First Reported Case of Charcot Marie Tooth Disease Type 4C in a Child from India with SH3TC2 Mutation but Absent Spinal Deformities

Total Page:16

File Type:pdf, Size:1020Kb

First Reported Case of Charcot Marie Tooth Disease Type 4C in a Child from India with SH3TC2 Mutation but Absent Spinal Deformities [Downloaded free from http://www.neurologyindia.com on Tuesday, June 09, 2015, IP: 61.16.135.116] Case Report First reported case of Charcot Marie Tooth disease type 4C in a child from India with SH3TC2 mutation but absent spinal deformities Umesh Dinkar Kalane, Chaitanya Datar1, Anita Mahadevan2 Department of Pediatric Neurology, Deenanath Mangeshkar Hospital, 1Sahyadri Genetics and Tissue Engineering Facility, Pune, Maharashtra, 2Department of Neuropathology, NIMHANS, Bengaluru, Karnataka, India ABSTRACT Charcot Marie Tooth (CMT) disease is a group of hereditary motor sensory neuropathies with significant genetic heterogeneity. This disorder has been scarcely reported in the Indian literature. Here, we report a case of the rare but relatively more severe autosomal recessive CMT type 4C disease with a few features that are distinct from its regular presentation. Our patient was proven to have one of the common mutations in the SH3TC2 gene, which has so far not been described in Indian patients. Key words: Charcot Marie Tooth disease; HSMN4C; SH3TC2 Case Report or of other sensory symptoms. She had a normal intellect and attended school. A 10‑year old girl, first seen at 8 years of age, presented to us for evaluation of progressive weakness noticed since late On examination, she had lower limb weakness with ankle childhood. She was born of a 3rd degree consanguineous dorsi‑flexion and plantar‑flexion power of grade III. Her marriage and had an uneventful antenatal and perinatal proximal lower limb power was grade IV at knee flexion history. There was no family history of similar complaints. and extension, while power at hip flexion and extension There was no complaint of any major illness in the past. was also grade IV. In the upper limb, the distal power at the wrist was grade IV while proximal power in the upper Since she was 7 years of age, her parents noticed that she limbs was grade V (Medical Research Council grade). There had distal limb weakness, initially in the lower limbs with was areflexia in both lower and upper limbs. Mild pes frequent slipping of footwear. She then gradually developed cavus deformity was noted at presentation more in the upper limb distal weakness with difficulty in performing fine right foot compared to the left. Her sensory examination motor movements like writing and picking up small objects. was unremarkable. No other major dysmorphic features There were initially no complaints of frequent falls or were present and the other system examination was normal. difficulty in rising from a sitting position or in lifting heavy objects. There was no history of sphincteric involvement At the first visit, her routine hematology and biochemistry including liver function tests, serum electrolytes and blood Access this article online sugar were normal. Her creatine phophokinase was mildly Website: Quick Response Code raised and her fasting lipid profile was normal. www.neurologyindia.com DOI: Her nerve conduction velocity (NCV) study of the 10.4103/0028-3886.158222 motor nerves showed reduced amplitude without any PMID: conduction block or dispersion. The latencies were xxxxx prolonged with uniform slowing. The conduction velocities Address for correspondence: Dr. Umesh Dinkar Kalane, Flat No. 202, G Building, Wonder City Society, Katraz Serve No 75, Pune, Maharashtra, India. E-mail: [email protected] Neurology India / May 2015 / Volume 63 / Issue 3 395 [Downloaded free from http://www.neurologyindia.com on Tuesday, June 09, 2015, IP: 61.16.135.116] Kalane, et al.: A case report of Charcot-Marie-Tooth disease type 4c were in the range of 25‑40 m/S [Figures 1 and 2]. Her spectroscopy. The results of all these tests were normal. electromyography (EMG) study showed chronic denervation A repeat trial of steroids was again given for 2 months with partial re‑innervation, suggesting a chronic process of without much clinical benefit. demyelination. The nerve conduction screening study in rest of her family was normal. Biopsy of the sural nerve and vastus medialis muscle was performed. The sural nerve biopsy showed a loss Her cerebrospinal fluid (CSF) study showed raised (139 mg%) of myelinated fibers with remyelination, along with proteins with no cells. She was given intravenous methyl enveloped concentric lamellae of Schwann cell cytoplasm prednisolone 1 gm daily for 3 days and then oral prednisolone forming small onion bulbs which were seen scattered 2 mg/kg/day for 2 weeks. The steroids were tapered over the in all the fascicles admixed with fibers of normal myelin next 2 months and then omitted since there was no significant thickness. No inflammation was seen. This histopathological improvement in her motor power. presentation was suggestive of a demyelinating hypertrophic neuropathy [Figure 3]. The child did not attend the follow‑up outpatient clinic on a regular basis and only came back again after three years The possibility of Charcot Marie Tooth disease (HMSN) was when she was 10 years of age. During this period, her considered based on the clinical and biopsy presentation. weakness had progressively increased and she was now Since this disorder is known to show significant genetic unable to get up from the floor. Her power had decreased heterogeneity, targeted gene panel study by NextGen in both upper and lower limbs. The pes cavus deformity of Sequencing was considered to screen for nearly 54 genes feet was evident bilaterally. There were no other deformities responsible for the various types of CMT. noted. Her repeat NCV/EMG study showed a similar uniform demyelination with no conduction blocks or dispersion A homozygous nonsense variation c. 2710C>T in exon and there was not much deterioration in her study despite 11 of SH3TC2 gene was detected on gene sequencing. her clinical worsening. Further work up in search for a This variation resulted in the premature termination metabolic cause included blood lactate, blood tandem of the protein at position 904 (p.R904Ter) because of mass spectroscopy, urinary gas chromatography and mass Figure 1: Ulnar nerve conduction study: Uniform slowing of the conduction Figure 2: Median nerve conduction study: Uniform slowing of the conduction velocities from the ulnar nerve and no dispersion or conduction blocks. velocities from the median nerve and no dispersion or conduction blocks. Conduction velocities were in between 20 and 40 m/s Conduction velocities were in between 20 and 40 m/s 396 Neurology India / May 2015 / Volume 63 / Issue 3 [Downloaded free from http://www.neurologyindia.com on Tuesday, June 09, 2015, IP: 61.16.135.116] Kalane, et al.: A case report of Charcot-Marie-Tooth disease type 4c patients by Azzedine et al. who found that almost 27 of the 28 patients of CMT4C disease belonging to the age group 2‑10 years showed the spinal deformity, with nearly 13 having had to undergo surgery at a young age. Thus, spine deformities have been considered to be a hallmark of CMT4C disease.[4,5] a b Our patient presented with distal muscle weakness along with a pes cavus deformity but did not have sensory issues and spinal deformity until the age of 10 years. There was no respiratory insufficiency or hypoventilation. The patient, however, did have very slow NCVs, elevated CSF protein, and hypertrophic nerves with onion bulb formation. c Figure 3: Sural nerve and vastus medialis muscle biopsy showing significant In 1996, LeGuern et al. had assigned the locus for CMT4C loss of myelinated fibers with consequent endoneurial fibrosis; (a and b): to chromosome 5q23‑33 in two consanguineous Algerian There are several thinly myelinated remyelinating fibers with formation of “onion bulbs” which were seen scattered in all fascicles admixed with families with a typical childhood/adolescent onset CMT fibers of normal myelin thickness (a, inset), characteristic of a demyelinating disease having the presence of the associated feature of hypertrophic neuropathy. The muscle biopsy revealed small groups of pes cavus and scoliosis in many individuals. There was atrophic angulated fibers reflecting neurogenic atrophy (c) also a discrepancy observed between the rapid worsening of deformities and the relatively slow progression of the the generation of a stop codon. This variation has been motor deficit.[4] Later, mutations in a single gene, namely described in the literature and also by disease databases as the SH3TC2 (also called KIAA1985) on chromosome 5q32, being pathogenic. Sanger sequencing and parental studies were shown to be responsible for the occurrence of CMT4C further verified the variation. disease. Since then, approximately 19 SH3TC2 mutations have been identified in Caucasian non‑Gypsy families from Discussion Turkey, Germany, Italy, Greece, Iran and UK.[3‑6] Majority of these mutations have been identified in the 11th exon of the The term “Charcot–Marie–Tooth (CMT) disease” includes a gene which encodes for perhaps one of the important TPR5 clinically and genetically heterogeneous group of disorders domains of the protein.[6‑8] Thirteen of the 19 mutations which are the most common inherited neuromuscular described by Azzedine et al. in 2005 and Senderek et al. disorders with an estimated prevalence of one in 2500 in 2003, directly or indirectly affected the structure or individuals. Not only does CMT disease present with a the number of this important TPR domain.[5,8] Azzedine significant genetic heterogeneity but it may also segregate et al. searched for the SH3TC2 gene mutations in 10 with different Mendelian patterns‑autosomal dominant consanguineous CMT families. These families revealed eight [1] (AD), autosomal recessive (AR) or X‑linked. The AR CMT new mutations and one recurrent mutation R954X. Six of the phenotypes are usually more severe and have an earlier onset 10 mutations detected were found in exon 11.[5] of the weakness than the AD CMT phenotype.[2,3] The mutation detected in our patient was also within the CMT4C disease is an early‑onset autosomal recessive 11th exon of the SH3TC2 gene, which caused a change of demyelinating form.
Recommended publications
  • Inherited Neuropathies
    407 Inherited Neuropathies Vera Fridman, MD1 M. M. Reilly, MD, FRCP, FRCPI2 1 Department of Neurology, Neuromuscular Diagnostic Center, Address for correspondence Vera Fridman, MD, Neuromuscular Massachusetts General Hospital, Boston, Massachusetts Diagnostic Center, Massachusetts General Hospital, Boston, 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology Massachusetts, 165 Cambridge St. Boston, MA 02114 and The National Hospital for Neurology and Neurosurgery, Queen (e-mail: [email protected]). Square, London, United Kingdom Semin Neurol 2015;35:407–423. Abstract Hereditary neuropathies (HNs) are among the most common inherited neurologic Keywords disorders and are diverse both clinically and genetically. Recent genetic advances have ► hereditary contributed to a rapid expansion of identifiable causes of HN and have broadened the neuropathy phenotypic spectrum associated with many of the causative mutations. The underlying ► Charcot-Marie-Tooth molecular pathways of disease have also been better delineated, leading to the promise disease for potential treatments. This chapter reviews the clinical and biological aspects of the ► hereditary sensory common causes of HN and addresses the challenges of approaching the diagnostic and motor workup of these conditions in a rapidly evolving genetic landscape. neuropathy ► hereditary sensory and autonomic neuropathy Hereditary neuropathies (HN) are among the most common Select forms of HN also involve cranial nerves and respiratory inherited neurologic diseases, with a prevalence of 1 in 2,500 function. Nevertheless, in the majority of patients with HN individuals.1,2 They encompass a clinically heterogeneous set there is no shortening of life expectancy. of disorders and vary greatly in severity, spanning a spectrum Historically, hereditary neuropathies have been classified from mildly symptomatic forms to those resulting in severe based on the primary site of nerve pathology (myelin vs.
    [Show full text]
  • Lupo Et Al. Vincenzo Lupo , Máximo I
    Lupo et al. MUTATIONS IN THE SH3TC2 PROTEIN CAUSING CHARCOT-MARIE-TOOTH DISEASE TYPE 4C AFFECT ITS LOCALIZATION IN THE PLASMA MEMBRANE AND ENDOCYTIC PATHWAY Vincenzo Lupo1,2, Máximo I. Galindo1,2, Dolores Martínez-Rubio1,2, Teresa Sevilla3,4, Juan J. Vílchez3,4, Francesc Palau1,2, Carmen Espinós2. 1. Genetics and Molecular Medicine Unit, Instituto de Biomedicina de Valencia (IBV), CSIC, 46010 Valencia, Spain. 2. CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain. 3. Neurology Service, Hospital Universitari La Fe, 46009 Valencia, Spain. 4. CIBER de Enfermedades Neurodegenerativas (CIBERNED), 46009 Valencia, Spain. Corresponding author: Dr, Francesc Palau Genetics and Molecular Medicine Unit Instituto de Biomedicina de Valencia (IBV), CSIC c/ Jaume Roig, 11. 46010 Valencia, Spain Fax: + 34 96 369 0800 Telephone number: + 34 96 339 3773 Email: [email protected] 1 Lupo et al. Abstract (250 words) Mutations in SH3TC2 cause Charcot-Marie-Tooth disease (CMT) type 4C, a demyelinating inherited neuropathy characterized by early onset and scoliosis. Here we demonstrate that SH3TC2 is expressed in several components of the endocytic pathway including early endosomes, late endosomes and clathrin-coated vesicles close to the trans-Golgi network, and in the plasma membrane. Myristoylation of SH3TC2 in glycine 2 is necessary but not sufficient for the proper location of the protein in the cell membranes. In addition to myristoylation, correct anchoring also needs the presence of SH3 and TPR domains. Mutations that cause a stop codon and produce premature truncations that remove most of the TPR domains are expressed as the wild type protein. In contrast, missense mutations in or around the region of the first TPR domain are not expressed in early endosomes, have reduced expression in plasma membrane and late endosomes, and are variably expressed in clathrin-coated vesicles.
    [Show full text]
  • Neuromuscular Junction Changes in a Mouse Model of Charcot-Marie-Tooth Disease Type 4C
    International Journal of Molecular Sciences Article Neuromuscular Junction Changes in a Mouse Model of Charcot-Marie-Tooth Disease Type 4C Silvia Cipriani 1,2,3,†, Vietxuan Phan 4,†, Jean-Jacques Médard 5,6, Rita Horvath 7, Hanns Lochmüller 8,9,10,11 , Roman Chrast 5,6, Andreas Roos 4,12,† and Sally Spendiff 1,10,*,† 1 John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; [email protected] 2 INSPE-Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy 3 Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy 4 Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V.; Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany; [email protected] (V.P.); [email protected] (A.R.) 5 Department of Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden; [email protected] (J.-J.M.); [email protected] (R.C.) 6 Department of Clinical Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden 7 Department of Clinical Neurosciences, University of Cambridge, John Van Geest Cambridge Centre for Brain Repair, Forvie, Robinson way, Cambridge Biomedical Campus, Cambridge CB2 0PY, UK; [email protected] 8 Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany; [email protected] 9 Centro Nacional de Análisis Genómico, Center for Genomic Regulation, Barcelona Institute of Science and Technology, Baldri I reixac 4, 08028 Barcelona, Spain 10 Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada 11 Division of Neurology, Department of Medicine, The Ottawa Hospital, Riverside Drive, Ottawa, ON K1H 7X5, Canada 12 Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Centre for Neuromuscular Disorders in Children, University Children’s Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany * Correspondence: [email protected]; Tel.: +1-613-737-7600 (ext.
    [Show full text]
  • Impacts of Massively Parallel Sequencing for Genetic Diagnosis of Neuromuscular Disorders
    Acta Neuropathol (2013) 125:173–185 DOI 10.1007/s00401-012-1072-7 REVIEW Impacts of massively parallel sequencing for genetic diagnosis of neuromuscular disorders Nasim Vasli • Jocelyn Laporte Received: 8 October 2012 / Revised: 27 November 2012 / Accepted: 28 November 2012 / Published online: 7 December 2012 Ó Springer-Verlag Berlin Heidelberg 2012 Abstract Neuromuscular disorders (NMD) such as neu- We remind the challenges and benefit of obtaining an ropathy or myopathy are rare and often severe inherited accurate genetic diagnosis, introduce the massively parallel disorders, affecting muscle and/or nerves with neonatal, sequencing technology and its novel applications in diag- childhood or adulthood onset, with considerable burden for nosis of patients, prenatal diagnosis and carrier detection, the patients, their families and public health systems. and discuss the limitations and necessary improvements. Genetic and clinical heterogeneity, unspecific clinical fea- Massively parallel sequencing synergizes with clinical and tures, unidentified genes and the implication of large and/or pathological investigations into an integrated diagnosis several genes requiring complementary methods are the approach. Clinicians and pathologists are crucial in patient main drawbacks in routine molecular diagnosis, leading to selection and interpretation of data, and persons trained in increased turnaround time and delay in the molecular data management and analysis need to be integrated to the validation of the diagnosis. The application of massively diagnosis pipeline. Massively parallel sequencing for parallel sequencing, also called next generation sequenc- mutation identification is expected to greatly improve ing, as a routine diagnostic strategy could lead to a rapid diagnosis, genetic counseling and patient management. screening and fast identification of mutations in rare genetic disorders like NMD.
    [Show full text]
  • Genomic Diagnostics Within a Medically Underserved Population: Efficacy and Implications
    © American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Genomic diagnostics within a medically underserved population: efficacy and implications Kevin A. Strauss, MD1, Claudia Gonzaga-Jauregui, PhD2, Karlla W. Brigatti, MS1, Katie B. Williams, MD, PhD1, Alejandra K. King, PhD2, Cristopher Van Hout, PhD2, Donna L. Robinson, CRNP1, Millie Young, RNC1, Kavita Praveen, PhD2, Adam D. Heaps, MS1, Mindy Kuebler, MS1, Aris Baras, MD2, Jeffrey G. Reid, PhD2, John D. Overton, PhD2, Frederick E. Dewey, MD2, Robert N. Jinks, PhD3, Ian Finnegan, BA3, Scott J. Mellis, MD, PhD2, Alan R. Shuldiner, MD2 and Erik G. Puffenberger, PhD1 Purpose: We integrated whole-exome sequencing (WES) and Compared to trio analysis, “family” WES (average seven exomes chromosomal microarray analysis (CMA) into a clinical workflow per proband) reduced filtered candidate variants from 22 ± 6to to serve an endogamous, uninsured, agrarian community. 5 ± 3 per proband. Nineteen (51%) alleles were de novo and 17 Methods: Seventy-nine probands (newborn to 49.8 years) who (46%) inherited; the latter added to a population-based diagnostic presented between 1998 and 2015 remained undiagnosed after panel. We found actionable secondary variants in 21 (4.2%) of 502 biochemical and molecular investigations. We generated WES data subjects, all of whom opted to be informed. for probands and family members and vetted variants through Conclusion: CMA and family-based WES streamline and rephenotyping, segregation analyses, and population studies. economize diagnosis of rare genetic disorders, accelerate novel Results: The most common presentation was neurological disease gene discovery, and create new opportunities for community-based (64%). Seven (9%) probands were diagnosed by CMA.
    [Show full text]
  • Whole-Genome Sequencing in a Patient with Charcot–Marie–Tooth Neuropathy
    The new england journal of medicine original article Whole-Genome Sequencing in a Patient with Charcot–Marie–Tooth Neuropathy James R. Lupski, M.D., Ph.D., Jeffrey G. Reid, Ph.D., Claudia Gonzaga-Jauregui, B.S., David Rio Deiros, B.S., David C.Y. Chen, M.Sc., Lynne Nazareth, Ph.D., Matthew Bainbridge, M.Sc., Huyen Dinh, B.S., Chyn Jing, M.Sc., David A. Wheeler, Ph.D., Amy L. McGuire, J.D., Ph.D., Feng Zhang, Ph.D., Pawel Stankiewicz, M.D., Ph.D., John J. Halperin, M.D., Chengyong Yang, Ph.D., Curtis Gehman, Ph.D., Danwei Guo, M.Sc., Rola K. Irikat, B.S., Warren Tom, B.S., Nick J. Fantin, B.S., Donna M. Muzny, M.Sc., and Richard A. Gibbs, Ph.D. ABSTRACT BACKGROUND Whole-genome sequencing may revolutionize medical diagnostics through rapid From the Department of Molecular and identification of alleles that cause disease. However, even in cases with simple pat- Human Genetics (J.R.L., J.G.R., C.G.-J., M.B., F.Z., P.S., D.M.M., R.A.G.), the Hu- terns of inheritance and unambiguous diagnoses, the relationship between disease man Genome Sequencing Center (J.G.R., phenotypes and their corresponding genetic changes can be complicated. Compre- D.R.D., D.C.Y.C., L.N., M.B., H.D., C.J., hensive diagnostic assays must therefore identify all possible DNA changes in each D.A.W., D.M.M., R.A.G.), the Center for Medical Ethics and Health Policy (A.L.M.), haplotype and determine which are responsible for the underlying disorder.
    [Show full text]
  • Demyelinating Prenatal and Infantile Developmental Neuropathies
    Journal of the Peripheral Nervous System 17:32–52 (2012) REVIEW Demyelinating prenatal and infantile developmental neuropathies Eppie M. Yiu1,2 and Monique M. Ryan1,2,3 1Children’s Neuroscience Centre, Royal Children’s Hospital; 2Murdoch Childrens Research Institute, Flemington Rd, Parkville, 3052, Victoria, Australia; and 3Department of Paediatrics, The University of Melbourne, Australia Abstract The prenatal and infantile neuropathies are an uncommon and complex group of conditions, most of which are genetic. Despite advances in diagnostic techniques, approximately half of children presenting in infancy remain without a specific diagnosis. This review focuses on inherited demyelinating neuropathies presenting in the first year of life. We clarify the nomenclature used in these disorders, review the clinical features of demyelinating forms of Charcot-Marie-Tooth disease with early onset, and discuss the demyelinating infantile neuropathies associated with central nervous system involvement. Useful clinical, neurophysiologic, and neuropathologic features in the diagnostic work-up of these conditions are also presented. Key words: Charcot-Marie-Tooth disease, Dej´ erine–Sottas´ disease, demyelination, paediatric, peripheral neuropathy Introduction Aetiology The prenatal and infantile neuropathies are an In a large cohort of 260 children with biopsy- uncommon and complex group of conditions with confirmed peripheral neuropathy, 50 (19.2%) were broad phenotypic and genotypic diversity. Most symptomatic in infancy, of whom 48% had a infantile neuropathies have a genetic basis. This review demyelinating and 42% an axonal disorder (Wilmshurst focuses on inherited demyelinating neuropathies et al., 2003). Whilst many of these cases presented presenting in the first year of life. Axonal neuropathies prior to the era of genetic diagnosis, 20 children presenting during this period will be reviewed fell under the rubric of Charcot-Marie-Tooth disease separately.
    [Show full text]
  • Pathogenic Alleles, Clan Genomics and the Complex Architecture of Human Disease
    Pathogenic alleles, clan genomics and the complex architecture of human disease “High-throughput Sequencing – Applications and Analyses Oslo University 200th, NORWAY October 28, 2011 James R. Lupski, M.D., Ph.D., D.Sc. Department of Molecular & Human Genetics & Department of Pediatrics Baylor College of Medicine & Texas Children’s Hospital Houston, TX http://www.bcm.edu/geneticlabs/ Disclosure J.R.L. is a consultant for: NO affiliation with: Athena Diagnostics Life Technologies, Inc NOR 23andMe Applied BioSysytems, Inc Ion Torrent Systems Inc. Co-Inventor on Diagnostic Patents: UNITED STATES: 5,294,533 (issued 03/15/94); 5,306,616 (issued 04/26/94); 5,523,217 (issued 06/04/96); 5,599,920 (issued 02/04/97); 5,667,968 (issued 09/16/97);5,780,223 (issued 07/14/98); 6,132,954 (issued 10/19/00); 6,713,300 (issued 03/30/04); 7,141,420 (issued 11/28/06); 7,189,511 (issued 03/13/07); 7,192,579 (issued 03/20/07); 7,273,698 (issued 09/25/07). EUROPEAN: 0424473 (issued 05/08/96), 0610396 (issued 01/17/01), 0989805 (issued 01/11/06). The Medical Genetics Laboratories (MGL) of the Dept of Molecular and Human Genetics at Baylor College of Medicine derives revenue from molecular diagnostic testing. MGL, http://www.bcm.edu/geneticlabs/ A story about Charcot-Marie-Tooth disease CMT: clinical & genetic aspects The CMT1A duplication - a paradigm for CNV mutation & mechanisms for CNV formation CMT mutational load - gene load? locus load? or genomic load? - SNP + CNV Personal genome sequencing: CMT Genetic contributions to inherited and apparently acquired neurologic dz CMT: clinical & genetic aspects The CMT1A duplication - a paradigm for CNV mutation & mechanisms for CNV formation CMT mutational load - gene load? locus load? or genomic load? - SNP + CNV Personal genome sequencing: CMT 1886 in Paris & Cambridge,UK Hereditary Neuropathies CMT research – the first century (105 years!).
    [Show full text]
  • Whole-Genome Sequencing in a Patient with Charcot–Marie–Tooth Neuropathy
    The new england journal of medicine original article Whole-Genome Sequencing in a Patient with Charcot–Marie–Tooth Neuropathy James R. Lupski, M.D., Ph.D., Jeffrey G. Reid, Ph.D., Claudia Gonzaga-Jauregui, B.S., David Rio Deiros, B.S., David C.Y. Chen, M.Sc., Lynne Nazareth, Ph.D., Matthew Bainbridge, M.Sc., Huyen Dinh, B.S., Chyn Jing, M.Sc., David A. Wheeler, Ph.D., Amy L. McGuire, J.D., Ph.D., Feng Zhang, Ph.D., Pawel Stankiewicz, M.D., Ph.D., John J. Halperin, M.D., Chengyong Yang, Ph.D., Curtis Gehman, Ph.D., Danwei Guo, M.Sc., Rola K. Irikat, B.S., Warren Tom, B.S., Nick J. Fantin, B.S., Donna M. Muzny, M.Sc., and Richard A. Gibbs, Ph.D. ABSTRACT BACKGROUND Whole-genome sequencing may revolutionize medical diagnostics through rapid From the Department of Molecular and identification of alleles that cause disease. However, even in cases with simple pat- Human Genetics (J.R.L., J.G.R., C.G.-J., M.B., F.Z., P.S., D.M.M., R.A.G.), the Hu- terns of inheritance and unambiguous diagnoses, the relationship between disease man Genome Sequencing Center (J.G.R., phenotypes and their corresponding genetic changes can be complicated. Compre- D.R.D., D.C.Y.C., L.N., M.B., H.D., C.J., hensive diagnostic assays must therefore identify all possible DNA changes in each D.A.W., D.M.M., R.A.G.), the Center for Medical Ethics and Health Policy (A.L.M.), haplotype and determine which are responsible for the underlying disorder.
    [Show full text]
  • Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies
    Corporate Medical Policy Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies AHS – M2072 File Name: genetic_testing_for_diagnosis_of_inherited_peripheral_neuropathies Origination: 01/01/2019 Last CAP Review: 07/2021 Next CAP Review: 07/2022 Last Review: 07/2021 Description of Procedure or Service The inherited peripheral neuropathies are a heterogeneous group of diseases that may be inherited in an autosomal dominant, autosomal recessive, or X-linked dominant manner. The inherited peripheral neuropathies can be divided into hereditary motor and sensory neuropathies (such as Charcot-Marie- Tooth disease), hereditary neuropathy with liability to pressure palsies, hereditary sensory and autonomic neuropathies, and other miscellaneous types (e.g., hereditary brachial plexopathy, giant axonal neuropathy). In addition to clinical presentation, nerve conduction studies, and family history, genetic testing can be used to diagnose specific inherited peripheral neuropathies (Kang, 2020a). Related Policies Nerve Fiber Density Testing AHS – M2112 General Genetic Testing, Germline Disorders AHS – M2145 General Genetic Testing, Somatic Disorders AHS – M2146 Celiac Disease Testing AHS – G2043 ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for genetic testing for diagnosis of inherited peripheral neuropathies when it is determined the medical criteria or reimbursement guidelines below are met. Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy.
    [Show full text]
  • Exome Sequencing Resolves Apparent Incidental Findings and Reveals Further Complexity of SH3TC2 Variant Alleles Causing Charcot
    Lupski et al. Genome Medicine 2013, 5:57 http://genomemedicine.com/content/5/6/57 RESEARCH Open Access Exome sequencing resolves apparent incidental findings and reveals further complexity of SH3TC2 variant alleles causing Charcot-Marie-Tooth neuropathy James R Lupski1,2*, Claudia Gonzaga-Jauregui1, Yaping Yang3, Matthew N Bainbridge2, Shalini Jhangiani2, Christian J Buhay2, Christie L Kovar2, Min Wang2, Alicia C Hawes2, Jeffrey G Reid2, Christine Eng3, Donna M Muzny2 and Richard A Gibbs1,2* Abstract Background: The debate regarding the relative merits of whole genome sequencing (WGS) versus exome sequencing (ES) centers around comparative cost, average depth of coverage for each interrogated base, and their relative efficiency in the identification of medically actionable variants from the myriad of variants identified by each approach. Nevertheless, few genomes have been subjected to both WGS and ES, using multiple next generation sequencing platforms. In addition, no personal genome has been so extensively analyzed using DNA derived from peripheral blood as opposed to DNA from transformed cell lines that may either accumulate mutations during propagation or clonally expand mosaic variants during cell transformation and propagation. Methods: We investigated a genome that was studied previously by SOLiD chemistry using both ES and WGS, and now perform six independent ES assays (Illumina GAII (x2), Illumina HiSeq (x2), Life Technologies’ Personal Genome Machine (PGM) and Proton), and one additional WGS (Illumina HiSeq). Results: We compared the variants identified by the different methods and provide insights into the differences among variants identified between ES runs in the same technology platform and among different sequencing technologies. We resolved the true genotypes of medically actionable variants identified in the proband through orthogonal experimental approaches.
    [Show full text]
  • SH3TC2, a Protein Mutant in Charcot–Marie–Tooth Neuropathy, Links Peripheral Nerve Myelination to Endosomal Recycling
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Serveur académique lausannois doi:10.1093/brain/awq168 Brain 2010: 133; 2462–2474 | 2462 BRAIN A JOURNAL OF NEUROLOGY SH3TC2, a protein mutant in Charcot–Marie–Tooth neuropathy, links peripheral nerve myelination to endosomal recycling Claudia Stendel,1,* Andreas Roos,2,* Henning Kleine,3,# Estelle Arnaud,4,# Murat O¨ zc¸elik,1,# Pa´ris N. M. Sidiropoulos,1,# Jennifer Zenker,4 Fanny Schu¨ pfer,4 Ute Lehmann,3 Radoslaw M. Sobota,5 David W. Litchfield,6 Bernhard Lu¨ scher,3 Roman Chrast,4 Ueli Suter1 and Jan Senderek1 1 Institute of Cell Biology, Department of Biology, ETH Zu¨ rich, Zu¨ rich, Switzerland 2 Institute of Human Genetics, RWTH Aachen University, Aachen, Germany 3 Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany 4 Department of Medical Genetics and Service of Medical Genetics, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland 5 Centre for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark 6 Department of Biochemistry, University of Western Ontario, London, Canada *These authors contributed equally to this work. #These authors contributed equally to this work. Correspondence to: Dr Jan Senderek, Institute of Cell Biology, ETH Zu¨ rich, Schafmattstr 18, 8093 Zu¨ rich, Switzerland E-mail: [email protected] Patients with Charcot–Marie–Tooth neuropathy and gene targeting in mice revealed an essential role for the SH3TC2 gene in peripheral nerve myelination. SH3TC2 expression is restricted to Schwann cells in the peripheral nervous system, and the gene product, SH3TC2, localizes to the perinuclear recycling compartment.
    [Show full text]