Hydrail Feasibility Study Go to Or Click Here
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Innovative Technologies for Light Rail and Tram: a European Reference Resource
Innovative Technologies for Light Rail and Tram: A European reference resource Briefing Paper 6 Hydrail - Hydrogen Hybrid and Hydrogen Fuel Cell Systems September 2015 Sustainable transport for North-West Europe’s periphery Sintropher is a five-year €23m transnational cooperation project with the aim of enhancing local and regional transport provision to, from and withing five peripheral regions in North-West Europe. INTERREG IVB INTERREG IVB North-West Europe is a financial instrument of the European Union’s Cohesion Policy. It funds projects which support transnational cooperation. Innovative technologies for light rail and tram Working in association with the POLIS European transport network, who are kindly hosting these briefing papers on their website. Report produced by University College London Lead Partner of Sintropher project Authors: Charles King, Giacomo Vecia, Imogen Thompson, Bartlett School of Planning, University College London. The paper reflects the views of the authors and should not be taken to be the formal view of UCL or Sintropher project. 4 Innovative technologies for light rail and tram Table of Contents Background .................................................................................................................................................. 6 Innovative technologies for light rail and tram – developing opportunities ................................................... 6 Hydrail Trams .............................................................................................................................................. -
The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility
The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility Andreas Hoffrichter, PhD Nick Little Shanelle Foster, PhD Raphael Isaac, PhD Orwell Madovi Darren Tascillo Center for Railway Research and Education Michigan State University Henry Center for Executive Development 3535 Forest Road, Lansing, MI 48910 NCDOT Project 2019-43 FHWA/NC/2019-43 October 2020 -i- FEASIBILITY REPORT The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 Prepared by Center for Railway Research and Education Eli Broad College of Business Michigan State University 3535 Forest Road Lansing, MI 48910 USA Prepared for North Carolina Department of Transportation – Rail Division 860 Capital Boulevard Raleigh, NC 27603 -ii- Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA/NC/2019-43 4. Title and Subtitle 5. Report Date The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Andreas Hoffrichter, PhD, https://orcid.org/0000-0002-2384-4463 Nick Little Shanelle N. Foster, PhD, https://orcid.org/0000-0001-9630-5500 Raphael Isaac, PhD Orwell Madovi Darren M. Tascillo 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Railway Research and Education 11. Contract or Grant No. Michigan State University Henry Center for Executive Development 3535 Forest Road Lansing, MI 48910 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Research and Development Unit 104 Fayetteville Street December 2018 – October 2020 Raleigh, North Carolina 27601 14. Sponsoring Agency Code RP2019-43 Supplementary Notes: 16. -
Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
Review Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy Michael Handwerker 1,2,*, Jörg Wellnitz 1,2 and Hormoz Marzbani 2 1 Faculty of Mechanical Engineering, University of Applied Sciences Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany; [email protected] 2 Royal Melbourne Institute of Technology, School of Engineering, Plenty Road, Bundoora, VIC 3083, Australia; [email protected] * Correspondence: [email protected] Abstract: Climate change is one of the major problems that people face in this century, with fossil fuel combustion engines being huge contributors. Currently, the battery powered electric vehicle is considered the predecessor, while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified, different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells, it is shown that, despite the lower efficiency, the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle, the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency Citation: Handwerker, M.; Wellnitz, and high prices for the required components, this domestically produced hydrogen cannot compete J.; Marzbani, H. Comparison of with hydrogen produced from fossil fuels on a larger scale. -
Hydrogen Trains – an Effective Alternative to Rail Electrification?
HYDROGEN TRAINS – AN EFFECTIVE ALTERNATIVE TO RAIL ELECTRIFICATION? Tuesday 22 May 2018, Edinburgh Conclusions Hydrogen is increasingly being used as an energy vector in transport. The Workshop examined these applications and looked at the use of hydrogen, fuel cells for trains as an alternative to electrification. The Workshop concentrated predominantly on regional trains and drew attendees from the hydrogen and rail industries in roughly equal numbers. Policymakers from different tiers of government were also represented. Some participants came from mainland EU and Canada but the majority of participants were from the UK. Policy Developments • Alternative solutions to diesel trains are needed so that the rail sector can comply with energy and environmental policies and decarbonise the rail network. • The European Commission will continue to encourage cleaner fuels, both through "carrots" such as funding for research (including the Fuel Cell Hydrogen Joint Undertaking which is 50% funded by EU money) and "sticks" such as legislative requirements for clean fuels infrastructure • The UK Railways Minister has challenged the rail industry to look at the way in which diesel only trains can be removed from operation by 2040 as part of a wide challenge to reduce carbon emissions and improve air quality across the rail sector. • In response to the Minister’s challenge, a Task Force has been set up with Malcolm Brown (Chief Executive, Angel Trains) as Chair. It will report back to the Minister in Autumn 2018. • There is no one size fits all when the UK Government looks at alternatives to diesel. Considerations such as affordability and Value for Money will be important considerations. -
Hydrogen As a Fuel for Gas Turbines
Hydrogen as a fuel for gas turbines A pathway to lower CO2 www.ge.com/power/future-of-energy Executive Summary In order to combat man-made climate change, there is a global need for decarbonization,* and all sectors that produce carbon dioxide (CO2) must play a role. The power sector’s journey to There are two ways to systematically have operated on fuels with at least 50% decarbonize, often referred approach the task of turning high efficiency (by volume) hydrogen. These units have gas generation into a zero or near zero- accumulated more than one million operating to as the Energy Transition, carbon resource: pre and post-combustion. hours, giving GE a unique perspective is characterized by rapid Pre-combustion refers to the systems and on the challenges of using hydrogen as deployment of renewable energy processes upstream of the gas turbine and a gas turbine fuel. resources and a rapid reduction in post-combustion refers to systems and processes downstream of the gas turbine. GE is continuing to advance the capability of coal, the most carbon-intensive The most common approach today to its gas turbine fleet to burn hydrogen through power generation source. Based tackle pre-combustion decarbonization is internally funded R&D programs and through on our extensive analysis and simple: to change the fuel, and the most US Department of Energy funded programs. experience across the breadth talked about fuel for decarbonization of the The goals of these efforts are to ensure power sector is hydrogen. that ever higher levels of hydrogen can be of the global power industry, GE burned safely and reliably in GE’s gas turbines believes that the accelerated GE is a world leader in gas turbine fuel for decades to come. -
Conversion of a Gasoline Internal Combustion Engine to a Hydrogen Engine
Paper ID #3541 Conversion of a Gasoline Internal Combustion Engine to a Hydrogen Engine Dr. Govind Puttaiah P.E., West Virginia University Govind Puttaiah is the Chair and a professor in the Mechanical Engineering Department at West Virginia University Institute of Technology. He has been involved in teaching mechanical engineering subjects during the past forty years. His research interests are in industrial hydraulics and alternate fuels. He is an invited member of the West Virginia Hydrogen Working Group, which is tasked to promote hydrogen as an alternate fuel. Timothy A. Drennen Timothy A. Drennen has a B.S. in mechanical engineering from WVU Institute of Technology and started with EI DuPont de Nemours and Co. in 2010. Mr. Samuel C. Brunetti Samuel C. Brunetti has a B.S. in mechanical engineering from WVU Institute of Technology and started with EI DuPont de Nemours and Co. in 2011. Christopher M. Traylor c American Society for Engineering Education, 2012 Conversion of a Gasoline Internal Combustion Engine into a Hydrogen Engine Timothy Drennen*, Samual Brunetti*, Christopher Traylor* and Govind Puttaiah **, West Virginia University Institute of Technology, Montgomery, West Virginia. ABSTRACT An inexpensive hydrogen injection system was designed, constructed and tested in the Mechanical Engineering (ME) laboratory. It was used to supply hydrogen to a gasoline engine to run the engine in varying proportions of hydrogen and gasoline. A factory-built injection and control system, based on the injection technology from the racing industry, was used to inject gaseous hydrogen into a gasoline engine to boost the efficiency and reduce the amount of pollutants in the exhaust. -
Hydrogen for Railway Traction
HYDROGEN FOR RAILWAY TRACTION Andreas Hoffrichter Research Associate Birmingham Centre for Railway Research and Education University of Birmingham, UK Toronto: Ryerson University. 11th of June 2013 Outline Current railway traction Well-to-wheel analysis results Prototype locomotive Hydrogen Pioneer Performance modelling with computer simulation Present Railway Traction The majority of railway traction vehicles employ electric motors Energy to the traction motors is supplied either through wayside infrastructure (electric) or an on-board diesel-alternator set (diesel) At a global level, approximately 70% of railway energy for traction is supplied as diesel while 30% is provided by electricity. BUT varies significantly with region, e.g., 100% of railway network electrified in Switzerland, whereas 0% electrified in Canada (mainlines only) Railways are typically the largest single energy consumer in a country, e.g., for electricity in Germany and the UK, for diesel BNSF in the USA Problems Facing Diesel Traction Point-of-use emissions and overall Greenhouse Gas emissions Uncertainty about economical diesel supply Traditional solution: Electrification. BUT: • Large investment in infrastructure required • Visual impact of wayside infrastructure Alternative to Diesel traction required, other than electrification Reasons for Hydrogen Abundant Non-toxic Not a greenhouse gas Various feedstocks Combustion product with oxygen is water Can reduce greenhouse gas emissions Does not require wayside infrastructure For railways: Combines the advantages of diesel and electric traction and avoids most disadvantages: autonomous operation without emissions at the point-of-use while allowing a feedstock mix Hoffrichter, A., Miller, A., R., Hillmansen, S., & Roberts, C. (2012). Well-to- Wheel Analysis for Electric, Diesel and Hydrogen Traction for Railways. -
THE HYDROGEN ECONOMY. a Non-Technical Review
Hydrogen holds out the promise of a truly sustainable global energy future. As a clean energy carrier that can be produced from any primary energy source, hydrogen used in highly efficient fuel cells could prove to be the answer to our growing concerns about energy security, urban pollution and climate change. This prize surely warrants For more information, contact: THE HYDROGEN ECONOMY the attention and resources currently being UNEP DTIE directed at hydrogen – even if the Energy Branch prospects for widespread 39-43 Quai André Citroën commercialisation of hydrogen in the A non-technical review 75739 Paris Cedex 15, France foreseeable future are uncertain. Tel. : +33 1 44 37 14 50 Fax.: +33 1 44 37 14 74 E-mail: [email protected] www.unep.fr/energy/ ROGRAMME P NVIRONMENT E ATIONS N NITED DTI-0762-PA U Copyright © United Nations Environment Programme, 2006 This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Disclaimer The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations Environment Programme concerning the legal status of any country, territory, city or area or of its authorities, or concerning delimitation of its frontiers or boundaries. -
Hydrogen-Rail (Hydrail) Development
H2@Rail Workshop Hydrogen-Rail (hydrail) Development Andreas Hoffrichter, PhD Burkhardt Professor in Railway Management Executive Director of the Center for Railway Research and Education [email protected] H2@Rail Workshop, Lansing, MI March 27, 2019 Contents • Current rail energy consumption and emissions • Hybrids • Primary power plant efficiencies • Hydrail development • Past and on-going research - 2 - Michigan State University, 2019 Current Rail Energy Efficiency and GHG DOT (2018), ORNL (2018) - 3 - Michigan State University, 2019 Regulated Exhaust Emissions • The US Environmental Protection Agency (EPA) has regulated the exhaust emissions from locomotives • Four different tiers, depending on construction year of locomotive • Increasingly stringent emission reduction requirements • Tier 5 is now in discussion (see next slide) • Achieving Tier 4 was already very challenging for manufacturers (EPA, 2016) - 4 - Michigan State University, 2019 Proposed Tier 5 Emission Regulation • California proposed rail emission regulation to be adopted at the federal level (California Air Resources Board, 2017) - 5 - Michigan State University, 2019 Class I Railroad Fuel Cost 2016 (AAR, 2017) • Interest from railways in alternatives high when diesel cost high, interest low when diesel cost low • When diesel cost are high, often fuel surcharges introduced to shippers • Average railroad diesel price for the last 10 years ~US$2.50 per gallon (AAR, 2017) - 6 - Michigan State University, 2019 Dynamic Braking • Traction motors are used as generators • Generated electricity is: – Converted to heat in resistors, called rheostatic braking – Fed back into wayside infrastructure or stored on-board of train, called regenerative braking • Reduces brake shoe/pad wear, e.g., replacement every 18 month rather than every18 days (UK commuter train example) • Can reduces energy consumption. -
An Overview of Hydrogen As a Vehicle Fuel
Renewable and Sustainable Energy Reviews 16 (2012) 5511–5528 Contents lists available at SciVerse ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: www.elsevier.com/locate/rser An overview of hydrogen as a vehicle fuel H. Fayaz a,b,n, R. Saidur a,b, N. Razali a, F.S. Anuar a,b, A.R. Saleman a,b, M.R. Islam b a Department of Mechanical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia b Centre of Research UMPEDAC, Level 4, Engineering Tower, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia article info abstract Article history: As hydrogen fuel cell vehicles move from manifestation to commercialization, the users expect safe, Received 24 December 2010 convenient and customer-friendly fuelling. Hydrogen quality affects fuel cell stack performance and Received in revised form lifetime, as well as other factors such as valve operation. In this paper, previous researcher’s development 1 June 2012 on hydrogen as a possible major fuel of the future has been studied thoroughly. Hydrogen is one of the Accepted 4 June 2012 energy carriers which can replace fossil fuel and can be used as fuel in an internal combustion engines and as a fuel cell in vehicles. To use hydrogen as a fuel of internal combustion engine, engine design should be Keywords: considered for avoiding abnormal combustion. As a result it can improve engine efficiency, power output Hydrogen and reduce NOx emissions. The emission of fuel cell is low as compared to conventional vehicles but as Vehicle fuel penalty, fuel cell vehicles need additional space and weight to install the battery and storage tank, thus Engine increases it production cost. -
Hydrogen – Fuel of the Future Or Just Hot Air?
September 23, 2020 Hydrogen – Fuel of the Future or Just Hot Air? Hydrogen Series – Part 1 SUMMARY Hydrogen – not for the first time – is currently a hot topic in the energy sector, with advocates promoting it as the fuel of the future, capable of addressing critical sustainable energy challenges. Governmental policies aimed at supporting a hydrogen economy are gaining momentum, and companies are starting to greenlight innovative projects that could dramatically change the energy landscape. In this two-part series, we will look at (1) the basics of the hydrogen market, recently announced high- level government hydrogen policies and barriers to adoption; and (2) key market players and the industries where investment opportunities are likely to arise, along with what government support might be necessary to facilitate the investment needed to achieve the targets embedded in the high-level government policies. A. INTRODUCTION TO HYDROGEN Hydrogen, the most abundant element in the universe, is not found naturally in its pure form on Earth in significant quantities. Instead, it is found bound to other elements such as oxygen (e.g. to make water, H2O) and carbon (e.g. to form organic compounds, including fossil fuels). When we refer to hydrogen for use as a fuel, we are referring to pure hydrogen (H2). Hydrogen has the highest energy content of any common fuel by weight; however, it also has the lowest energy content by volume when in gaseous form. Critically, pure hydrogen emits no carbon dioxide or other harmful emissions during combustion. B. USES OF HYDROGEN – PRESENT AND FUTURE Hydrogen is currently predominantly used in industry as feedstock: it plays a fundamental part in the production of ammonia for fertilisers and the production of methanol for polymers. -
Beyond Road Vehicles: Survey of Zero-Emission Technology Options Across the Transport Sector
WORKING PAPER 2018-11 Beyond road vehicles: Survey of zero-emission technology options across the transport sector Authors: Dale Hall, Nikita Pavlenko, and Nic Lutsey Date: July 18, 2018 Keywords: Zero-emission vehicles, aviation, maritime, off-road, rail 2018 INTRODUCTION related to these modes for 2018 and pro- jections for 2060.2 In total, transport rep- Electrification continues to make resents about 25% of global greenhouse 30% strides in the passenger vehicle market, gas emissions from fossil fuel combus- representing more than 1% of global tion; this share is expected to increase sales and up to 40% of sales in leading as the power sector decarbonizes.3 As markets in 2017.1 Enabled by falling shown, whereas road vehicles are the 47% battery prices and increasing invest- largest sources and have received the ment from traditional and new vehicle 10% most attention, one-fourth of trans- manufacturers, this trend represents port CO emissions (2.2 gigatonnes) an opportunity to dramatically reduce 2 are attributable to maritime, aviation, 10% greenhouse gas emissions in the trans- and rail—a share projected to grow in port sector. Policymakers continue to the coming decades. Although light- 3% encourage a shift toward zero-emis- duty vehicle emissions are expected to 2060 sion vehicles through CO regulations, 2 peak around 2020 under this scenario, consumer incentives, and investment 41% maritime and aviation emissions are pro- in associated infrastructure. jected to rise through 2030 as a result of Although road vehicles currently rep- increasing demand and slower efficiency resent about 70% of transport green- improvements. This figure does not take 20% house gas emissions, other forms of into account the additional impacts of transport—including aviation, maritime, and off-road vehicles—are substantial 2 Using the 2-degree scenario from International Energy Agency, Energy technology emissions sources and are expected to perspectives 2017 (June 2017); www.iea.