NASA's Astonishing Evidence That C Is Not Constant: the Pioneer Anomaly

Total Page:16

File Type:pdf, Size:1020Kb

NASA's Astonishing Evidence That C Is Not Constant: the Pioneer Anomaly NASA’s astonishing evidence that c is not constant: The pioneer anomaly E. D. Greaves Universidad Simón Bolívar, Laboratorio de Física Nuclear, Apartado 89000, Caracas 1080 A, Venezuela. E-mail: [email protected] For over 20 years NASA has struggled to find an explanation to the Pioneer anomaly. Now it becomes clear the solution to the riddle is that they have uncovered evidence that c, the speed of light, is not quite a universal constant. Using J. C. Cure’s hypothesis that the index of refraction is a function of the gravitational energy density of space and straightforward Newtonian mechanics, NASA’s measurements provide compelling evidence that the speed of light depends on the inverse of the square root of the gravitational energy density of space. The magnitude of the Pioneer anomalous acceleration leads to the value of the primordial energy density of space due to faraway stars and galaxies: 1.0838. x 1015 Joule/m3. A value which almost miraculously coincides with the same quantity: 1.09429 x 1015 Joule/m3 derived by J. C. Cure from a completely different phenomenon: the bending of starlight during solar eclipses. PACS numbers: 95.55.Pe, 06.20.Jr, 04.80.Cc, 95.10.-a Introduction Anderson and collaborators at the Jet Propulsion Laboratory (JPL) have reported [1] an apparent, weak, long range anomalous acceleration of the Pioneer 10 and 11 with supporting data from Galileo, and Ulysses spacecraft. [2, 3] Careful analysis of the Doppler signals from both spacecraft have shown the presence of an unmodeled acceleration towards the sun. By 1998 it was concluded from the analysis, that the unmodeled acceleration towards the Sun was (8.09 +/- 0.20) x 10-10 m/s2 for Pioneer 10 and of (8.56 +/- 0.15) x 10-10 m/s2 for Pioneer 11. In a search for an explanation, the motions of two other spacecraft were analyzed: Galileo in its Earth-Jupiter mission phase and Ulysses in a Jupiter-perihelion cruise out of the plane of the ecliptic. It was concluded that Ulysses was subjected to an unmodeled acceleration towards the Sun of (12 +/- 3) x 10-10 m/s2. To investigate this, an independent analysis was performed of the raw data using the Aerospace Corporation’s Compact High Accuracy Satellite Motion Program (CHASMP), which was developed independently of JPL. The CHASMP analysis of Pioneer 10 data also showed an unmodeled acceleration in a direction along the radial toward the Sun. The value is (8.65 +/- 0.03) x 10-10 m/s2, agreeing with JPL’s result. Aerospace’s analysis of Galileo Doppler data resulted in a determination for an unmodeled acceleration in a direction along the radial toward the Sun of, (8 +/- 3) x 10-10 m/s2, a value similar to that from Pioneer 10. All attempts at explanation of the unmodeled acceleration as the result of hardware or software problems at the spacecraft or at the tracking stations have failed. A very detailed description of the Pioneer anomaly, of the measurements and of the analysis was given by the JPL team [4]. Two conferences have been carried out on the subject, in 2004 [5] and in 2005 [6] and although several explanations have been advanced, no clear consensus exists of the cause of the weak [7] anomalous acceleration experienced by the various spacecraft. With no plausible explanation so far, the possibility that the origin of the anomalous signal 1 is new physics has arisen.[8] Very recently evidence of the puzzling phenomenon was found in the motion of other spacecraft. [9] The Pioneer anomalous acceleration a is derived from the Doppler drift Δf of the base frequency f detected: Δf = f a In this paper the anomalous drift is shown to be due to o o ( c ) a change of the index of refraction of vacuum, a function of the gravitational energy density of space predicted by the Curé hypothesis [10]. It affects c the speed of light in space far from the influence of the sun. 1.- Energy density of space. By energy density of space we mean the classical energy density (Energy per unit volume) associated with the potential energy of all forms of force: electric, magnetic, gravitational or any other force in nature. In particular, to be associated to gravitational energy of nearby massive bodies such as the Sun and the Earth which we can readily calculate, and to the gravitational energy density produced by the gravitational field of the stars and far away galaxies, not so easily estimated. The energy density of space associated with the presence of static electric E and magnetic B fields are given by: 1 2 1 2 ρ = ε o E + B (1) 2 2μo Where ε 0 and μ0 are the electric permittivity and the magnetic permeability of space respectively. The equivalent energy density associated with a gravitational field g (m/s2) is given by 1 g 2 ρ = (2) 2 4πG with G the Universal constant of gravitation. Hence any volume of space is immersed in the universal primordial field of energy ρ * which includes the immediate gravitational field due to the presence of our own galaxy superimposed on the energy fields of all far-away galaxies. Thus the energy density in the surface of the Earth and in the proximity of the Sun is given by: * (3) ρ = ρ + ρS + ρ E where the energy density due to the Sun ρS produced by the gravitational effect of the 2 mass of the Sun M S is obtained from (2) with g = GM S / r GM 2 (4) ρ = s S 8πr 4 Here r is the distance from the centre of the Sun to the point in question. And ρ E is the energy density due to the gravitational effect produced by the mass of the Earth and is calculated in analogous manner. The acceleration of gravity g S due to the Sun at the radius -2 of the Earth’s orbit is g S = 0.00593 m s . Hence the Sun’s energy density at the Earth orbit 4 3 is ρS = 2.097 x 10 Joules/m . With the Earth’s acceleration of gravity the energy density +10 3 due to the Earth at the surface is ρ E = 5.726 10 Joules/m and the universal primordial 2 energy density ρ * is estimated [10] at 1.09429 x 1015 Joules/m3. This is a value arrived at by an analysis of the deflection of light by the Sun’s energy field considered as a refraction phenomenon as reviewed below. [11] J.C. Curé [10, p. 276] explains the energy density of space in the following illuminating words: “Every celestial body is surrounded by an invisible envelope of gravitostatic energy caused by the matter of the body and given by Eq. (104). (Our Eq. 4) To proceed with a colorful description, let us assign a yellow color to the sun’s gravitostatic energy. Let us picture the background cosmic energy with a bluish color. Now we can see, in our imagination, that the sun is surrounded with a green atmosphere of energy. The green color fades away into a bluish color as we recede from the sun.” 2.- Effect of energy density of space Now let us consider the hypothesis that the speed of light is a function of the energy density of space ρ which in the neighbourhood of the sun is determined by a constant background value due to the distant galaxies plus a smaller value due to the gravitational presence of the Sun’s mass as seen by (3) above. We assume the speed is inversely proportional to the square root of the energy density by the use of the Curé hypothesis [10, p 173] given by relation (5): k c'= (5) ρ * +ρ S + ρ E This implies that the speed of light decreases near the Sun and increases far away from the sun. We may then assign an index of refraction n to space such that n = 1 in vacuum space near the Earth, as we usually do, and assign an index n' < 1 far away from the Sun, in deep space, where the speed of light c' is greater and is given by: c c'= (6) n' so that the index of refraction there is n'= c / c' . Using (5) we may write expressions for c and c' and obtain the index of refraction, n' , far away from the Sun in terms of ρS1AU the energy density of the Sun at the distance of the Earth: one Astronomical Unit ( r = 1 AU), ρ E the energy density of the Earth at the surface, ρSfar , the energy density of the Sun, relatively far away but in the vicinity of the Sun and ρ * the interstellar primordial energy density in the vicinity of the Sun [12] as: ρ *+ρSfar + ρ Efar n'= (7) ρ *+ρS1AU + ρ E Strictly speaking, relation (7) should contain in the numerator and denominator the gravitational energy density due to all the other planets. However, the contribution is negligible due to the 1/ r 4 factor in the energy density, unless n' is being calculated near a planet. At this point it is fitting to address the order of magnitude of the quantities being discussed. With n = 1 at the Earth at 1 AU from the Sun, the index of refraction n' further away from the Sun is dependent on the relative magnitudes of the energy density values that enter into 3 Eq. (7), i.e. the relative value of the Sun’s energy density, the Earth’s energy density and the primordial energy density ρ * of space due to the stars and far-away galaxies.
Recommended publications
  • The Quest to Understand the Pioneer Anomaly
    The quest to understand the Pioneer anomaly I Michael Martin Nieto, Theoretical Division (MS-8285) Los Alamos National Laboratory Los Alarnos, New Mexico 87545 USA E-mail: [email protected] +a l1 l I l uring the 1960's, when the Jet Propulsion Laboratory (JPL) Pioneer 10 was launched on 2 March 1972 local time, aboard D first started thinking about what eventually became the an Atlas/Centaur/TE364-4launch vehicle (see Fig. l).It was the "Grand Tours" of the outer planets (the Voyager missions of the first craft launched into deep space and was the first to reach an 1970's and 1980's),the use of planetary flybys for gravity assists of outer giant planet, Jupiter,on 4 Dec. 1973 [l, 21. Later it was the first spacecraft became of great interest. The concept was to use flybys to leave the "solar system" (past the orbit of Pluto or, should we now of the major planets to both mowthe direction of the spacecraft say, Neptune). The Pioneer project, eventually extending over and also to add to its heliocentric velocity in a manner that was decades, was managed at NASAIAMES Research Center under the unfeasible using only chemical fuels. The first time these ideas were hands of four successive project managers, the legendary Charlie put into practice in deep space was with the Pioneers. Hall, Richard Fimrnel, Fred Wirth, and the current Larry Lasher. While in its Earth-Jupiter cruise, Pioneer 10 was still bound to the solar system. By 9 January 1973 Pjoneer l0 was at a distance of 3.40 AU (Astronomical Units'), beyond the asteroid belt.
    [Show full text]
  • Pioneer Anomaly: What Can We Learn from Future Planetary Exploration Missions?
    56th International Astronautical Congress, Paper IAC-05-A3.4.02 PIONEER ANOMALY: WHAT CAN WE LEARN FROM FUTURE PLANETARY EXPLORATION MISSIONS? Andreas Rathke EADS Astrium GmbH, Dept. AED41, 88039 Friedrichshafen, Germany. Email: [email protected] Dario Izzo ESA Advanced Concepts Team, ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands. Email: [email protected] The Doppler-tracking data of the Pioneer 10 and 11 spacecraft show an unmodelled constant acceleration in the direction of the inner Solar System. Serious efforts have been undertaken to find a conventional explanation for this effect, all without success at the time of writing. Hence the effect, commonly dubbed the Pioneer anomaly, is attracting considerable attention. Unfortunately, no other space mission has reached the long-term navigation accuracy to yield an independent test of the effect. To fill this gap we discuss strategies for an experimental verification of the anomaly via an upcoming space mission. Emphasis is put on two plausible scenarios: non-dedicated concepts employing either a planetary exploration mission to the outer Solar System or a piggybacked micro- spacecraft to be launched from an exploration spacecraft travelling to Saturn or Jupiter. The study analyses the impact of a Pioneer anomaly test on the system and trajectory design for these two paradigms. Both paradigms are capable of verifying the Pioneer anomaly and determine its magnitude at 10% level. Moreover they can discriminate between the most plausible classes of models of the anomaly. The necessary adaptions of the system and mission design do not impair the planetary exploration goals of the missions. I.
    [Show full text]
  • Max-Planck-Institut Für Sonnensystemforschung Max Planck Institute for Solar System Research Tätigkeitsbericht 2011 Activit
    Max-Planck-Institut für Sonnensystemforschung Max Planck Institute for Solar System Research Tätigkeitsbericht 2011 Activity Report 2011 Inhalt Contents 1 Inhalt Contents 1 Wissenschaftliche Zusammenarbeit 2 Scientific collaborations 1.1 Wissenschaftliche Gäste 2 Scientific guests 1.2 Aufenthalt von MPS-Wissenschaftlern an anderen Instituten 4 Stay of MPS scientists at other institutes 1.3 Projekte in Zusammenarbeit mit anderen Institutionen 5 Projects in collaboration with other institutions 2 Vorschläge und Anträge 22 Proposals 2.1 Projektvorschläge 22 Project proposals 2.2 Anträge auf Beobachtungszeit 23 Observing time proposals 3 Publikationen 25 Publications 3.1 Referierte Publikationen 25 Refereed publications 3.2 Doktorarbeiten 45 PhD theses 4 Vorträge und Poster 46 Talks and posters 5 Seminare 69 Seminars 6 Lehrtätigkeit 73 Lectures 7 Tagungen und Workshops 74 Conferences and workshops 7.1 Organisation von Tagungen und Workshops 74 Organization of conferences and workshops 7.2 Convener bei wissenschaftlichen Tagungen 74 Convener during scientific meetings 8 Gutachtertätigkeit für wissenschaftliche Zeitschriften 75 Reviews for scientific journals 9 Herausgebertätigkeit 76 Editorship 10 Mitgliedschaft in wissenschaftlichen Gremien 76 Membership in scientific councils 11 Auszeichnungen 77 Awards Wissenschaftliche Zusammenarbeit / Scientific collaborations 2 1. Wissenschaftliche Zusammenarbeit / Scientific collaborations 1.1 Wissenschaftlich Gäste (mit Aufenthalt ≥1 Woche) Scientific guests (with stay ≥1 week) Jaime Araneda (University of Concepcion, Chile), 1 Jul - 15 Aug (host: E. Marsch) Ankit Barik (Indian Institute of Technology, Kharagpour, India), 19 May - 15 Jul (host: U. Christensen) Alexander Bazilevsky (Vernadsky Institute, Russian Academy of Sciences, Moscow, Russia), 1 Aug - 26 Aug (host: W. Markiewicz) Jishnu Bhattacharya (Indian Institute of Technology, Kanpur, India), 10 May – 18 Jul (host: L.
    [Show full text]
  • Estimating the Thermally Induced Acceleration of the New Horizons Spacecraft
    Estimating the thermally induced acceleration of the New Horizons spacecraft André G. C. Guerra,1, ∗ Frederico Francisco,1, y Paulo J. S. Gil,2, z and Orfeu Bertolami1, x 1Departamento de Física e Astronomia and Centro de Física do Porto, Faculdade de Ciências, Universidade do Porto, Portugal 2CCTAE, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal (Dated: November 3, 2017) Residual accelerations due to thermal effects are estimated through a model of the New Horizons spacecraft and a Monte Carlo simulation. We also discuss and estimate the thermal effects on the attitude of the spacecraft. The work is based on a method previously used for the Pioneer and Cassini probes, which solve the Pioneer anomaly problem. The results indicate that after the encounter with Pluto there is a residual acceleration of the order of 10−9 m=s2, and that rotational effects should be difficult, although not impossible, to detect. I. INTRODUCTION mination of the γ parameter of the parametrised post- Newtonian (PPN) formalism so far [9], but also led to The first probes aimed at the planets beyond the aster- the detection of a similar anomalous acceleration of ther- oid belt were launched in the 1970s, starting with the ap- mal origin, just like the Pioneer spacecraft [10]. propriately named Pioneer 10 and 11. These two space- The New Horizons mission has undergone some “hiber- craft visited Jupiter and Saturn and paved the way for nation” periods, where no thruster was fired. Therefore, the two much heavier and more sophisticated Voyager 1 it is very likely that a similar thermal origin accelera- and 2, which completed the round through all four gas gi- tion might show up in the radiometric data.
    [Show full text]
  • A Route to Understanding of the Pioneer Anomaly
    The XXII Texas Symposium on Relativistic Astrophysics, Stanford University, December 13-17, 2004 1 A Route to Understanding of the Pioneer Anomaly aSlava G. Turyshev, bMichael Martin Nieto, and cJohn D. Anderson∗ a,cJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA bTheoretical Division (MS-B285), Los Alamos National Laboratory, University of California, Los Alamos, NM 87545 The Pioneer 10 and 11 spacecraft yielded the most precise navigation in deep space to date. However, while at heliocentric distance of ∼ 20–70 AU, the accuracies of their orbit reconstructions were limited by a small, anomalous, Doppler frequency drift. This drift can be interpreted as a −8 2 sunward constant acceleration of aP =(8.74 ± 1.33) × 10 cm/s which is now commonly known as the Pioneer anomaly. Here we discuss the Pioneer anomaly and present the next steps towards understanding of its origin. They are: 1) Analysis of the entire set of existing Pioneer 10 and 11 data, obtained from launch to the last telemetry received from Pioneer 10, on 27 April 2002, when it was at a heliocentric distance of 80 AU. This data could yield critical new information about the anomaly. If the anomaly is confirmed, 2) Development of an instrumental package to be operated on a deep space mission to provide an independent confirmation on the anomaly. If further confirmed, 3) Development of a deep-space experiment to explore the Pioneer anomaly in a dedicated mission with an accuracy for acceleration resolution at the level of 10−10 cm/s2 in the extremely low frequency range.
    [Show full text]
  • The Non-Gravitational Accelerations of the Cassini Spacecraft and the Nature of the “Pioneer Anomaly”
    Dipartimento di Ingegneria Astronautica e Aerospaziale Dottorato di ricerca in Ingegneria Aerospaziale Ciclo XXIII The non-gravitational accelerations of the Cassini spacecraft and the nature of the “Pioneer anomaly” Dottorando: Relatore: Mauro Di Benedetto Ch.mo Prof. Luciano Iess Anno Accademico 2010-2011 Table of Contents Introduction vi 1 The Pioneer anomaly 1 1.1 Pioneer 10 & 11 mission . 2 1.2 Spacecraft design . 3 1.3 Discovery of the anomalous acceleration . 4 1.4 Status of current investigations . 8 1.5 Contribution from this work . 9 2 CassiniteststhePioneeranomaly 10 2.1 Cassinimission .......................... 11 2.1.1 The interplanetary cruise phase . 11 2.1.2 The Saturnian phase . 12 2.2 Spacecraft design . 13 2.2.1 Cassini coordinate system . 16 2.3 Experimental method to test the Pioneer anomaly . 17 2.3.1 Inner cruise phase . 18 2.3.2 Radio science experiments in the outer cruise phase . 18 2.3.3 Multi arc method on the Saturnian phase . 20 2.3.4 Disentangling RTG and Pioneer like acceleration . 22 3 Theorbitdeterminationmethod 24 3.1 The orbit determination problem . 25 3.2 Method of differential correction . 26 3.2.1 Linearization procedure . 28 3.2.2 The weighted least squares solution . 29 3.2.3 A priori information . 31 3.3 TheODPfilter:SIGMA .. .. .. .. .. .. .. .. .. 34 3.3.1 Householder transformations . 36 3.4 Consider parameters: definition . 38 3.4.1 Mathematical formulation . 38 3.5 The multi arc method . 42 i TABLE OF CONTENTS ii 4 Radio metric observables 44 4.1 Range and range-rate observables . 45 4.1.1 Data information content .
    [Show full text]
  • The Study of the Anomalous Acceleration of Pioneer 10 and 11
    The Study of the Anomalous Acceleration of Pioneer 10 and 11 SlavaSlava G.G. Turyshev,Turyshev, JohnJohn D.D. AndersonAnderson ((JetJet PropulsionPropulsion Laboratory,Laboratory, CaltechCaltech)) MichaelMichael MartinMartin NietoNieto ((LosLos AlamosAlamos NationalNational Laboratory,Laboratory, UU ofof CaliforniaCalifornia)) Journées du GREX 2004 Nice, France, 29 October 2004 THETHE STUDYSTUDY OFOF THETHE PIONEERPIONEER ANOMALYANOMALY Conclusions & Outline: The Pioneer 10/11 anomalous acceleration: −82 aP =±(8.74 1.33) ×10 cm/s A line-of-sight constant acceleration towards the Sun: –We find no mechanism or theory that explains the anomaly – Most plausible cause is systematics, yet to be demonstrated Phys. Rev. D 65 (2002) 082004, gr-qc/0104064 Possible Origin? Conventional Physics [not yet understood]: – Gas leaks, heat reflection, drag force, etc… New Physics [many proposals exist, some interesting] Both are important − a “win-win” situation: – CONVENTIONAL explanation: improvement of spacecraft engineering for precise navigation & attitude control – NEW physics: would be truly remarkable… THETHE STUDYSTUDY OFOF THETHE PIONEERPIONEER ANOMALYANOMALY Pioneer 10/11 Mission – Built: TRW (Northrop-Grumman Space Technology) – Navigation: Jet Propulsion Laboratory, Caltech – Project management: NASA Ames Research Center Position of Pioneer 10 on 29 October 2004: Last successful precession maneuver to point the spacecraft to Earth was accomplished on 11 Feb 2000 (distance from the Sun of 75 AU) THETHE STUDYSTUDY OFOF THETHE PIONEERPIONEER
    [Show full text]
  • A Study of Anomalous Acceleration of the Pioneer 10 and 11
    The Study of the Anomalous Acceleration of the Pioneer 10 and 11 SlavaSlava G.G. Turyshev,Turyshev, JohnJohn D.D. AndersonAnderson ((JetJet PropulsionPropulsion Laboratory,Laboratory, CaltechCaltech)) MichaelMichael MartinMartin NietoNieto ((LosLos AlamosAlamos NationalNational Laboratory,Laboratory, UU ofof CaliforniaCalifornia)) The XXII Texas Symposium on Relativistic Astrophysics Stanford University, December 13-17, 2004 THETHE STUDYSTUDY OFOF THETHE PIONEERPIONEER ANOMALYANOMALY Conclusions and Outline: The Pioneer 10 and 11 anomalous acceleration: −82 aP =±×(8.74 1.33) 10 cm/s A line-of-sight constant acceleration towards the Sun: –We find no mechanism or theory that explains the anomaly – Most plausible cause is systematics, yet to be demonstrated Phys. Rev. D 65 (2002) 082004, gr-qc/0104064 Possible Origin? Conventional Physics [not yet understood]: – Gas leaks, heat reflection, drag force, etc… New Physics [many proposals exist, some interesting] A “win-win” situation, as both are important: – CONVENTIONAL explanation: improvement of spacecraft engineering for precise navigation & attitude control – NEW physics: would be truly remarkable… THETHE STUDYSTUDY OFOF THETHE PIONEERPIONEER ANOMALYANOMALY Pioneer 10/11 Mission – Built: TRW (Northrop-Grumman Space Technology) – Navigation: Jet Propulsion Laboratory, Caltech – Project management: NASA Ames Research Center Position of Pioneer 10 on 15 December 2004: Last successful precession maneuver to point the spacecraft to Earth was accomplished on 11 Feb 2000 (distance from the
    [Show full text]
  • The Pioneer Anomaly
    The Pioneer Anomaly José A. de Diego and Darío Núñez Instituto de Astronomía, Universidad Nacional Autónoma de México Ciudad Universitaria, 04510 México, D.F., México [email protected] ABSTRACT Analysis of the radio-metric data from Pioneer 10 and 11 spacecrafts has indicated the presence of an unmodeled acceleration starting at 20 AU, which has become known as the Pioneer anomaly. The nature of this acceleration is uncertain. In this paper we give a description of the effect and review some relevant mechanisms proposed to explain the observed anomaly. We also discuss on some future projects to investigate this phenomenon. RESUMEN El análisis de datos radiométricos de las naves espaciales Pioneer 10 y 11 ha indicado la presencia de una aceleración inexplicada a partir de 20 UA, que se ha dado en denominar la anomalía del Pioneer. La naturaleza de esta aceleración es incierta. En este artículo damos una descripción del efecto y hacemos una reseña de los mecanismos más relevantes que se han propuesto para explicar la anomalía observada. También discutimos algunos proyectos a futuro para investigar este fenómeno. INTRODUCTION Radiometric data from the Pioneer 10 and 11, Galileo, Ulysses and Cassini spacecrafts have Revista Mexicana de Ciencias Geológicas Ciencias de Mexicana Revista brought out the existence of an anomalous acceleration towards the Sun with a value of -10 2 aA = (8.74±1.33)×10 m/s (Anderson et al.. 2002a; 2003). The phenomenon has resisted any attempt for explanation invoking either failures in the tracking algorithm, engineering causes or external forces acting upon the space probes.
    [Show full text]
  • Gravitational Solution to the Pioneer 10/11 Anomaly
    Gravitational solution to the Pioneer 10/11 anomaly J. R. Brownstein and J. W. Moffat Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada E-mail: [email protected], [email protected] Abstract. A fully relativistic modified gravitational theory including a fifth force skew symmetric field is fitted to the Pioneer 10/11 anomalous acceleration. The theory allows for a variation with distance scales of the gravitational constant G, the fifth force skew symmetric field coupling strength ω and the mass of the skew symmetric field µ =1/λ. A fit to the available anomalous acceleration data for the Pioneer 10/11 spacecraft is obtained for a phenomenological representation of the “running” constants and values of the associated parameters are shown to exist that are consistent with fifth force experimental bounds. The fit to the acceleration data is consistent with all current satellite, laser ranging and observations for the inner planets. Published Class. Quantum Grav. 23 (2006) 3427-3436 1. Introduction The radio tracking data from the Pioneer 10/11 spacecraft during their travel to the outer parts of the solar system have revealed an anomalous acceleration. The Doppler data obtained at distances r from the Sun between 20 and 70 astronomical units arXiv:gr-qc/0511026v5 16 Jan 2007 (AU) showed the anomaly as a deviation from Newton’s and Einstein’s gravitational theories. The anomaly is observed in the Doppler residuals data, as the differences of the observed Doppler velocity from the modelled Doppler velocity, and can be represented as an anomalous acceleration directed towards the Sun, with an approximately constant amplitude over the range of distance, 20 AU <r< 70 AU [1, 2, 3]: −8 −2 aP = (8.74 ± 1.33) × 10 cm s .
    [Show full text]
  • SCIENTIFIC AMERICAN 69 Onito Arth's Lit
    Should Dying Patients Get Unproved Drugs? (page 92) Saving Nature That SCIENTIFIC -WORKS FOR pagePEOPLE50 AMERICAN October 2007 $4.99 www.SciAm .co m SPECIAL REPORT The Future of " A Preview of the Orion Spaceship " 5 Essential,Things to Do Up There Consciousness Scientists Debate How Neurons Make Us Aware Diamond Chips Sparkling Processors Spin Quantum Logic Diagnosis to Go New Portable Microlabs ESSENTIAL THINGS TO DO IN SPACE Planetary scientists have articulated goals for exploring the solar system TO A CHILD OF THE SPACE AGE, system, from Mercury to Pluto. But budget cuts, books about the solar system from cost overruns and inconsistency of purpose before 1957 are vaguely horrifying . have cast long shadows over NASA. At the very How little people knew. They had least the agency is going through its most unset- no idea of the great volcanoes and tled period of transition since Nixon shot down canyons of Mars, which make the Apollo moon missions 35 years ago. Mount Everest look like a worn hill- "NASA continues to wrestle with its own iden- ock and the Grand Canyon like a road- tity," says AnthonyJanetos of the Pacific North- side ditch. They speculated that Venus west National Laboratory, a member of a Na- beneath its clouds was a lush, misty jungle, or tional Research Council (NRC) panel that scru- maybe a dry, barren desert, or a seltzer water tinized NASA's Earth observation program. "Is ocean, or a giant tar pit-almost everything, it it about exploring space? Is it about human ex- seems, but what it really is: an epic volcanic ploration, is it about science, is it about explor- wasteland, the scene of a Noah's flood in molten ing the outer universe, is it about exploring the rock.
    [Show full text]
  • Preliminary Design of an Advanced Mission to Pluto
    ISTS 2004-k-10 PRELIMINARY DESIGN OF AN ADVANCED MISSION TO PLUTO Torsten Bondo, Roger Walker, Andrew Willig*, Andreas Rathke, Dario Izzo and Mark Ayre ESA/ESTEC Advanced Concepts Team, *ESA/ESTEC Earth Observation Department Keplerlaan 1 2200 AZ, Nordwijk ZH, The Netherlands www.esa.int/act (E-mail: [email protected], [email protected] ) Abstract A technology assessment and feasibility study is being In this paper we present a system engineering study of performed within the ESA Advanced Concepts Team on POP (Pluto Orbiter Probe) a spacecraft of 830 kg that sending a small-to-medium (700-900 kg) Nuclear requires ~1 kW of nuclear power to feed its electric Electric Propulsion spacecraft into orbit around Pluto propulsion system. The preliminary spacecraft system with a mission launch in 2016 using existing or design, example payload and overall mission design is emerging space technology. The objective of the study is presented in detail. This includes a low thrust capture at to examine which technologies are needed to achieve Pluto and spiral down to low altitude orbit via Charon. this objective and to understand how current technology Furthermore it is pointed out that at no cost in ∆V trends can modify this scenario in the future. tracking data on the coast phase towards Pluto can investigate the anomalous deceleration reported from It is found that a feasible mission, that includes a pioneer Pioneer 10 and 11. anomaly test on the cruise phase, can be accomplished if technologies such as gridded ion engines coupled to 2. POP Mission Analysis - Cruise Phase and orbit multiple Radioisotope Thermal Generators, composite insertion at Pluto structures and miniaturised avionics/payload are For a spacecraft below 1000 kg a direct transfer to Pluto considered.
    [Show full text]