AP Statistics Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wu Washington 0250E 15755.Pdf (3.086Mb)
© Copyright 2016 Sang Wu Contributions to Physics-Based Aeroservoelastic Uncertainty Analysis Sang Wu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Eli Livne, Chair Mehran Mesbahi Dorothy Reed Frode Engelsen Program Authorized to Offer Degree: Aeronautics and Astronautics University of Washington Abstract Contributions to Physics-Based Aeroservoelastic Uncertainty Analysis Sang Wu Chair of the Supervisory Committee: Professor Eli Livne The William E. Boeing Department of Aeronautics and Astronautics The thesis presents the development of a new fully-integrated, MATLAB based simulation capability for aeroservoelastic (ASE) uncertainty analysis that accounts for uncertainties in all disciplines as well as discipline interactions. This new capability allows probabilistic studies of complex configuration at a scope and with depth not known before. Several statistical tools and methods have been integrated into the capability to guide the tasks such as parameter prioritization, uncertainty reduction, and risk mitigation. The first task of the thesis focuses on aeroservoelastic uncertainty assessment considering control component uncertainty. The simulation has shown that attention has to be paid, if notch filters are used in the aeroservoelastic loop, to the variability and uncertainties of the aircraft involved. The second task introduces two innovative methodologies to characterize the unsteady aerodynamic uncertainty. One is a physically based aerodynamic influence coefficients element by element correction uncertainty scheme and the other is an alternative approach focusing on rational function approximation matrix uncertainties to evaluate the relative impact of uncertainty in aerodynamic stiffness, damping, inertia, or lag terms. Finally, the capability has been applied to obtain the gust load response statistics accounting for uncertainties in both aircraft and gust profiles. -
Analysing Census at School Data
Analysing Census At School Data www.censusatschool.ie Project Maths Development Team 2015 Page 1 of 7 Excel for Analysing Census At School Data Having retrieved a class’s data using CensusAtSchool: 1. Save the downloaded class data which is a .csv file as an .xls file. 2. Delete any unwanted variables such as the teacher name, date stamp etc. 3. Freeze the top row so that one can scroll down to view all of the data while the top row remains in view. 4. Select certain columns (not necessarily contiguous) for use as a class worksheet. Aim to have a selection of categorical data (nominal and ordered) and numerical data (discrete and continuous) unless one requires one type exclusively. The number of columns will depend on the class as too much data might be intimidating for less experienced classes. Students will need to have the questionnaire to hand to identify the question which produced the data. 5. Make a new worksheet within the workbook of downloaded data using the selected columns. 6. Name the worksheet i.e. “data for year 2 2014” or “data for margin of error investigation”. 7. Format the data to show all borders (useful if one is going to make a selection of the data and put it into Word). 8. Order selected columns of this data perhaps (and use expand selection) so that rogue data such as 0 for height etc. can be eliminated. It is perhaps useful for students to see this. (Use Sort & Filter.) 9. Use a filter on data, for example based on gender, to generate further worksheets for future use 10. -
A Monte Carlo Simulation Approach to the Reliability Modeling of the Beam Permit System of Relativistic Heavy Ion Collider (Rhic) at Bnl* P
Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC075 A MONTE CARLO SIMULATION APPROACH TO THE RELIABILITY MODELING OF THE BEAM PERMIT SYSTEM OF RELATIVISTIC HEAVY ION COLLIDER (RHIC) AT BNL* P. Chitnis#, T.G. Robertazzi, Stony Brook University, Stony Brook, NY 11790, U.S.A. K.A. Brown, Brookhaven National Laboratory, Upton, NY 11973, U.S.A. Abstract called the Permit Carrier Link, Blue Carrier Link and The RHIC Beam Permit System (BPS) monitors the Yellow Carrier link. These links carry 10 MHz signals health of RHIC subsystems and takes active decisions whose presence allows the beam in the ring. Support regarding beam-abort and magnet power dump, upon a systems report their status to BPS through “Input subsystem fault. The reliability of BPS directly impacts triggers” called Permit Inputs (PI) and Quench Inputs the RHIC downtime, and hence its availability. This work (QI). If any support system PI fails, the permit carrier assesses the probability of BPS failures that could lead to terminates, initiating a beam dump. If QI fails, then the substantial downtime. A fail-safe condition imparts blue and yellow carriers also terminate, initiating magnet downtime to restart the machine, while a failure to power dump in blue and yellow ring magnets. The carrier respond to an actual fault can cause potential machine failure propagates around the ring to inform other PMs damage and impose significant downtime. This paper about the occurrence of a fault. illustrates a modular multistate reliability model of the Other than PMs, BPS also has 4 Abort Kicker Modules BPS, with modules having exponential lifetime (AKM) that see the permit carrier failure and send the distributions. -
2 3 Practice Problems.Pdf
Exam Name___________________________________ MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following frequency distribution presents the frequency of passenger vehicles that 1) pass through a certain intersection from 8:00 AM to 9:00 AM on a particular day. Vehicle Type Frequency Motorcycle 5 Sedan 95 SUV 65 Truck 30 Construct a frequency bar graph for the data. A) B) 1 C) D) 2) The following bar graph presents the average amount a certain family spent, in dollars, on 2) various food categories in a recent year. On which food category was the most money spent? A) Dairy products B) Cereals and baked goods C) Fruits and vegetables D) Meat poultry, fish, eggs 3) The following frequency distribution presents the frequency of passenger vehicles that 3) pass through a certain intersection from 8:00 AM to 9:00 AM on a particular day. Vehicle Type Frequency Motorcycle 9 Sedan 54 SUV 27 2 Truck 53 Construct a relative frequency bar graph for the data. A) B) C) D) 3 4) The following frequency distribution presents the frequency of passenger vehicles that 4) pass through a certain intersection from 8:00 AM to 9:00 AM on a particular day. Vehicle Type Frequency Motorcycle 9 Sedan 20 SUV 25 Truck 39 Construct a pie chart for the data. A) B) C) D) 5) The following pie chart presents the percentages of fish caught in each of four ratings 5) categories. Match this pie chart with its corresponding Parato chart. 4 A) B) C) 5 D) SHORT ANSWER. -
Type Here Title of the Paper
ICME 11, TSG 13, Monterrey, Mexico, 2008: Dave Pratt Shaping the Experience of Young and Naïve Probabilists Pratt, Dave Institute of Education, University of London. [email protected] Summary This paper starts by briefly summarizing research which has focused on student misconceptions with respect to understanding probability, before outlining the author’s research, which, in contrast, presents what students of age 11-12 years(Grade 7) do know and can construct, given access to a carefully designed environment. These students judged randomness according to unpredictability, lack of pattern in results, lack of control over outcomes and fairness. In many respects their judgments were based on similar characteristics to those of experts. However, it was only through interaction with a virtual environment, ChanceMaker, that the students began to express situated meanings for aggregated long-term randomness. That data is then re-analyzed in order to reflect upon the design decisions that shaped the environment itself. Four main design heuristics are identified and elaborated: Testing personal conjectures, Building on student knowledge, Linking purpose and utility, Fusing control and representation. In conclusion, it is conjectured that these heuristics are of wider relevance to teachers and lecturers, who aspire to shape the experience of young and naïve probabilists through their actions as designers of tasks and pedagogical settings. Preamble The aim in this paper is to propose heuristics that might usefully guide design decisions for pedagogues, who might be building software, creating new curriculum approaches, imagining a novel task or writing a lesson plan. (Here I use the term “heuristics” with its standard meaning as a rule-of-thumb, a guiding rule, rather than in the specialized sense that has been adopted by researchers of judgments of chance.) With this aim in mind, I re-analyze data that have previously informed my research on students’ meanings for randomness as emergent during activity. -
Revisiting the Sustainable Happiness Model and Pie Chart: Can Happiness Be Successfully Pursued?
The Journal of Positive Psychology Dedicated to furthering research and promoting good practice ISSN: 1743-9760 (Print) 1743-9779 (Online) Journal homepage: https://www.tandfonline.com/loi/rpos20 Revisiting the Sustainable Happiness Model and Pie Chart: Can Happiness Be Successfully Pursued? Kennon M. Sheldon & Sonja Lyubomirsky To cite this article: Kennon M. Sheldon & Sonja Lyubomirsky (2019): Revisiting the Sustainable Happiness Model and Pie Chart: Can Happiness Be Successfully Pursued?, The Journal of Positive Psychology, DOI: 10.1080/17439760.2019.1689421 To link to this article: https://doi.org/10.1080/17439760.2019.1689421 Published online: 07 Nov 2019. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=rpos20 THE JOURNAL OF POSITIVE PSYCHOLOGY https://doi.org/10.1080/17439760.2019.1689421 Revisiting the Sustainable Happiness Model and Pie Chart: Can Happiness Be Successfully Pursued? Kennon M. Sheldona,b and Sonja Lyubomirskyc aUniversity of Missouri, Columbia, MO, USA; bNational Research University Higher School of Economics, Moscow, Russian Federation; cUniversity of California, Riverside, CA, USA ABSTRACT ARTICLE HISTORY The Sustainable Happiness Model (SHM) has been influential in positive psychology and well-being Received 4 September 2019 science. However, the ‘pie chart’ aspect of the model has received valid critiques. In this article, we Accepted 8 October 2019 start by agreeing with many such critiques, while also explaining the context of the original article KEYWORDS and noting that we were speculative but not dogmatic therein. We also show that subsequent Subjective well-being; research has supported the most important premise of the SHM – namely, that individuals can sustainable happiness boost their well-being via their intentional behaviors, and maintain that boost in the longer-term. -
2. Graphing Distributions
2. Graphing Distributions A. Qualitative Variables B. Quantitative Variables 1. Stem and Leaf Displays 2. Histograms 3. Frequency Polygons 4. Box Plots 5. Bar Charts 6. Line Graphs 7. Dot Plots C. Exercises Graphing data is the first and often most important step in data analysis. In this day of computers, researchers all too often see only the results of complex computer analyses without ever taking a close look at the data themselves. This is all the more unfortunate because computers can create many types of graphs quickly and easily. This chapter covers some classic types of graphs such bar charts that were invented by William Playfair in the 18th century as well as graphs such as box plots invented by John Tukey in the 20th century. 65 by David M. Lane Prerequisites • Chapter 1: Variables Learning Objectives 1. Create a frequency table 2. Determine when pie charts are valuable and when they are not 3. Create and interpret bar charts 4. Identify common graphical mistakes When Apple Computer introduced the iMac computer in August 1998, the company wanted to learn whether the iMac was expanding Apple’s market share. Was the iMac just attracting previous Macintosh owners? Or was it purchased by newcomers to the computer market and by previous Windows users who were switching over? To find out, 500 iMac customers were interviewed. Each customer was categorized as a previous Macintosh owner, a previous Windows owner, or a new computer purchaser. This section examines graphical methods for displaying the results of the interviews. We’ll learn some general lessons about how to graph data that fall into a small number of categories. -
Chapter 16.Tst
Chapter 16 Statistical Quality Control- Prof. Dr. Samir Safi TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Statistical process control uses regression and other forecasting tools to help control processes. 1) 2) It is impossible to develop a process that has zero variability. 2) 3) If all of the control points on a control chart lie between the UCL and the LCL, the process is always 3) in control. 4) An x-bar chart would be appropriate to monitor the number of defects in a production lot. 4) 5) The central limit theorem provides the statistical foundation for control charts. 5) 6) If we are tracking quality of performance for a class of students, we should plot the individual 6) grades on an x-bar chart, and the pass/fail result on a p-chart. 7) A p-chart could be used to monitor the average weight of cereal boxes. 7) 8) If we are attempting to control the diameter of bowling bowls, we will find a p-chart to be quite 8) helpful. 9) A c-chart would be appropriate to monitor the number of weld defects on the steel plates of a 9) ship's hull. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following is not a popular definition of quality? 1) A) Quality is fitness for use. B) Quality is the totality of features and characteristics of a product or service that bears on its ability to satisfy stated or implied needs. -
Doing More with SAS/ASSIST® 9.1 the Correct Bibliographic Citation for This Manual Is As Follows: SAS Institute Inc
Doing More With SAS/ASSIST® 9.1 The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004. Doing More With SAS/ASSIST ® 9.1. Cary, NC: SAS Institute Inc. Doing More With SAS/ASSIST® 9.1 Copyright © 2004, SAS Institute Inc., Cary, NC, USA ISBN 1-59047-206-3 All rights reserved. Produced in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc. U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights (June 1987). SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513. 1st printing, January 2004 SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228. SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are registered trademarks or trademarks of -
Section 2.2: Bar Charts and Pie Charts
Section 2.2: Bar Charts and Pie Charts 1 Raw Data is Ugly Graphical representations of data always look pretty in newspapers, magazines and books. What you haven’tseen is the blood, sweat and tears that it some- times takes to get those results. http://seatgeek.com/blog/mlb/5-useful-charts-for-baseball-fans-mlb-ticket-prices- by-day-time 1 Google listing for Ru San’sKennesaw location 2 The previous examples are informative graphical displays of data. They all started life as bland data sets. 2 Bar Charts Bar charts are a visual way to organize data. The height or length of a bar rep- resents the number of points of data (frequency distribution) in a particular category. One can also let the bar represent the percentage of data (relative frequency distribution) in a category. Example 1 From (http://vgsales.wikia.com/wiki/Halo) consider the sales …g- ures for Microsoft’s videogame franchise, Halo. Here is the raw data. Year Game Units Sold (in millions) 2001 Halo: Combat Evolved 5.5 2004 Halo 2 8 2007 Halo 3 12.06 2009 Halo Wars 2.54 2009 Halo 3: ODST 6.32 2010 Halo: Reach 9.76 2011 Halo: Combat Evolved Anniversary 2.37 2012 Halo 4 9.52 2014 Halo: The Master Chief Collection 2.61 2015 Halo 5 5 Let’s construct a bar chart based on units sold. Translating frequencies into relative frequencies is an easy process. A rela- tive frequency is the frequency divided by total number of data points. Example 2 Create a relative frequency chart for Halo games. -
Bar Charts and Box Plots Normal Poisson Exponential Creating a Simple Yet Effective Plot Requires an 02468 C 1.0 Exponential Uniform Understanding of Data and Tasks
THIS MONTH a Uniform POINTS OF VIEW Normal Poisson Exponential 02468 b Uniform Bar charts and box plots Normal Poisson Exponential Creating a simple yet effective plot requires an 02468 c 1.0 Exponential Uniform understanding of data and tasks. λ = 1 Min = 5.5 Normal Max = 6.5 0.5 Poisson σμ= 1, = 5 μ = 2 Bar charts and box plots are omnipresent in the scientific literature. 0 02468 They are typically used to visualize quantities associated with a set of Figure 2 | Representation of four distributions with bar charts and box plots. items. Representing the data accurately, however, requires choosing (a) Bar chart showing sample means (n = 1,000) with standard-deviation the appropriate plot according to the nature of the data and the task at error bars. (b) Box plot (n = 1,000) with whiskers extending to ±1.5 × IQR. hand. Bar charts are appropriate for counts, whereas box plots should (c) Probability density functions of the distributions in a and b. λ, rate; be used to represent the characteristics of a distribution. µ, mean; σ, standard deviation. Bar charts encode quantities by length, which is a highly accurate visual encoding and preferred over the angle-based strategy used in to represent such uncertainty. However, because the bars always start pie charts (Fig. 1a). Often the counts that we want to represent are at zero, they can be misleading: for example, part of the range covered sums over multiple categories. There are several options to visualize by the bar might have never been observed in the sample. -
Measurement & Transformations
Chapter 3 Measurement & Transformations 3.1 Measurement Scales: Traditional Classifica- tion Statisticians call an attribute on which observations differ a variable. The type of unit on which a variable is measured is called a scale.Traditionally,statisticians talk of four types of measurement scales: (1) nominal,(2)ordinal,(3)interval, and (4) ratio. 3.1.1 Nominal Scales The word nominal is derived from nomen,theLatinwordforname.Nominal scales merely name differences and are used most often for qualitative variables in which observations are classified into discrete groups. The key attribute for anominalscaleisthatthereisnoinherentquantitativedifferenceamongthe categories. Sex, religion, and race are three classic nominal scales used in the behavioral sciences. Taxonomic categories (rodent, primate, canine) are nomi- nal scales in biology. Variables on a nominal scale are often called categorical variables. For the neuroscientist, the best criterion for determining whether a variable is on a nominal scale is the “plotting” criteria. If you plot a bar chart of, say, means for the groups and order the groups in any way possible without making the graph “stupid,” then the variable is nominal or categorical. For example, were the variable strains of mice, then the order of the means is not material. Hence, “strain” is nominal or categorical. On the other hand, if the groups were 0 mgs, 10mgs, and 15 mgs of active drug, then having a bar chart with 15 mgs first, then 0 mgs, and finally 10 mgs is stupid. Here “milligrams of drug” is not anominalorcategoricalvariable. 1 CHAPTER 3. MEASUREMENT & TRANSFORMATIONS 2 3.1.2 Ordinal Scales Ordinal scales rank-order observations.