REVIEW ARTICLE Formation of Magnesium Carbonates on Earth and 10.1029/2021JE006828 Implications for Mars Key Points: Eva L. Scheller1 , Carl Swindle1 , John Grotzinger1 , Holly Barnhart1 , • On Earth, magnesium carbonates of Surjyendu Bhattacharjee1 , Bethany L. Ehlmann1,2 , Ken Farley1 , distinct textures form in ultramafic 1 1 1,3 rock hosted veins, listvenites, soils, Woodward W. Fischer , Rebecca Greenberger , Miquela Ingalls , 1,4 1 1 alkaline lakes, and playas Peter E. Martin , Daniela Osorio-Rodriguez , and Ben P. Smith • The isotopic and elemental 1 2 composition of terrestrial Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA, Jet Propulsion magnesium carbonate reveal timing Laboratory, California Institute of Technology, Pasadena, CA, USA, 3Department of Geosciences, Pennsylvania State and chemistry of fluid conditions University, State College, PA, USA, 4Geological Sciences Department, University of Colorado Boulder, Boulder, CO, • Through the Mars 2020 sample return mission, the reviewed USA methods can be used to analyze carbonate-forming conditions on ancient Mars Abstract Magnesium carbonates have been identified within the landing site of the Perseverance rover mission. This study reviews terrestrial analog environments and textural, mineral assemblage, Correspondence to: isotopic, and elemental analyses that have been applied to establish formation conditions of magnesium E. L. Scheller, carbonates. Magnesium carbonates form in five distinct settings: ultramafic rock-hosted veins, the
[email protected] matrix of carbonated peridotite, nodules in soil, alkaline lake, and playa deposits, and as diagenetic replacements within lime—and dolostones. Dominant textures include fine-grained or microcrystalline Citation: veins, nodules, and crusts. Microbial influences on formation are recorded in thrombolites, stromatolites, Scheller, E.