Development of Thermally Assisted Mrams: from Basic Concepts to Industrialization Ioan Prejbeanu
Total Page:16
File Type:pdf, Size:1020Kb
Development of thermally assisted MRAMs: from basic concepts to industrialization Ioan Prejbeanu To cite this version: Ioan Prejbeanu. Development of thermally assisted MRAMs: from basic concepts to industrialization. Condensed Matter [cond-mat]. Université Grenoble Alpes, 2015. tel-02146801 HAL Id: tel-02146801 https://tel.archives-ouvertes.fr/tel-02146801 Submitted on 4 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Grenoble Alpes Mémoire pour obtenir le diplôme de Habilitation de Diriger les Recherches Development of thermally assisted MRAMs: from basic concepts to industrialization présentée par Ioan Lucian Prejbeanu Ingénieur chercheur CEA UMR 8191 CEA / CNRS / UJF-Grenoble 1 / Grenoble-INP INAC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France E-mail: [email protected] Membres du jury • Russell Cowburn – Professeur, University of Cambridge, IEEE Distinguished Lecturer 2015, Rapporteur, • Michel Hehn – Professeur, Université de Lorraine / IJL - Rapporteur • Dafiné Ravelosona – DR1, CNRS / IEF – Rapporteur • Ahmad Bsiesy – Professeur, UGA / EEATS • Bernard Dieny – Directeur de Recherches, SPINTEC / CEA – EEATS • Alain Schuhl – Professeur, UGA, Ecole Doctorale de Physique, Directeur CNRS / INP • Jean-Pierre Nozières – DR2, CNRS / SPINTEC - invité Soutenance prévue le 1 er septembre 2015 HDR Lucian Prejbeanu (2015) Development of thermally assisted MRAMs Acknowledgments Jury members: • Russell Cowburn, Michel Hehn, Dafiné Ravesosona, Alain Schuhl, Ahmad Bsiesy, Bernard Diény, Jean-Pierre Nozières Special thanks to: • Ricardo Sousa, Bernard Dieny, Jean-Pierre Nozières (MRAM team in Spintec), Olivier Redon (LETI), Ken Mackay (Crocus) • PhDs on thermally assisted MRAMs: Marta Kerekes, Sebastien Bandiera, Erwan Gapihan, Lucien Lombard, Quentin Stainer, Jérémy Alvarez-Hérault, Giovanni Vinai, Kamil Akmaldinov • Postdoc: Cristian Papusoi I would like to thank all my other colleagues from: • CROCUS Technology: Bertrand Cambou, Jean-Pierre Braun, Céline Portemont, Clarisse Ducruet, Claire Creuzet, Yann Conraux, Jérémy Alvarez-Hérault, Lucien Lombard, Jérémy Pereira, Jong Shin, Julien Vidal, Virgile Javerliac, Mourad El Baraji, Neal Berger, Thierry Chavignier, Corinne Felot, Nathalie Vialle, Julia Auffranc, Jean-Pascal Bost • SPINTEC : Stéphane Auffret, Bernard Rodmacq, Marie-Thérèse Delaye, Maria Souza, Liliana Buda-Prejbeanu, Vincent Baltz, Jérôme Moritz, Ursula Ebels, Guillaume Prenat, Grégory di Pendina, Catherine Broisin, Rachel Mauduit, Claire Baraduc, Gilles Gaudin, Mihai Miron, Olivier Boulle, Philippe Sabon, Isabelle Joumard, Eric Billiet, • LETI : Henri Sibuet, Bertrand Delaet, Astrid Astier, Marie-Claire Cyrille, Luca Perniola, Etienne Nowak • INESC: Paulo and Susana Freitas, Ricardo Ferreira • Singulus: Juergen Langer, Berthold Ocker, Marco Stenger, Wolfram Maass • IBM: Daniel Worledge, Anthony Annunziata, Philip Trouilloud for fruitful discussions and for their contributions to the results presented in this manuscript: All my family: namely my wife (Liliana), my kids (Elisa & Vlad), my parents (Lucia, Ion), my parents in law (Dochia, RIP Ioan) This work was performed partially supported by: - the joint program between Spintec and Crocus - the French Agence Nationale de la Recherche (ANR RAMAC, PATHOS and EXCALYB) - the European Commission (NEXT, ERC Adv Grant HYMAGINE). Page 1 of 134 HDR Lucian Prejbeanu (2015) Development of thermally assisted MRAMs Summary In the first part of this manuscript , I will show how thermal assistance can be implemented in field induced switched MTJ to enhance the reliability and the scalability of MRAM. A new self-referenced reading scheme can be implemented in such MTJ in order to obtain a Magnetic Logic Unit that present new logic functionalities compared to standard MRAM. In a second time, I will present the implementation of thermal assistance in MTJ with current induced switching writing scheme. In that case, no field line is required, increasing thus the storage capacity of MRAM cell and decreasing the writing consumption while keeping a satisfying data retention capacity. Ultimately, thermal assistance can be implemented in MTJ with perpendicular magnetization. In that case, thermally induced anisotropy reorientation (TIAR) can be used to decrease the switching power consumption, increase the writing reliability and further improve the scalability of TAS-MRAM down to the 22nm technological node. The second part will be dedicated to the description of my future research projects for the forthcoming years linked mainly to applied aspects of the magnetic tunnel junctions for: sub-20nm scalable MRAMs, hybrid logical circuits and innovative magnetic field sensors. Finally I will present my short bio, my CV, a detailed list of all the PhD supervising activity, as well as a complete list of publications after PhD. Keywords • Spintronics • Tunnel magnetoresistance • Magnetic tunnel junctions • MRAM, • Non-volatile memories • Magnetic multilayers • Thin films • Thermal properties • Exchange bias • Perpendicular magnetic anisotropy Page 2 of 134 HDR Lucian Prejbeanu (2015) Development of thermally assisted MRAMs TABLE OF CONTENTS 1. INTRODUCTION ................................................................................................................................. 5 1.1 STATUS OF EMERGING NONVOLATILE MRAM MARKET .......................................................................................... 6 1.2 COMPARISON MRAM VS REDOX -RAM .............................................................................................................. 7 1.3 MAIN APPLICATIONS OF MRAM ......................................................................................................................... 8 1.4 CURRENT AND FUTURE CHALLENGES FOR MRAM S ............................................................................................ 9 1.5 HISTORICAL CONTEXT OF THIS WORK ............................................................................................................... 12 1.6 DESCRIPTION OF THE MANUSCRIPT .................................................................................................................. 13 2. BASICS OF MRAMS ......................................................................................................................... 16 2.1 STORAGE FUNCTION : MRAM RETENTION ......................................................................................................... 17 2.1.1 Key role of the thermal stability factor .................................................................................................................... 17 2.1.2 Thermal stability factor for in-plane and out-of-plane magnetized storage layer ..................................................... 17 2.2 READ FUNCTION ............................................................................................................................................. 20 2.2.1 Principle of read operation ..................................................................................................................................... 20 2.2.2 STT induced disturbance of the storage layer magnetic state during read.............................................................. 21 2.3 FIRST MRAM GENERATIONS .......................................................................................................................... 22 2.3.1 Stoner-Wohlfarth MRAM ........................................................................................................................................ 22 2.3.2 Toggle MRAM ........................................................................................................................................................ 25 3. THERMALLY ASSISTED MRAMS .................................................................................................... 29 3.1 THERMALLY ASSISTED SWITCHING WORKING PRINCIPLE .................................................................................... 33 3.2 HEATING IN MTJ S .......................................................................................................................................... 37 3.2.1 Heating asymmetry vs current polarity ................................................................................................................... 38 3.2.2 Heating and cooling dynamics ............................................................................................................................... 39 3.3 DEMONSTRATION OF TAS-MRAM WRITE OPERATION ........................................................................................ 41 3.4 REDUCING THE POWER CONSUMPTION ............................................................................................................. 43 3.4.1 Minimization of the heating power by using thermal barriers .................................................................................. 43 3.4.2 Minimization of the heating power by using AF materials with low Néel temperature ............................................