PROCEEDINGS of the XVI CONGRESS of the ITALIAN SOCIETY of MYOLOGY

Total Page:16

File Type:pdf, Size:1020Kb

PROCEEDINGS of the XVI CONGRESS of the ITALIAN SOCIETY of MYOLOGY Acta Myologica • 2016; XXXV: p. 3-81 PROCEEDINGS OF THE XVI CONGRESS OF THE ITALIAN SOCIETY OF MYOLOGY Lecce, Italy June 8-11, 2016 3 PROCEEDINGS OF THE XVI CONGRESS OF THE ITALIAN SOCIETY OF MYOLOGY 5 PROCEEDINGS OF THE XVI CONGRESS OF THE ITALIAN SOCIETY OF MYOLOGY 6 PROCEEDINGS OF THE XVI CONGRESS OF THE ITALIAN SOCIETY OF MYOLOGY 7 PROCEEDINGS OF THE XVI CONGRESS OF THE ITALIAN SOCIETY OF MYOLOGY 8 PROCEEDINGS OF THE XVI CONGRESS OF THE ITALIAN SOCIETY OF MYOLOGY 9 PROCEEDINGS OF THE XVI CONGRESS OF THE ITALIAN SOCIETY OF MYOLOGY 10 PROCEEDINGS OF THE XVI CONGRESS OF THE ITALIAN SOCIETY OF MYOLOGY ABSTRACTS OF INVITED LECTURES (in alphabetical order of the first Author) Brain in muscle diseases ciency (CMD1A), also in the mildest cases with a LGMD Bertini E. phenotype. Moreover progressive brain MRI abnormali- Unit of Neuromuscular and Neurodegenerative Disorders, ties are observed in adult DM1 patients as white matter Laboratory of Molecular Medicine, Bambino Gesù Children’s involvement and brain atrophy, and some studies under- Hospital IRCCS, Rome line that WM damage is likely to be the major contributor It is well known that brain involvement is generally to cognitive impairment in DM1. unusual in muscle disease, and should be considered in the algorithm of the differential diagnosis of myopathies. Epigenetics in Myotonic Dystrophies Classification of brain involvement in myopathies, ex- Botta A. cluding mitochondrial encephalomyopathies, can be clas- Dept. of Biomedicine and Prevention, Tor Vergata University of sified for convenience in two main subgroups:1) those Rome, Italy conditions with mental disabilities that are not associated Myotonic dystrophy type 1 (DM1, Steinert’s disease, with brain malformations; and 2) those that are associated MIM#160900) is the most common form of adult-onset with malformations or peculiar brain abnormalities, and muscular dystrophy in humans, characterized by myoto- can be detected by MRI. nia, muscle weakness, cataract, cardiac disease and cen- The main neuromuscular disorders that show men- tral nervous system dysfunctions. The molecular defect tal disability without a brain malformations or distinctive underlying DM1 consists in the expansion of an unstable MRI abnormalities are dystrophinopathies, particularly CTG repetition located in the 3’UTR of the DMPK gene, occurring in 40-50% of boys affected by Duchenne mus- on chromosome 19q13. Given the emphasis on post-tran- cular dystrophy with mutations generally downstream scriptional mechanisms in DM1, only a few publications exon 44, which are associated with involvement of dys- discussed the role of epigenetic alterations in the disease, trophin isoforms expressed at high levels in brain. Moreo- either as a mechanism to explain repeat instability or as ver, another condition with high prevalence that is associ- the cause of altered expression of the DMPK transcript ated with mental disability is DM1. Besides typical motor itself. Additional complexity arises with production of symptoms, DM1 patients also display non-motor symp- an antisense transcript that initiates within the SIX5 ad- toms such as particular personality traits. Around 30% jacent promoter, producing a CAG-containing RNA able of DM1 patients seem to be at high risk of developing a to induce transcriptional silencing and heterochromatin psychiatric disorder. Moreover, psychological traits differ formation. In a recent study, we showed that in DM1 un- across phenotypes, with the most severe phenotype tend- ing to show more severe psychological symptoms. Some interrupted alleles, hypermethylation occurs only in the studies have shown that the presence of higher phobic upstream region of the CTG repeat, and this modifica- anxiety and lower self-esteem are associated with lower tion was present in patients with larger CTG expansion education, a higher number of CTG repeats, more severe (> 1000), earlier age at onset (< 18 years) and in con- muscular impairment, and lower cognitive functioning. genital DM1. The association of hypermethylation with In the subgroup of brain malformations or brain congenital or childhood onset forms, characterized by abnormalities, the classical conditions are congeni- severe cognitive manifestations, suggest that this epige- tal muscular dystrophies (CMDs) with abnormal gly- netic modification might affect the expression of genes cosylation of alpha-dystroglycan (Fukuyama CMD, regulating brain development and/or or synaptic plastici- Muscle-eye-brain disease, Walker-Warburg syndrome, ty. Conversely, in “atypical” DM1 patients carrying CCG/ CMD1C, CMD1D). The spectrum of brain structural CTC/CGG interruptions at the 3’ end of the CTG array, defects is wide, ranging from complete lissencephaly in hypermethylation occurs exclusively in the downstream patients with Walker-Warburg syndrome to isolated cer- region of the DM1 expansion. Our results suggest that ebellar involvement. Cerebellar cysts and/or dysplasia either the inherited size of the expanded allele and the and hypoplasia are also predominant features in patients presence of interruptions in the CTG array are associated with FKRP, POMGnT1 mutations, but rarely seen in with a highly polarized pattern of CpG methylation at the POMT1 and POMT2. Brainstem and pontine abnormal- DM1 locus. Additional studies on different DM1 tissues ities are common in patients with POMT2, POMGnT1, and eventually in DM2 patients will help to understand and LARGE mutations. Abnormalities of the white mat- the functional role of epigenetic modifications in the ter are characteristically seen in CMD with merosin defi- pathogenesis of myotonic dystrophies. 11 PROCEEDINGS OF THE XVI CONGRESS OF THE ITALIAN SOCIETY OF MYOLOGY Myofibrillar myopathies ease (IOPD) is characterized by early generalized hypo- Comi G.P. tonia and severe cardiomyopathy with death within the Dino Ferrari Centre, Department of Pathophysiology and first year of life, infantile variant form shows slower pro- Transplantation (DEPT), University of Milan, Neurology gression and less severe cardiomyopathy but onset is in Unit, I.R.C.C.S. Foundation Ca’ Granda, Ospedale Maggiore the first year of life, childhood/juvenile variant is a heter- Policlinico, Milan ogeneous group presenting later than infancy and usually Myofibrillar myopathies (MM) are a heterogeneous without cardiomyopathy. group of diseases characterized by progressive muscle weak- The efficacy of enzyme replacement therapy (ERT) ness and common histological features, including abnormal with recombinant human GAA (rhGAA) had been shown accumulation of myofibrillar degradation products, the ec- in two studies demonstrating a clear improvement of car- diomyopathy and prolonged survival in all treated infants topic expression of intrasarcoplasmic proteins, the presence but it is clear that the early start yielding better results. of vacuoles, foci of myofibril dissolution and a disorganiza- ERT became commercially available only in 2006. A tion of the intermyofibrillar network beginning at the Z-disk. critical point became evident a few years later: patients The underlying mechanisms of the disease are still with high titer anti-rhGAA IgG antibodies had a worse unknown and can differ from a type of disorder to an- outcome than those with low-titers, and those having other. The main abnormalities observed in pathophysi- high titers were mainly CRIM (cross reactive immuno- ological studies include aggregation and decreased logic material)-negative. Aiming to improve response to elimination of abnormal mutant proteins. Severe clinical ERT in CRIM-negative IOPD, several immune tolerance patterns have been observed and six main genes (DES, induction strategies have been reported. CRYAB, LDB3/ZASP, MYOT, FLNC and BAG3) are Italian data of 29 Italian treated IOPD patients and now classically considered as responsible for Myofibril- the long-term outcome are similar to that reported by lar myopathies. Other entities such as FHL1 myopathy or other national multicenter studies: a consistent number of Hereditary myopathy with early respiratory failure linked patients become ventilatory dependent on the long term to mutations of titin can now as well be included in this and many have a secondary loss of the previously reached group. Occasionally MM patterns have been described motor milestones, age and signs and symptoms at start of in laminopathies or selenopathies. Recently two genes, ERT and CRIM-negative status influenced negatively the HSPB8 and DNAJB6, have been associated to a myopa- outcome. thy with histologic features of MM with aggregates and We underline good outcome in childhood/juvenile rimmed vacuoles. HSPB8 and DNAJB6 are part of the patients with early diagnosis and start ERT. chaperone-assisted selective autophagy (CASA) com- GAA enzyme assay on dried blood spot (DBS) is plex. In these cases the molecular muscle pathology is ap- reliable, non-invasive and specific for early diagnosis in parently mediated through impaired CASA functions and symptomatic patient and in newborn screening programs possibly other complexes needed for the maintenance of (NBS). We have started a pilot NBS program for Pompe the Z-disk and sarcomeric structures. Next-generation se- disease in Tuscany and Umbria since 2014. quencing technology will expand our genetic knowledge. Oral chaperone therapy, modified rhGAA, autophagy The diagnosis of MFM is not always easy as histo- suppression and gene transfer represent potentially prom- logical lesions can be focal, and muscle biopsy may not ising
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • In Vivo Dual RNA-Seq Analysis Reveals the Basis for Differential Tissue Tropism of Clinical Isolates of Streptococcus Pneumoniae
    In Vivo Dual RNA-Seq Analysis Reveals the Basis for Differential Tissue Tropism of Clinical Isolates of Streptococcus pneumoniae Vikrant Minhas,1,4 Rieza Aprianto,2,4 Lauren J. McAllister,1 Hui Wang,1 Shannon C. David,1 Kimberley T. McLean,1 Iain Comerford,3 Shaun R. McColl,3 James C. Paton,1,5,6,* Jan-Willem Veening,2,5 and Claudia Trappetti,1,5 Supplementary Information Supplementary Table 1. Pneumococcal differential gene expression in the lungs 6 h post-infection, 9-47-Ear vs 9-47M. Genes with fold change (FC) greater than 2 and p < 0.05 are shown. FC values highlighted in blue = upregulated in 9-47-Ear, while values highlighted in red = upregulated in 9- 47M. Locus tag in 9-47- Product padj FC Ear Sp947_chr_00844 Sialidase B 3.08E-10 313.9807 Sp947_chr_02077 hypothetical protein 4.46E-10 306.9412 Sp947_chr_00842 Sodium/glucose cotransporter 2.22E-09 243.4822 Sp947_chr_00841 N-acetylneuraminate lyase 4.53E-09 227.7963 scyllo-inositol 2-dehydrogenase Sp947_chr_00845 (NAD(+)) 4.36E-09 221.051 Sp947_chr_00848 hypothetical protein 1.19E-08 202.7867 V-type sodium ATPase catalytic subunit Sp947_chr_00853 A 1.29E-06 100.5411 Sp947_chr_00846 Beta-glucoside kinase 3.42E-06 98.18951 Sp947_chr_00855 V-type sodium ATPase subunit D 8.34E-06 85.94879 Sp947_chr_00851 V-type sodium ATPase subunit C 2.50E-05 72.46612 Sp947_chr_00843 hypothetical protein 2.17E-05 65.97758 Sp947_chr_00839 HTH-type transcriptional regulator RpiR 3.09E-05 61.28171 Sp947_chr_00854 V-type sodium ATPase subunit B 1.32E-06 50.86992 Sp947_chr_00120 hypothetical protein 3.00E-04
    [Show full text]
  • Novel Cardiovascular Findings in Association with a POMT2
    European Journal of Human Genetics (2014) 22, 486–491 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg ARTICLE Novel cardiovascular findings in association with a POMT2 mutation: three siblings with a-dystroglycanopathy Hugo R Martinez*,1, William J Craigen2, Monika Ummat3, Adekunle M Adesina4, Timothy E Lotze3 and John L Jefferies5 Dystroglycanopathies are a genetically heterogeneous subset of congenital muscular dystrophies that exhibit autosomal recessive inheritance and are characterized by abnormal glycosylation of a-dystroglycan. In particular, POMT2 (protein O-mannosyltransferase-2) mutations have been identified in congenital muscular dystrophy patients with a wide range of clinical involvement, ranging from the severe muscle-eye-brain disease and Walker–Warburg syndrome to limb girdle muscular dystrophy without structural brain or ocular involvement. Cardiovascular disease is thought to be uncommon in congenital muscular dystrophy, with rare reports of cardiac involvement. We describe three brothers aged 21, 19, and 17 years with an apparently homozygous POMT2 mutation who all presented with congenital muscular dystrophy, intellectual disabilities, and distinct cardiac abnormalities. All three brothers were homozygous for a p.Tyr666Cys missense mutation in exon 19 of the POMT2 gene. On screening echocardiograms, all siblings demonstrated significant dilatation of the aortic root and depressed left ventricular systolic function and/or left ventricular wall motion abnormalities. Our report is the first to document an association between POMT2 mutations and aortopathy with concomitant depressed left ventricular systolic function. On the basis of our findings, we suggest patients with POMT2 gene mutations be screened not only for myocardial dysfunction but also for aortopathy.
    [Show full text]
  • Congenital Disorders of Glycosylation from a Neurological Perspective
    brain sciences Review Congenital Disorders of Glycosylation from a Neurological Perspective Justyna Paprocka 1,* , Aleksandra Jezela-Stanek 2 , Anna Tylki-Szyma´nska 3 and Stephanie Grunewald 4 1 Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland 2 Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; [email protected] 3 Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland; [email protected] 4 NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK; [email protected] * Correspondence: [email protected]; Tel.: +48-606-415-888 Abstract: Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post- translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations
    [Show full text]
  • Serum Albumin OS=Homo Sapiens
    Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Molecular Diagnostic Requisition
    BAYLOR MIRACA GENETICS LABORATORIES SHIP TO: Baylor Miraca Genetics Laboratories 2450 Holcombe, Grand Blvd. -Receiving Dock PHONE: 800-411-GENE | FAX: 713-798-2787 | www.bmgl.com Houston, TX 77021-2024 Phone: 713-798-6555 MOLECULAR DIAGNOSTIC REQUISITION PATIENT INFORMATION SAMPLE INFORMATION NAME: DATE OF COLLECTION: / / LAST NAME FIRST NAME MI MM DD YY HOSPITAL#: ACCESSION#: DATE OF BIRTH: / / GENDER (Please select one): FEMALE MALE MM DD YY SAMPLE TYPE (Please select one): ETHNIC BACKGROUND (Select all that apply): UNKNOWN BLOOD AFRICAN AMERICAN CORD BLOOD ASIAN SKELETAL MUSCLE ASHKENAZIC JEWISH MUSCLE EUROPEAN CAUCASIAN -OR- DNA (Specify Source): HISPANIC NATIVE AMERICAN INDIAN PLACE PATIENT STICKER HERE OTHER JEWISH OTHER (Specify): OTHER (Please specify): REPORTING INFORMATION ADDITIONAL PROFESSIONAL REPORT RECIPIENTS PHYSICIAN: NAME: INSTITUTION: PHONE: FAX: PHONE: FAX: NAME: EMAIL (INTERNATIONAL CLIENT REQUIREMENT): PHONE: FAX: INDICATION FOR STUDY SYMPTOMATIC (Summarize below.): *FAMILIAL MUTATION/VARIANT ANALYSIS: COMPLETE ALL FIELDS BELOW AND ATTACH THE PROBAND'S REPORT. GENE NAME: ASYMPTOMATIC/POSITIVE FAMILY HISTORY: (ATTACH FAMILY HISTORY) MUTATION/UNCLASSIFIED VARIANT: RELATIONSHIP TO PROBAND: THIS INDIVIDUAL IS CURRENTLY: SYMPTOMATIC ASYMPTOMATIC *If family mutation is known, complete the FAMILIAL MUTATION/ VARIANT ANALYSIS section. NAME OF PROBAND: ASYMPTOMATIC/POPULATION SCREENING RELATIONSHIP TO PROBAND: OTHER (Specify clinical findings below): BMGL LAB#: A COPY OF ORIGINAL RESULTS ATTACHED IF PROBAND TESTING WAS PERFORMED AT ANOTHER LAB, CALL TO DISCUSS PRIOR TO SENDING SAMPLE. A POSITIVE CONTROL MAY BE REQUIRED IN SOME CASES. REQUIRED: NEW YORK STATE PHYSICIAN SIGNATURE OF CONSENT I certify that the patient specified above and/or their legal guardian has been informed of the benefits, risks, and limitations of the laboratory test(s) requested.
    [Show full text]
  • A Homozygous DPM3 Mutation in a Patient with Alpha-Dystroglycan-Related Limb Girdle Muscular Dystrophy P.Y.K
    Available online at www.sciencedirect.com ScienceDirect Neuromuscular Disorders 27 (2017) 1043–1046 www.elsevier.com/locate/nmd Case report A homozygous DPM3 mutation in a patient with alpha-dystroglycan-related limb girdle muscular dystrophy P.Y.K. Van den Bergh a,*, Y. Sznajer a,b, V. Van Parys a, W. va n To l c,d, R.A. Wevers d, D.J. Lefeber c,d, L. Xu e,f, M. Lek e,f, D.G. MacArthur e,f, K. Johnson g, L. Phillips g, A. Töpf g, V. Straub g a Neuromuscular Reference Centre, University Hospital St-Luc, University of Louvain, Brussels, Belgium b Centre for Human Genetics, University Hospital St-Luc, University of Louvain, Brussels, Belgium c Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands d Translational Metabolic Laboratory, Radboud University Medical Centre, Nijmegen, The Netherlands e Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA f Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA g The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon-Tyne, United Kingdom Received 19 April 2017; received in revised form 27 June 2017; accepted 12 July 2017 Abstract Defects of O-linked glycosylation of alpha-dystroglycan cause a wide spectrum of muscular dystrophies ranging from severe congenital muscular dystrophy associated with abnormal brain and eye development to mild limb girdle muscular dystrophy. We report a female patient who developed isolated pelvic girdle muscle weakness and wasting, which became symptomatic at age 42. Exome sequencing uncovered a homozygous c.131T > G (p.Leu44Pro) substitution in DPM3, encoding dolichol-P-mannose (DPM) synthase subunit 3, leading to a 50% reduction of enzymatic activity.
    [Show full text]
  • Prenatal Testing Requisition Form
    BAYLOR MIRACA GENETICS LABORATORIES SHIP TO: Baylor Miraca Genetics Laboratories 2450 Holcombe, Grand Blvd. -Receiving Dock PHONE: 800-411-GENE | FAX: 713-798-2787 | www.bmgl.com Houston, TX 77021-2024 Phone: 713-798-6555 PRENATAL COMPREHENSIVE REQUISITION FORM PATIENT INFORMATION NAME (LAST,FIRST, MI): DATE OF BIRTH (MM/DD/YY): HOSPITAL#: ACCESSION#: REPORTING INFORMATION ADDITIONAL PROFESSIONAL REPORT RECIPIENTS PHYSICIAN: NAME: INSTITUTION: PHONE: FAX: PHONE: FAX: NAME: EMAIL (INTERNATIONAL CLIENT REQUIREMENT): PHONE: FAX: SAMPLE INFORMATION CLINICAL INDICATION FETAL SPECIMEN TYPE Pregnancy at risk for specific genetic disorder DATE OF COLLECTION: (Complete FAMILIAL MUTATION information below) Amniotic Fluid: cc AMA PERFORMING PHYSICIAN: CVS: mg TA TC Abnormal Maternal Screen: Fetal Blood: cc GESTATIONAL AGE (GA) Calculation for AF-AFP* NTD TRI 21 TRI 18 Other: SELECT ONLY ONE: Abnormal NIPT (attach report): POC/Fetal Tissue, Type: TRI 21 TRI 13 TRI 18 Other: Cultured Amniocytes U/S DATE (MM/DD/YY): Abnormal U/S (SPECIFY): Cultured CVS GA ON U/S DATE: WKS DAYS PARENTAL BLOODS - REQUIRED FOR CMA -OR- Maternal Blood Date of Collection: Multiple Pregnancy Losses LMP DATE (MM/DD/YY): Parental Concern Paternal Blood Date of Collection: Other Indication (DETAIL AND ATTACH REPORT): *Important: U/S dating will be used if no selection is made. Name: Note: Results will differ depending on method checked. Last Name First Name U/S dating increases overall screening performance. Date of Birth: KNOWN FAMILIAL MUTATION/DISORDER SPECIFIC PRENATAL TESTING Notice: Prior to ordering testing for any of the disorders listed, you must call the lab and discuss the clinical history and sample requirements with a genetic counselor.
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]
  • Mammalian O-Mannosyl Glycans: Biochemistry and Glycopathology
    No. 1] Proc. Jpn. Acad., Ser. B 95 (2019) 39 Review Mammalian O-mannosyl glycans: Biochemistry and glycopathology † By Tamao ENDO*1, (Communicated by Kunihiko SUZUKI, M.J.A.) Abstract: Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle and brain development. A clear relationship between O-mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies. Keywords: O-mannosylation, congenital muscular dystrophy, dystroglycan, ribitol-5- phosphate altered glycosylation was published in this journal,3) Introduction including our pioneering findings of muscular dys- The major glycans of glycoproteins are classified trophy and glycosylation. Since then, many bio- into two groups according to their glycan-peptide chemists, molecular biologists, pediatricians, neurol- linkages. Glycans linked to asparagine (Asn) residues ogists, and geneticists have entered this new research of proteins are termed N-glycans, whereas glycans field. This review will describe recent progress in linked to serine (Ser) or threonine (Thr) residues are establishing the biochemistry and glycopathology of called O-glycans. In N-glycans, the reducing terminal O-Man glycans in mammals. N-acetylglucosamine (GlcNAc) is linked to the amide group of Asn via an aspartylglycosylamine linkage.
    [Show full text]