INTERNAL CATEGORIES, ANAFUNCTORS and LOCALISATIONS in Memory of Luanne Palmer (1965-2011)

Total Page:16

File Type:pdf, Size:1020Kb

INTERNAL CATEGORIES, ANAFUNCTORS and LOCALISATIONS in Memory of Luanne Palmer (1965-2011) INTERNAL CATEGORIES, ANAFUNCTORS AND LOCALISATIONS In memory of Luanne Palmer (1965-2011) DAVID MICHAEL ROBERTS Abstract. TO DO: Rewrite abstract. Write introduction. Finish examples section, in particular, track down references to literature where the main theorem is used (Pronk, Carchedi, Colman...) Make sure all references in bibliography are used, delete if not. Use hyperref package? Contents 1 Introduction 1 2 Sites and internal categories 2 3 Internal categories 5 4 Anafunctors 10 5 Localising bicategories at a class of 1-cells 17 6 2-categories of internal categories admit bicategories of fractions 20 7 Examples 24 A Superextensive sites 29 1. Introduction It is a well-known result of classical category theory that a functor is an equivalence if and only if it is fully faithful and essentially surjective. The proof of this fact requires the axiom of choice. Whatever one's position on this axiom is, one situation where Choice is lacking is when dealing with internal categories and groupoids. We can recover this result by localising at (i.e. formally inverting) the class of fully faithful and essentially surjective functors. Since surjectivity is a concept that doesn't generalise straightforwardly from Set, we consider instead a class of arrows E which plays the r^oleof the surjections. We shall call these weak equivalences (see [Bunge-Par´e,1979]). Note however that what is needed here is not localisation as given in [Gabriel-Zisman, 1967], but a 2-categorical localisation. An Australian Postgraduate Award provided financial support during part of the time the material for this paper was written. 2000 Mathematics Subject Classification: Primary 18D99;Secondary 18F10, 18D05, 22A22. Key words and phrases: internal categories, anafunctors, localization, bicategory of fractions. c David Michael Roberts, 2011. Permission to copy for private use granted. 1 2 In [Bunge-Par´e,1979] the interest in weak equivalences is to do with the `stack com- pletion' of an internal category or groupoid, but it is from the theory of geometric stacks that we find the necessary construction to localise a 2-category. It is a common idea that algebraic stacks are internal groupoids up to weak equivalence. This was made precice in [Pronk, 1996] where Pronk proved that the 2-category of algebraic stacks is a localisation of a certain 2-category of groupoid schemes, as well as analogous results for topological and smooth stacks. It is for this reason that we are interested not only in the 2-categories Cat(S) and Gpd(S) of all internal categories or groupoids in S respectively, but certain sub-2- categories Cat0(S) ⊂ Cat(S), which may or may not consist entirely of groupoids. Note that because we wish to recover Lie groupoids as a special case of the results here, we will not assume the ambient category is finitely complete. This does not introduce any complications. This article started out based on material from the author's PhD thesis. Many thanks are due to Michael Murray, Mathai Varghese and Jim Stasheff, supervisors to the author. The patrons of the n-Category Caf´eand nLab, especially Mike Shulman, with whom this work was shared in development, provided helpful input. 2. Sites and internal categories The idea of localness is inherent in many constructions in algebraic topology and algebraic geometry. For an abstract category the concept of `local' is encoded by a Grothendieck pretopology. Localness is needed to be able to talk about local sections of a map in a category { a concept that will replace surjectivity when moving from Set to more general categories. This section gathers definitions and notations for later use. 2.1. Definition. A Grothendieck pretopology (or simply pretopology) on a category S is a collection J of families f(Ui / A)i2I gA2Obj(S) of morphisms for each object A 2 S satisfying the following properties ∼ 1. (A0 / A) is in J for every isomorphism A0 ' A. 2. Given a map B / A, for every (Ui / A)i2I in J the pullbacks B ×A Ai exist and (B ×A Ai / B)i2I is in J. i 3. For every (Ui / A)i2I in J and for a collection (Vk / Ui)k2Ki from J for each i 2 I, the family of composites i (Vk / A)k2Ki;i2I are in J. 3 Families in J are called covering families. A category S equipped with a pretopology J is called a site, denoted (S; J). The pretopology J is called a singleton pretopology if every covering family consists of a single arrow (U / A). In this case a covering family is called a cover and we call (S; J) a unary site. We do not assume that the collection of covering families for each object is a set (or small set, depending on one's choice of foundations). Very often, one sees the definition of a pretopology as being an assignment of a set covering families to each object. However, when dealing with singleton pretopologies, one can define it as a subcategory with certain properties, and there is not necessarily a set of covers for each object. One example is the category of groups with surjective homomorphisms as covers. This distinction will be important later. 2.2. Example. The prototypical example is the pretopology O on Top, where a covering family is an open cover. The class of numerable open covers (i.e. those that admit a subordinate partition of unity [Dold, 1963]) also forms a pretopology on Top. Much of traditional bundle theory is carried out using this site; for example the Milnor classifying space classifies bundles which are locally trivial over numerable covers. 2.3. Definition. A covering family (Ui / A)i2I is called effective if A is the colimit of the following diagram: the objects are the Ui and the pullbacks Ui ×A Uj, and the arrows are the projections Ui Ui ×A Uj / Uj: If the covering family consists of a single arrow (U / A), this is the same as saying U / A is a regular epimorphism. 2.4. Definition. A site is called subcanonical if every covering family is effective. 2.5. Example. On Top, the usual pretopology O of opens, the pretopology of numerable covers and that of open surjections are subcanonical. 2.6. Example. In a regular category, the class of regular epimorphisms forms a sub- canonical singleton pretopology. 2.7. Definition. Let (S; J) be a site. An arrow P / A in S is called a J-epimorphism if there is a covering family (Ui / A)i2I and a lift P ? Ui / A for every i 2 I.A J-epimorphism is called universal its pullback along an arbitrary map exists. We denote the class of universal J-epimorphisms by Jun. 4 The definition of J-epimorphism is equivalent to the definition in III.7.5 in [Mac Lane- Moerdijk, 1992]. The dotted maps in the above definition are called local sections, after the case of the usual open cover pretopology on Top. If J is a singleton pretopology, it is clear that J ⊂ Jun. 2.8. Example. The universal O-epimorphisms for the pretopology O of open covers on Diff is Subm, the pretopology of surjective submersions. Sometimes a pretopology J contains a smaller pretopology that still has enough covers to compute the same J-epimorphisms. 2.9. Definition. If J and K are two singleton pretopologies with J ⊂ K, such that K ⊂ Jun, then J is said to be cofinal in K. Clearly J is cofinal in Jun for any singleton pretopology J. 2.10. Lemma. If J is cofinal in K, then Jun = Kun. As mentioned earlier, one may be given a singleton pretopology such that each object has more than a set's worth of covers. If such a pretopology contains a cofinal pretopology with set-many covers for each object, then we can pass to the smaller pretopology and recover the same results. In fact, we can get away with something weaker: one could ask only that the category of all covers of an object (see definition 2.13 below) has a set of weakly initial objects, and such set may not form a pretopology. This is the content of the axiom WISC below. We first give some more precise definitions. 2.11. Definition. A category C has a weakly initial set I of objects if for every object A of C there is an arrows O / A from some object O 2 I. Every small category has a weakly initial set, namely its set of objects. 2.12. Example. The large category Fields of fields has a weakly initial set, consisting of the prime fields fQ; Fpjp primeg. To contrast, the category of sets with surjections for arrows doesn't have a weakly initial set of objects. We pause only to remark that the statement of the adjoint functor theorem can be expressed in terms of weakly initial sets. 2.13. Definition. Let (S; J) be a site. For any object A, the category of covers of A, denoted J=A has as objects the covering families (Ui / A)i2I and as morphisms (Ui / A)i2I / (Vj / A)j2J tuples consisting of a function r : I / J and arrows Ui / Vr(i) in S=A. When J is a singleton pretopology this is simply a full subcategory of S=A. We now define the axiom WISC (Weakly Initial Set of Covers), due independently to Mike Shulman and Thomas Streicher. 5 2.14. Definition. A site (S; J) is said to satisfy WISC if for every object A of S, the category J=A has a weakly initial set of objects.
Recommended publications
  • 10. Algebra Theories II 10.1 Essentially Algebraic Theory Idea: A
    Page 1 of 7 10. Algebra Theories II 10.1 essentially algebraic theory Idea: A mathematical structure is essentially algebraic if its definition involves partially defined operations satisfying equational laws, where the domain of any given operation is a subset where various other operations happen to be equal. An actual algebraic theory is one where all operations are total functions. The most familiar example may be the (strict) notion of category: a small category consists of a set C0of objects, a set C1 of morphisms, source and target maps s,t:C1→C0 and so on, but composition is only defined for pairs of morphisms where the source of one happens to equal the target of the other. Essentially algebraic theories can be understood through category theory at least when they are finitary, so that all operations have only finitely many arguments. This gives a generalization of Lawvere theories, which describe finitary algebraic theories. As the domains of the operations are given by the solutions to equations, they may be understood using the notion of equalizer. So, just as a Lawvere theory is defined using a category with finite products, a finitary essentially algebraic theory is defined using a category with finite limits — or in other words, finite products and also equalizers (from which all other finite limits, including pullbacks, may be derived). Definition As alluded to above, the most concise and elegant definition is through category theory. The traditional definition is this: Definition. An essentially algebraic theory or finite limits theory is a category that is finitely complete, i.e., has all finite limits.
    [Show full text]
  • Exercise Sheet
    Exercises on Higher Categories Paolo Capriotti and Nicolai Kraus Midlands Graduate School, April 2017 Our course should be seen as a very first introduction to the idea of higher categories. This exercise sheet is a guide for the topics that we discuss in our four lectures, and some exercises simply consist of recalling or making precise concepts and constructions discussed in the lectures. The notion of a higher category is not one which has a single clean def- inition. There are numerous different approaches, of which we can only discuss a tiny fraction. In general, a very good reference is the nLab at https://ncatlab.org/nlab/show/HomePage. Apart from that, a very incomplete list for suggested further reading is the following (all available online). For an overview over many approaches: – Eugenia Cheng and Aaron Lauda, Higher-Dimensional Categories: an illustrated guide book available online, cheng.staff.shef.ac.uk/guidebook Introductions to simplicial sets: – Greg Friedman, An Elementary Illustrated Introduction to Simplicial Sets very gentle introduction, arXiv:0809.4221. – Emily Riehl, A Leisurely Introduction to Simplicial Sets a slightly more advanced introduction, www.math.jhu.edu/~eriehl/ssets.pdf Quasicategories: – Jacob Lurie, Higher Topos Theory available as paperback (ISBN-10: 0691140499) and online, arXiv:math/0608040 Operads (not discussed in our lectures): – Tom Leinster, Higher Operads, Higher Categories available as paperback (ISBN-10: 0521532159) and online, 1 arXiv:math/0305049 Note: Exercises are ordered by topic and can be done in any order, unless an exercise explicitly refers to a previous one. We recommend to do the exercises marked with an arrow ⇒ first.
    [Show full text]
  • Change of Base for Locally Internal Categories
    Journal of Pure and Applied Algebra 61 (1989) 233-242 233 North-Holland CHANGE OF BASE FOR LOCALLY INTERNAL CATEGORIES Renato BETTI Universitb di Torino, Dipartimento di Matematica, via Principe Amedeo 8, IO123 Torino, Italy Communicated by G.M. Kelly Received 4 August 1988 Locally internal categories over an elementary topos 9 are regarded as categories enriched in the bicategory Span g. The change of base is considered with respect to a geometric morphism S-r 8. Cocompleteness is preserved, and the topos S can be regarded as a cocomplete, locally internal category over 6. This allows one in particular to prove an analogue of Diaconescu’s theorem in terms of general properties of categories. Introduction Locally internal categories over a topos & can be regarded as categories enriched in the bicategory Span& and in many cases their properties can be usefully dealt with in terms of standard notions of enriched category theory. From this point of view Betti and Walters [2,3] study completeness, ends, functor categories, and prove an adjoint functor theorem. Here we consider a change of the base topos, i.e. a geometric morphismp : 9-t CF. In particular 9 itself can be regarded as locally internal over 8. Again, properties of p can be expressed by the enrichment (both in Spangand in Span 8) and the relevant module calculus of enriched category theory applies directly to most calculations. Our notion of locally internal category is equivalent to that given by Lawvere [6] under the name of large category with an &-atlas, and to Benabou’s locally small fibrations [l].
    [Show full text]
  • HIGHER-DIMENSIONAL ALGEBRA V: 2-GROUPS 1. Introduction
    Theory and Applications of Categories, Vol. 12, No. 14, 2004, pp. 423–491. HIGHER-DIMENSIONAL ALGEBRA V: 2-GROUPS JOHN C. BAEZ AND AARON D. LAUDA Abstract. A 2-group is a ‘categorified’ version of a group, in which the underlying set G has been replaced by a category and the multiplication map m: G × G → G has been replaced by a functor. Various versions of this notion have already been explored; our goal here is to provide a detailed introduction to two, which we call ‘weak’ and ‘coherent’ 2-groups. A weak 2-group is a weak monoidal category in which every morphism has an ∼ ∼ inverse and every object x has a ‘weak inverse’: an object y such that x ⊗ y = 1 = y ⊗ x. A coherent 2-group is a weak 2-group in which every object x is equipped with a specified weak inversex ¯ and isomorphisms ix:1→ x⊗x¯, ex:¯x⊗x → 1 forming an adjunction. We describe 2-categories of weak and coherent 2-groups and an ‘improvement’ 2-functor that turns weak 2-groups into coherent ones, and prove that this 2-functor is a 2-equivalence of 2-categories. We internalize the concept of coherent 2-group, which gives a quick way to define Lie 2-groups. We give a tour of examples, including the ‘fundamental 2-group’ of a space and various Lie 2-groups. We also explain how coherent 2-groups can be classified in terms of 3rd cohomology classes in group cohomology. Finally, using this classification, we construct for any connected and simply-connected compact simple Lie group G a family of 2-groups G ( ∈ Z)havingG as its group of objects and U(1) as the group of automorphisms of its identity object.
    [Show full text]
  • Higher Dimensional Algebra VI: Lie 2-Algebra
    Mathematics Faculty Works Mathematics 2004 Higher Dimensional Algebra VI: Lie 2-Algebra John C. Baez University of California, Riverside Alissa S. Crans Loyola Marymount University, [email protected] Follow this and additional works at: https://digitalcommons.lmu.edu/math_fac Part of the Algebra Commons Recommended Citation Baez, J. and Crans, A. “Higher Dimensional Algebra VI: Lie 2-Algebras.” Theory and Applications of Categories, Vol. 12 (2004): 492 – 538. This Article is brought to you for free and open access by the Mathematics at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Mathematics Faculty Works by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact [email protected]. Theory and Applications of Categories, Vol. 12, No. 15, 2004, pp. 492{538. HIGHER-DIMENSIONAL ALGEBRA VI: LIE 2-ALGEBRAS JOHN C. BAEZ AND ALISSA S. CRANS Abstract. The theory of Lie algebras can be categorified starting from a new notion of `2-vector space', which we define as an internal category in Vect. There is a 2- category 2Vect having these 2-vector spaces as objects, `linear functors' as morphisms and `linear natural transformations' as 2-morphisms. We define a `semistrict Lie 2- algebra' to be a 2-vector space L equipped with a skew-symmetric bilinear functor [·; ·]: L×L ! L satisfying the Jacobi identity up to a completely antisymmetric trilinear natural transformation called the `Jacobiator', which in turn must satisfy a certain law of its own. This law is closely related to the Zamolodchikov tetrahedron equation, and indeed we prove that any semistrict Lie 2-algebra gives a solution of this equation, just as any Lie algebra gives a solution of the Yang{Baxter equation.
    [Show full text]
  • Apr 0 8 2011
    From manifolds to invariants of En-algebras MASSACHUSETTS INSTITUTE by OF TECHNIOLOGY Ricardo Andrade APR 08 2011 Licenciatura, Instituto Superior Tecnico (2005) LjBRARIES Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy ARCHIVEs at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2010 @ Ricardo Andrade, MMX. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. To view a copy of this license, visit http: //creativecommons .org/licenses/by-sa/3.0/legalcode The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Author .......... Department of Mathematics August 24, 2010 Certified by.... Haynes R. Miller Professor of Mathematics Thesis Supervisor 7) Accepted by ... 6$, Bjorn Poonen Chairman, Department Committee on Graduate Students From manifolds to invariants of En-algebras by Ricardo Andrade Submitted to the Department of Mathematics on August 24, 2010, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract This thesis is the first step in an investigation of an interesting class of invariants of En-algebras which generalize topological Hochschild homology. The main goal of this thesis is to simply give a definition of those invariants. We define PROPs EG, for G a structure group sitting over GL(n, R). Given a manifold with a (tangential) G-structure, we define functors 0 EG[M]: (EG) -+ Top constructed out of spaces of G-augmented embeddings of disjoint unions of euclidean spaces into M. These spaces are modifications to the usual spaces of embeddings of manifolds.
    [Show full text]
  • INTERNAL CATEGORIES, ANAFUNCTORS and LOCALISATIONS in Memory of Luanne Palmer (1965-2011)
    Theory and Applications of Categories, Vol. 26, No. 29, 2012, pp. 788{829. INTERNAL CATEGORIES, ANAFUNCTORS AND LOCALISATIONS In memory of Luanne Palmer (1965-2011) DAVID MICHAEL ROBERTS Abstract. In this article we review the theory of anafunctors introduced by Makkai and Bartels, and show that given a subcanonical site S, one can form a bicategorical localisation of various 2-categories of internal categories or groupoids at weak equivalences using anafunctors as 1-arrows. This unifies a number of proofs throughout the literature, using the fewest assumptions possible on S. 1. Introduction It is a well-known classical result of category theory that a functor is an equivalence (that is, in the 2-category of categories) if and only if it is fully faithful and essentially surjective. This fact is equivalent to the axiom of choice. It is therefore not true if one is working with categories internal to a category S which doesn't satisfy the (external) axiom of choice. This is may fail even in a category very much like the category of sets, such as a well-pointed boolean topos, or even the category of sets in constructive foundations. As internal categories are the objects of a 2-category Cat(S) we can talk about internal equivalences, and even fully faithful functors. In the case S has a singleton pretopology J (i.e. covering families consist of single maps) we can define an analogue of essentially surjective functors. Internal functors which are fully faithful and essentially surjective are called weak equivalences in the literature, going back to [Bunge-Par´e1979].
    [Show full text]
  • Complete Internal Categories
    Complete Internal Categories Enrico Ghiorzi∗ April 2020 Internal categories feature notions of limit and completeness, as originally proposed in the context of the effective topos. This paper sets out the theory of internal completeness in a general context, spelling out the details of the definitions of limit and completeness and clarifying some subtleties. Remarkably, complete internal categories are also cocomplete and feature a suitable version of the adjoint functor theorem. Such results are understood as consequences of the intrinsic smallness of internal categories. Contents Introduction 2 1 Background 3 1.1 Internal Categories . .3 1.2 Exponentials of Internal Categories . .9 2 Completeness of Internal Categories 12 2.1 Diagrams and Cones . 12 2.2 Limits . 14 2.3 Completeness . 17 2.4 Special Limits . 20 2.5 Completeness and Cocompleteness . 22 arXiv:2004.08741v1 [math.CT] 19 Apr 2020 2.6 Adjoint Functor Theorem . 25 References 32 ∗Research funded by Cambridge Trust and EPSRC. 1 Introduction Introduction It is a remarkable feature of the effective topos [Hyl82] to contain a small subcategory, the category of modest sets, which is in some sense complete. That such a category should exist was originally suggested by Eugenio Moggi as a way to understand how realizability toposes give rise to models for impredicative polymorphism, and concrete versions of such models already appeared in [Gir72]. The sense in which the category of modest sets is complete is a delicate matter which, among other aspects of the situation, is considered in [HRR90]. This notion of (strong) completeness is related in a reasonably straightforward way—using the externalization of an internal category—to the established notion for indexed categories [PS78].
    [Show full text]
  • Higher Categories Student Seminar
    Higher categories student seminar Peter Teichner and Chris Schommer-Pries Contents 0 Introduction { Peter Teichner and Chris Schommer-Pries 2 0.1 Part 1: Lower higher categories { Peter . .2 0.1.1 Motivation 1: Higher categories show up everywhere . .2 0.1.2 Motivation 2: The homotopy hypothesis . .4 0.2 Part 2: Higher higher categories { Chris . .5 0.2.1 Broad outline and motivation . .5 0.2.2 Detailed outline . .6 1 Strict n-categories and their classifying spaces { Lars Borutzky 6 1.1 Strict n-categories, left Kan extensions, and nerves of 1-categories . .6 1.2 Higher nerve functors . .8 1.3 Examples of higher categories . .9 2 Strictification of weak 2-categories { Arik Wilbert 10 2.1 Motivation . 10 2.2 The theorem . 11 2.2.1 The definitions . 11 2.2.2 The proof . 13 2.3 Correction from previous lecture . 14 3 2-groupoids and 2-types { Malte Pieper 15 3.1 Motivation . 15 3.2 What's a 2-group? . 15 3.3 Classify 2-groups! . 16 3.4 2-types/equivalence $ 2-groups/equivalence . 17 3.5 Addendum (handout): Classification of homotopy 2-types: Some basic definitions . 19 4 No strict 3-groupoid models the 2-sphere { Daniel Br¨ugmann 21 4.1 Outline . 21 4.2 The homotopy groups of groupoids . 22 4.3 The auxiliary result . 23 5 Complete Segal spaces and Segal categories { Alexander K¨orschgen 24 1 5.1 Definitions . 24 5.2 Groupoids . 26 5.3 Relation with n-Types ........................................ 26 5.4 Examples . 27 6 Examples and problems with weak n-categories { Kim Nguyen 27 6.1 Background .
    [Show full text]
  • Higher-Dimensional Algebra Vi: Lie 2-Algebras
    Theory and Applications of Categories, Vol. 12, No. 15, 2004, pp. 492{538. HIGHER-DIMENSIONAL ALGEBRA VI: LIE 2-ALGEBRAS JOHN C. BAEZ AND ALISSA S. CRANS Abstract. The theory of Lie algebras can be categorified starting from a new notion of `2-vector space', which we define as an internal category in Vect. There is a 2- category 2Vect having these 2-vector spaces as objects, `linear functors' as morphisms and `linear natural transformations' as 2-morphisms. We define a `semistrict Lie 2- algebra' to be a 2-vector space L equipped with a skew-symmetric bilinear functor [·; ·]: L×L ! L satisfying the Jacobi identity up to a completely antisymmetric trilinear natural transformation called the `Jacobiator', which in turn must satisfy a certain law of its own. This law is closely related to the Zamolodchikov tetrahedron equation, and indeed we prove that any semistrict Lie 2-algebra gives a solution of this equation, just as any Lie algebra gives a solution of the Yang{Baxter equation. We construct a 2- category of semistrict Lie 2-algebras and prove that it is 2-equivalent to the 2-category of 2-term L1-algebras in the sense of Stasheff. We also study strict and skeletal Lie 2-algebras, obtaining the former from strict Lie 2-groups and using the latter to classify Lie 2-algebras in terms of 3rd cohomology classes in Lie algebra cohomology. This classification allows us to construct for any finite-dimensional Lie algebra g a canonical 1-parameter family of Lie 2-algebras g~ which reduces to g at ~ = 0.
    [Show full text]
  • Cosmoi of Internal Categories by Ross Street
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 258, Number 2, April 1980 COSMOI OF INTERNAL CATEGORIES BY ROSS STREET Abstract. An internal full subcategory of a cartesian closed category & is shown to give rise to a structure on the 2-category Cat(&) of categories in & which introduces the notion of size into the analysis of categories in & and allows proofs by transcendental arguments. The relationship to the currently popular study of locally internal categories is examined. Internal full subcategories of locally presentable categories (in the sense of Gabriel-Ulmer) are studied in detail. An algorithm is developed for their construc- tion and this is applied to the categories of double categories, triple categories, and so on. Introduction. The theory of categories is essentially algebraic in the terminology of Freyd [12]. This means that it is pertinent to take models of the theory in any finitely complete category &. Of course this does not mean that all the usual properties of categories are available to us in &. The 2-category Cat{&) of categories in & is finitely complete (Street [29]) so pullbacks, categories of Eilen- berg-Moore algebras for monads, comma categories, and so on, are available. Even some colimit constructions such as the categories of Kleisli algebras exist. Obvi- ously the more like the category Set of sets â becomes the more closely category theory internal to 6E resembles ordinary category theory. If & is finitely cocomp- lete, for example, we gain localization; or, if 6Bis cartesian closed we gain functor categories. Yet there is an aspect of category theory which distinguishes it from other essentially algebraic theories; namely, the question of size.
    [Show full text]
  • An Informal Introduction to Topos Theory
    An informal introduction to topos theory Tom Leinster∗ Contents 1 The definition of topos 3 2 Toposes and set theory 7 3 Toposes and geometry 13 4 Toposes and universal algebra 22 This short text is for readers who are confident in basic category theory but know little or nothing about toposes. It is based on some impromptu talks given to a small group of category theorists. I am no expert on topos theory. These notes are for people even less expert than me. In keeping with the spirit of the talks, what follows is light on both detail and references. For the reader wishing for more, almost everything here is presented in respectable form in Mac Lane and Moerdijk’s very pleasant introduction to topos theory (1994). Nothing here is new, not even the expository viewpoint (very loosely inspired by Johnstone (2003)). As a rough indication of the level of knowledge assumed, I will take it that arXiv:1012.5647v3 [math.CT] 27 Jun 2011 you are totally comfortable with the Yoneda Lemma and the concept of cartesian closed category, but I will not assume that you know the definition of subobject classifier or of topos. Section 1 explains the definition of topos. The remaining three sections discuss some of the connections between topos theory and other subjects. There are many more such connections than I will mention; I hope it is abundantly clear that these notes are, by design, a quick sketch of a large subject. Section 2 is on connections between topos theory and set theory. There are two themes here.
    [Show full text]