
    Evolutionary history of life The evolutionary history of life on Earth traces the processes by which living and fossil organisms evolved, from the earliest emergence of life to the present. Earth formed about 4.5 billion years (Ga) ago and evidence suggests life emerged prior to 3.7 Ga.[1][2][3] (Although there is some evidence of life as early as 4.1 to 4.28 Ga, it remains controversial due to the possible non- biological formation of the purported fossils.[1][4][5][6][7]) The similarities among all known present-day species indicate that they have diverged through the process of evolution from a common ancestor.[8] Approximately 1 trillion species currently live on Earth[9] of which only 1.75–1.8 million have been named[10][11] and 1.6 million documented in a central database.[12] These currently living species represent less than one percent of all species that have ever lived on earth.[13][14] The earliest evidence of life comes from biogenic carbon signatures[2][3] and stromatolite fossils[15] discovered in 3.7 billion- Life timeline Ice Ages year-old metasedimentary rocks from western Greenland. In 2015, 0 — Primates Quater nary Flowers ←Earliest apes possible "remains of biotic life" were found in 4.1 billion-year-old P Birds h Mammals [16][17] – Plants Dinosaurs rocks in Western Australia. In March 2017, putative evidence of Karo o a n ← Andean Tetrapoda possibly the oldest forms of life on Earth was reported in the form of -50 0 — e Arthropods Molluscs r ←Cambrian explosion fossilized microorganisms discovered in hydrothermal
    [Show full text]
  • Phanerozoic Diversity and Neutral Theory Paleobiology Letters
    Paleobiology, 41(3), 2015, pp. 369–376 DOI: 10.1017/pab.2015.10 Paleobiology Letters RAPID COMMUNICATION Phanerozoic diversity and neutral theory Steven M. Holland and Judith A. Sclafani Abstract.—Although Phanerozoic increases in the global richness, local richness, and evenness of marine invertebrates are well documented, a common explanation for these patterns has been difficult to identify. Evidence is presented here from marine invertebrate communities that there is a Phanerozoic increase in the fundamental biodiversity number (θ), which describes diversity and relative abundance distributions in neutral ecological theory. If marine ecosystems behave according to the rules of Hubbell’s Neutral Theory of Biodiversity and Biogeography, the Phanerozoic increase in θ suggests three possible mechanisms for the parallel increases in global richness, local richness, and evenness: (1) an increase in the per-individual probability of speciation, (2) an increase in the area occupied by marine metacommunities, and (3) an increase in the density (per-area abundance) of marine organisms. Because speciation rates have declined over time and because there is no clear evidence for an increase in meta- community area through the Phanerozoic, the most likely of these is an increase in the spatial density of marine invertebrates over the Phanerozoic, an interpretation supported by previous studies of fossil abundance. This, coupled with a Phanerozoic rise in body size, suggests that an increase in primary productivity through time is the primary cause of Phanerozoic increases in θ, global richness, local richness, local evenness, abundance, and body size. Steven M. Holland and Judith A. Sclafani. Department of Geology, University of Georgia, Athens, Georgia 30602-2501, U.S.A.
    [Show full text]
  • Panel 3: Phanerozoic (541 Ma to Now) © Walter Álvarez, 2019
    Panel 3: Phanerozoic (541 Ma to now) © Walter Álvarez, 2019 This panel begins 541 million years ago, extinction events occurred at the Ordovician-Silurian, recent extinctions, and possibly the FF as well, currently the best age for the beginning of the Frasnian-Fammenian (FF, late Devonian), Permian- occurred during times when massive outpourings of Phanerozoic (visible life) Eon, the Paleozoic Era, and Triassic, Triassic-Jurassic and Cretaceous-Paleogene basaltic lava were taking place — the LIPs, or Large the Cambrian Period. At that point in Earth history (KPg, formerly called Cretaceous-Tertiary = KT) Igneous Provinces (F).7 The effects of the Chicxulub there was a sudden appearance of abundant fossils. boundaries. Since then, the PT event, the greatest of impact were certainly capable of producing a mass Once thought to mark the sudden origin of life, it is the mass extinctions, has been recognized as a double extinction, but there is no obvious global killing now realized that life is very much older, and this was extinction, with the PT extinction preceded, just 7.6 mechanism that would result from a LIP. Perhaps instead the rapid appearance of hard parts, like shells, Myr earlier, by the Capitanian-Wuchiapingian there is some combination that would explain why that can be preserved as fossils. Shells may have extinction (CW). The correspondence between four the KPg extinction coincided with both an impact and arisen as protection against increasingly effective mass extinctions and period boundaries is not a a LIP.8 predation. The 2012 Geological Time Scale (A) coincidence, for the early geologists placed the period The ratio of the oxygen isotopes, 16O and 18O, in divides the Phanerozoic into the Paleozoic (old life), boundaries at sudden changes in the fossil fauna.
    [Show full text]
  • The Origin of Tetrapods Topic 4: the Origin of Tetrapods
    8/19/2013 Topic 4: The Origin of Tetrapods Topic 4: The Origin of Tetrapods Next two lectures will deal with: What is the geological time scale and why is it important? Origin of Tetrapods, transition from Where do herps fit in the vertebrate water to land. phylogeny? What are the evolutionary origins of Origin of Amniotes, transition to dry tetrapods? habitats. What changes were involved in the transition from water to land? The geological time scale The geological time scale Organizes the history of the earth Eon Era MYA Precambrian accounts for Cenozoic 0-65 ~88% of Earth Based on geological and biological/fossil criteria history Phanerozoic Mesozoic 65-245 We will Allows us to consider “________________” concentrate on Phanerozoic Paleozoic 245-570 Time scale over which geological and ___________________ phenomena occur st Proterozoic 570-2500 1 multicellular organisms Organized into hierarchical ________, ________, Precambrian Archaen 2500-3800 1st unicellular organisms ______________, and ______________ Age of oldest rocks Hadean 3800-4600 The Paleozoic Era The Mesozoic Era Period MYA Events Period MYA Events - Mass extinction at end of 1st _________________ Permian 245-286 Cretaceous Cretaceous 65-144 - 1st modern Squamata 1st reptiles, amphibians Carboniferous 286-320 specialize st st Devonian 360-408 1 amphibians - 1 Urodela, Anura - 1st Rynchocephalia st Jurassic 144-208 Silurian 408-438 1 jawed fishes - High reptile diversity - 1st birds 1st jawless fishes & st Ordovician 438-505 land plants -1 Angiosperms, dinosaurs, mammals 1st vertebrates Cambrian 505-570 Triassic 208-245 - 1st Testudines, ___________ 1 8/19/2013 The Cenozoic Era What are stem and crown groups? Period Epoch MYA Comments _________________ – smallest Modern humans Holocene Recent monophyletic group to contain the last common ancestor of all extant members Quanternary Evolution of humans Pleistocene 0.01-1.5 of a taxon 1st hominines Pliocene 1.5-5 _________________ – contains crown Miocene 5-24 group plus closely related extinct taxa.
    [Show full text]
  • Early Evolution of Life | Principles of Biology from Nature Education
    contents Principles of Biology 74 Early Evolution of Life Major events in early life include the evolution of prokaryotes, photosynthesis, eukaryotes, multicellularity, and the colonization of land. Alethopteris fossil. Fossilized leaves of Alethopteris sp., and extinct plant that lived in the Carboniferous period. Sinclair Stammers/Science Source. Topics Covered in this Module Early Life on Earth Major Objectives of this Module Give the date the first prokaryotes appear in the fossil record and how they were identified. Describe the geologic and biologic effects of the evolution of photosynthesis. Relate endosymbiont theory to the evolution of eukaryotes. Explain how species evolved adaptations to life on land. page 380 of 989 3 pages left in this module contents Principles of Biology 74 Early Evolution of Life When did life begin? What did the earliest life forms look like? When did plants and animals appear on Earth? Evidence for early life on Earth comes from geology and the fossil record. Early Life on Earth Scientists use radiometric dating to determine how old fossils are based on how much the radioactive isotopes they contain have decayed. The history of Earth is customarily divided into three eons: the Archaean, Proteozoic, and Phanerozoic (Figure 1). The first single-celled organisms appeared in the Archaean eon. The first eukaryotes and multicellular organisms appeared in the Proterozoic eon. Animals appeared toward the end of this eon, but most of their evolution occurred during the Phanerozoic eon, which covers approximately the last half billion years and is further divided into the Paleozoic, Mesozoic, and Cenozoic eras. Note how small a fraction of Earth's history includes humans.
    [Show full text]