Cleft Lip and Palate: Understanding Genetic and Environmental Influences

Total Page:16

File Type:pdf, Size:1020Kb

Cleft Lip and Palate: Understanding Genetic and Environmental Influences REVIEWS Cleft lip and palate: understanding genetic and environmental influences Michael J. Dixon*, Mary L. Marazita‡, Terri H. Beaty§ and Jeffrey C. Murray|| Abstract | Clefts of the lip and/or palate (CLP) are common birth defects of complex aetiology. CLP can occur in isolation or as part of a broad range of chromosomal, Mendelian or teratogenic syndromes. Although there has been marked progress in identifying genetic and environmental triggers for syndromic CLP, the aetiology of the more common non-syndromic (isolated) forms remains poorly characterized. Recently, using a combination of epidemiology, careful phenotyping, genome-wide association studies and analysis of animal models, several distinct genetic and environmental risk factors have been identified and confirmed for non-syndromic CLP. These findings have advanced our understanding of developmental biology and created new opportunities for clinical translational research. Nares Clefts of the lip and/or palate (CLP) are immediately overwhelming majority involve only the upper lip and/ The nostrils or nasal passages recognizable disruptions of normal facial structure. or palate. Further, approximately 70% of cases of CLP Although not a major cause of mortality in developed occur as isolated entities with no other apparent cogni- Primary palate countries, CLP does cause considerable morbidity to tive or craniofacial structural abnormalities; this is com- The anterior portion of the affected children and imposes a substantial financial monly termed ‘isolated, non-syndromic CLP’. Because palate including the bony 1 component in humans. risk for families with a concomitant societal burden . the defects arise early in embryological development, Individuals with CLP may experience problems with have a complex aetiology (with both genetic and envi- feeding, speaking, hearing and social integration that ronmental contributions) and modest recurrence rates, can be corrected to varying degrees by surgery, dental it has proven difficult to identify specific aetiologic fac- *Faculty of Medical and treatment, speech therapy and psychosocial interven- tors. A combination of epidemiologic, candidate gene Human Sciences, Manchester tion. CLP is aetiologically heterogeneous, and this has and genome-wide studies, plus analysis of animal mod- Academic Health Sciences Centre, Michael Smith crucial implications for understanding the biology of els, has recently provided deeper insights into the causes Building, University of facial development, how environmental risks interact of non-syndromic CLP. Manchester, Oxford Road, with genetic factors and how we can incorporate known With the advent of the genomics era, there have been Manchester M13 9PT, UK. aetiologic variables to improve clinical care. Recent suc- major advances in the identification of causative genetic ‡Center for Craniofacial and Dental Genetics, Department cesses in genome-wide linkage and association studies mutations underlying syndromic forms of CLP (see the of Oral Biology, School of have identified novel loci that are significantly associated OMIM website for further information). By contrast, Dental Medicine, Department with CLP2–6. Researchers are currently striving to iden- there has been less progress in advancing our under- of Human Genetics, Graduate tify the aetiologic variants at these novel loci to under- standing of the genetic aetiology of non-syndromic School of Public Health, stand the developmental disturbances leading to CLP. CLP owing to its genetic heterogeneity, departure from University of Pittsburgh, Pittsburgh, Pennsylvania This knowledge should eventually result in improved Mendelian inheritance patterns, the limited availabil- 14219, USA. prevention, treatment and prognosis for individuals with ity and expense of genomic tools and the necessity for §Department of Epidemiology, these conditions. very large data sets. However, the recent development School of Public Health, Development of the lip and palate is outlined in FIG. 1. of innovative approaches to phenotyping and powerful, Johns Hopkins University, Baltimore, Maryland 21205, The common forms of CLP involve disruption of tissue cost-effective genomic tools, together with extrapolation USA. planes above the lip, extending into the nares and/or from studies of syndromic forms of CLP, have increased ||Departments of Pediatrics, the palate (hard and/or soft) (FIG. 2). Fogh-Andersen our understanding of non-syndromic CLP. Because of its Biology and Epidemiology, and Fraser7,8 noted that clefts involving the anterior particular challenges, in this Review we focus on non- University of Iowa, structures (lip and primary palate) could be separated syndromic CLP and we summarize syndromic forms Iowa 52242, USA. Correspondence to J.C.M. on both genetic and embryological grounds from those (which are genetically tractable) only briefly. We discuss e-mail: [email protected] involving only the secondary palate. Although there are important epidemiologic clues, environmental contri- doi:10.1038/nrg2933 many disruptions affecting the craniofacial complex, the butions, genetic architecture and issues of phenotyping, NATURE REVIEWS | GENETICS VOLUME 12 | MARCH 2011 | 167 © 2011 Macmillan Publishers Limited. All rights reserved REVIEWS CD E /GFKCNPCUCN RTQEGUUGU (TQPVQPCUCN RTQOKPGPEG .CVGTCNPCUCN RTQEGUUGU /CZKNNCT[ RTQEGUUGU 0CUCNRKVU 1TCNECXKV[ #NCG /CPFKDWNCT RTQEGUUGU FG H 2TKOCT[ RCNCVG +PEKUKXG HQTCOGP 0CUCN (WUGF UGRVWO RCNCVG 5GEQPFCT[ RCNCVCN UJGNXGU Figure 1 | Development of the lip and palate. Schematic diagrams of the development of the lip and palate in humans. a | The developing frontonasal prominence, paired maxillary processes and paired mandibular0CVWTG4G XKGYUprocesses^)GPGVKEU surround the primitive oral cavity by the fourth week of embryonic development. b | By the fifth week, the nasal pits have formed, which leads to the formation of the paired medial and lateral nasal processes. c | The medial nasal processes have merged with the maxillary processes to form the upper lip and primary palate by the end of the sixth week. The lateral nasal processes form the nasal alae. Similarly, the mandibular processes fuse to form the lower jaw. d | During the sixth week of embryogenesis, the secondary palate develops as bilateral outgrowths from the maxillary processes, which grow vertically down the side of the tongue. e | Subsequently, the palatal shelves elevate to a horizontal position above the tongue, contact one another and commence fusion. f | Fusion of the palatal shelves ultimately divides the oronasal space into separate oral and nasal cavities. Figure is modified, with permission, from REF. 137 © (2009) John Wiley and Sons Ltd. gene discovery and insights into molecular pathogen- Historically, CLP has been divided into cleft palate esis. We also speculate about the implications of these only and cleft lip with or without cleft palate (CL/P)7,8. findings for estimating recurrence, finding new clinical However, recent epidemiologic data suggest that cleft associations building on advances in imaging and using lip only may have unique aetiologic features, including large databases to examine long-term outcomes. strong genetic associations, whereas some individuals with cleft palate only show evidence of subclinical cleft Challenges in studying CLP lip11–15. Nevertheless, this broad sub-division of anatom- Epidemiology. CLP affects approximately 1 in 700 live ical defects is consistent with the distinct developmental births, with wide variability across geographic origin, origins of the lip/primary palate versus the secondary racial and ethnic groups, as well as environmental expo- palate. Furthermore, separate cellular and genetic aeti- sures and socioeconomic status. In general, Asian and ologies for CL/P and cleft palate only are consistent Native American populations have the highest reported with the general observation that these two conditions birth prevalence rates, which are often as high as 1 in 500. do not segregate in the same family, although excep- European-derived populations have intermediate prev- tions have been reported for families with aetiologic alence rates at approximately 1 in 1,000, and African- mutations in specific genes (for example, tumour pro- derived populations have the lowest prevalence rates at tein p63 (TP63), msh homeobox 1 (MSX1), interferon approximately 1 in 2,500. These observations suggest regulatory factor 6 (IRF6) and fibroblast growth factor that the relative contribution of individual susceptibil- receptor 1 (FGFR1))16–20. Approximately 70% of all cases ity genes may vary across different populations6,9,10. The of CL/P and 50% of cases of cleft palate only are con- frequency of CLP also differs by gender and laterality: sidered to be non-syndromic21–23. The remaining cases there is a 2:1 male to female ratio for clefts involving the are composed of a wide range of malformation syn- Secondary palate lip, approximately a 1:2 male to female ratio for clefts of dromes, including over 500 Mendelian syndromes (see Posterior or soft palate the palate only and a 2:1 ratio of left to right sided clefts the OMIM website for further information) as well as in humans. among unilateral cleft lip cases. those arising secondary to chromosomal or teratogenic 168 | MARCH 2011 | VOLUME 12 www.nature.com/reviews/genetics © 2011 Macmillan Publishers Limited. All rights reserved REVIEWS # 7RRGTNKR *CTFRCNCVG 5QȎRCNCVG 7XWNC 7PKNCVGTCN C DEF $KNCVGTCN G HIJ $ C/KETQHQTO%. D.GȎWPKNCVGTCN%. E.GȎWPKNCVGTCN%.RNWU%2
Recommended publications
  • Loss of Mafb and Maf Distorts Myeloid Cell Ratios and Disrupts Fetal Mouse Testis Vascularization and Organogenesisǂ
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441488; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Loss of Mafb and Maf distorts myeloid cell ratios and disrupts fetal mouse testis vascularization and organogenesisǂ 5 Shu-Yun Li1,5, Xiaowei Gu1,5, Anna Heinrich1, Emily G. Hurley1,2,3, Blanche Capel4, and Tony DeFalco1,2* 1Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, 10 OH 45229, USA 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA 3Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA 15 4Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA 5These authors contributed equally to this work. ǂThis work was supported by the National Institutes of Health (R37HD039963 to BC, R35GM119458 to TD, R01HD094698 to TD, F32HD058433 to TD); March of Dimes (1-FY10- 355 to BC, Basil O’Connor Starter Scholar Award 5-FY14-32 to TD); Lalor Foundation 20 (postdoctoral fellowship to SL); and Cincinnati Children’s Hospital Medical Center (Research Innovation and Pilot funding, Trustee Award, and developmental funds to TD). *Corresponding Author: Tony DeFalco E-mail: [email protected] 25 Address: Division of Reproductive Sciences Cincinnati Children’s Hospital Medical Center 3333 Burnet Avenue, MLC 7045 Cincinnati, OH 45229 USA Phone: +1-513-803-3988 30 Fax: +1-513-803-1160 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441488; this version posted April 26, 2021.
    [Show full text]
  • RBP-J Signaling − Cells Through Notch Novel IRF8-Controlled
    Sca-1+Lin−CD117− Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch −RBP-J Signaling This information is current as of September 25, 2021. Xingxia Liu, Shaoda Ren, Chaozhuo Ge, Kai Cheng, Martin Zenke, Armand Keating and Robert C. H. Zhao J Immunol 2015; 194:4298-4308; Prepublished online 30 March 2015; doi: 10.4049/jimmunol.1402641 Downloaded from http://www.jimmunol.org/content/194/9/4298 Supplementary http://www.jimmunol.org/content/suppl/2015/03/28/jimmunol.140264 http://www.jimmunol.org/ Material 1.DCSupplemental References This article cites 59 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/194/9/4298.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Sca-1+Lin2CD1172 Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch–RBP-J Signaling Xingxia Liu,*,1 Shaoda Ren,*,1 Chaozhuo Ge,* Kai Cheng,* Martin Zenke,† Armand Keating,‡,x and Robert C.
    [Show full text]
  • Synergistic Interplay Between PHF8 and HER2 Signaling Contributes to Breast Cancer Development and Drug Resistance
    bioRxiv preprint doi: https://doi.org/10.1101/682476; this version posted June 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Synergistic interplay between PHF8 and HER2 signaling contributes to breast cancer development and drug resistance Qi Liu1, Nicholas Borcherding2, Peng Shao1,3, Peterson Kariuki Maina1,4, Weizhou Zhang5, and Hank Heng Qi1,6 1 Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA, 2 Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA, 3 Current address: Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA, 4 Current Address: Albert Einstein College of Medicine, Bronx, NY 10461, USA 5 Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610-0275, USA 6 To whom correspondence should be addressed. Tel: 1-319-335-3084; Fax: 1-319-335-7198; Email: [email protected] Key words: PHF8, HER2, IL-6, breast cancer, drug resistance 1 bioRxiv preprint doi: https://doi.org/10.1101/682476; this version posted June 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract HER2 plays a critical role in tumorigenesis and is associated with poor prognosis of HER2- positive breast cancers. Although, anti-HER2 drugs show benefits in breast cancer therapy, de novo or acquired resistance often develop.
    [Show full text]
  • Next Generation Sequencing Panels for Disorders of Sex Development
    Next Generation Sequencing Panels for Disorders of Sex Development Disorders of Sex Development – Overview Disorders of sex development (DSDs) occur when sex development does not follow the course of typical male or female patterning. Types of DSDs include congenital development of ambiguous genitalia, disjunction between the internal and external sex anatomy, incomplete development of the sex anatomy, and abnormalities of the development of gonads (such as ovotestes or streak ovaries) (1). Sex chromosome anomalies including Turner syndrome and Klinefelter syndrome as well as sex chromosome mosaicism are also considered to be DSDs. DSDs can be caused by a wide range of genetic abnormalities (2). Determining the etiology of a patient’s DSD can assist in deciding gender assignment, provide recurrence risk information for future pregnancies, and can identify potential health problems such as adrenal crisis or gonadoblastoma (1, 3). Sex chromosome aneuploidy and copy number variation are common genetic causes of DSDs. For this reason, chromosome analysis and/or microarray analysis typically should be the first genetic analysis in the case of a patient with ambiguous genitalia or other suspected disorder of sex development. Identifying whether a patient has a 46,XY or 46,XX karyotype can also be helpful in determining appropriate additional genetic testing. Abnormal/Ambiguous Genitalia Panel Our Abnormal/Ambiguous Genitalia Panel includes mutation analysis of 72 genes associated with both syndromic and non-syndromic DSDs. This comprehensive panel evaluates a broad range of genetic causes of ambiguous or abnormal genitalia, including conditions in which abnormal genitalia are the primary physical finding as well as syndromic conditions that involve abnormal genitalia in addition to other congenital anomalies.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • The Genetic Basis for Skeletal Diseases
    insight review articles The genetic basis for skeletal diseases Elazar Zelzer & Bjorn R. Olsen Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA (e-mail: [email protected]) We walk, run, work and play, paying little attention to our bones, their joints and their muscle connections, because the system works. Evolution has refined robust genetic mechanisms for skeletal development and growth that are able to direct the formation of a complex, yet wonderfully adaptable organ system. How is it done? Recent studies of rare genetic diseases have identified many of the critical transcription factors and signalling pathways specifying the normal development of bones, confirming the wisdom of William Harvey when he said: “nature is nowhere accustomed more openly to display her secret mysteries than in cases where she shows traces of her workings apart from the beaten path”. enetic studies of diseases that affect skeletal differentiation to cartilage cells (chondrocytes) or bone cells development and growth are providing (osteoblasts) within the condensations. Subsequent growth invaluable insights into the roles not only of during the organogenesis phase generates cartilage models individual genes, but also of entire (anlagen) of future bones (as in limb bones) or membranous developmental pathways. Different mutations bones (as in the cranial vault) (Fig. 1). The cartilage anlagen Gin the same gene may result in a range of abnormalities, are replaced by bone and marrow in a process called endo- and disease ‘families’ are frequently caused by mutations in chondral ossification. Finally, a process of growth and components of the same pathway.
    [Show full text]
  • Mutations in PHF8 Are Associated with X Linked Mental Retardation And
    780 J Med Genet: first published as 10.1136/jmg.2004.029439 on 30 September 2005. Downloaded from LETTER TO JMG Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate F Laumonnier*, S Holbert*, N Ronce, F Faravelli, S Lenzner, C E Schwartz, J Lespinasse, H Van Esch, D Lacombe, C Goizet, F Phan-Dinh Tuy, H van Bokhoven, J-P Fryns, J Chelly, H-H Ropers, C Moraine, B C J Hamel, S Briault ............................................................................................................................... J Med Genet 2005;42:780–786. doi: 10.1136/jmg.2004.029439 lymphoblastoid cell lines (family N42) that were established Truncating mutations were found in the PHF8 gene (encoding from peripheral lymphocytes using standard protocols. the PHD finger protein 8) in two unrelated families with X linked mental retardation (XLMR) associated with cleft lip/ palate (MIM 300263). Expression studies showed that this Fluorescence in situ hybridisation (FISH) BACs on chromosome Xp11.21 were selected from Ensembl gene is ubiquitously transcribed, with strong expression of database (http://www.ensembl.org) and the UCSC genome the mouse orthologue Phf8 in embryonic and adult brain browser (http://genome.ucsc.edu) and obtained from the structures. The coded PHF8 protein harbours two functional CHORI Institute (http://bacpac.chori.org). Hybridisation domains, a PHD finger and a JmjC (Jumonji-like C terminus) experiments were carried out as previously described.12 domain, implicating it in transcriptional regulation and chromatin remodelling. The association of XLMR and cleft lip/palate in these patients with mutations in PHF8 suggests Mutation analysis of PHF8 Polymerase chain reaction (PCR) was carried out in 50 ml an important function of PHF8 in midline formation and in the reaction volumes containing 100 ng of genomic DNA from development of cognitive abilities, and links this gene to the patients, 10 pM of each primer, 1.25 mM of dNTPs, 0.5 U XLMR associated with cleft lip/palate.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
    The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP).
    [Show full text]
  • Clinical Utility of Recently Identified Diagnostic, Prognostic, And
    Modern Pathology (2017) 30, 1338–1366 1338 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms Arantza Onaindia1, L Jeffrey Medeiros2 and Keyur P Patel2 1Instituto de Investigacion Marques de Valdecilla (IDIVAL)/Hospital Universitario Marques de Valdecilla, Santander, Spain and 2Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll- like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms.
    [Show full text]
  • Mutations Within Or Upstream of the Basic Helixð Loopð Helix Domain of the TWIST Gene Are Specific to Saethre-Chotzen Syndrome
    European Journal of Human Genetics (1999) 7, 27–33 © 1999 Stockton Press All rights reserved 1018–4813/99 $12.00 t http://www.stockton-press.co.uk/ejhg ARTICLES Mutations within or upstream of the basic helix–loop–helix domain of the TWIST gene are specific to Saethre-Chotzen syndrome Vincent El Ghouzzi, Elisabeth Lajeunie, Martine Le Merrer, Val´erie Cormier-Daire, Dominique Renier, Arnold Munnich and Jacky Bonaventure Unit´e de Recherches sur les Handicaps G´en´etiques de l’Enfant, Institut Necker, Paris, France Saethre-Chotzen syndrome (ACS III) is an autosomal dominant craniosynostosis syndrome recently ascribed to mutations in the TWIST gene, a basic helix–loop–helix (b-HLH) transcription factor regulating head mesenchyme cell development during cranial neural tube formation in mouse. Studying a series of 22 unrelated ACS III patients, we have found TWIST mutations in 16/22 cases. Interestingly, these mutations consistently involved the b-HLH domain of the protein. Indeed, mutant genotypes included frameshift deletions/insertions, nonsense and missense mutations, either truncating or disrupting the b-HLH motif of the protein. This observation gives additional support to the view that most ACS III cases result from loss-of-function mutations at the TWIST locus. The P250R recurrent FGFR 3 mutation was found in 2/22 cases presenting mild clinical manifestations of the disease but 4/22 cases failed to harbour TWIST or FGFR 3 mutations. Clinical re-examination of patients carrying TWIST mutations failed to reveal correlations between the mutant genotype and severity of the phenotype. Finally, since no TWIST mutations were detected in 40 cases of isolated coronal craniosynostosis, the present study suggests that TWIST mutations are specific to Saethre- Chotzen syndrome.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]