A Defence of Predicativism As a Philosophy of Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

A Defence of Predicativism As a Philosophy of Mathematics A Defence of Predicativism as a Philosophy of Mathematics Timothy James STORER Trinity College, University of Cambridge ¿is dissertation is submitted for the degree of Doctor of Philosophy ċ 2010 ċ 2 Preface Declaration & Statement of length ¿is dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specically indicated in the text. No part of this dissertation has been submitted for any other degree or qualic- ation. ¿is dissertation conforms to the word limits set by the Degree Committee of Philosophy. It is approximately 75,000 words in length. Acknowledgements & Dedication I am very grateful for the support and guidance of my supervisors: my primary supervisor, Michael Potter, who put up with a great deal; Arif Ahmed, my shadow supervisor, for his helpful suggestions in the earlier stages of my research; and Peter Smith, who very generously gave to me a huge amount of his time, advice, enthusiasm, and encouragement in the later stages. I would also like to thank Brian King for his kindness in reading and comment- ing on an earlier dra of this thesis, and Lesley Lancaster for her help with the administrative side of things. I am grateful for the nancial support of the AHRC. My greatest debts are to my friends and family for their love and support: most of all, to my father, John Storer; my step-mother, Vivi Paxton; and — of course — to my friend Diktynna Warren, without whom not. ¿is thesis is dedicated to my teachers. 3 4 Abstract A Defence of Predicativism as a Philosophy of Mathematics T. J. Storer A specication of a mathematical object is impredicative if it essentially involves quantication over a domain which includes the object being specied (or sets which contain that object, or similar). ¿e basic worry is that we have no non-circular way of understanding such a specication. Predicativism is the view that mathematics should be limited to the study of objects which can be specied predicatively. ¿ere are two parts to predicativism. One is the criticism of the impredicative aspects of classical mathematics. ¿e other is the positive project, begun by Weyl in Das Kontinuum, to reconstruct as much as possible of classical mathematics on the basis of a predicatively acceptable set theory, which accepts only countably innite objects. ¿is is a revisionary project, and certain parts of mathematics will not be saved. Chapter 2 contains an account of the historical background to the predicativist project. ¿e rigorization of analysis led to Dedekind’s and Cantor’s theories of the real numbers, which relied on the new notion of abitrary innite sets; this became a central part of modern classical set theory. Criticism began with Kronecker; continued in the debate about the acceptability of Zermelo’s Axiom of Choice; and was somewhat claried by Poincaré and Russell. In the light of this, chapter 3 examines the formulation of, and motivations behind the predicativist position. Chapter 4 begins the critical task by detailing the epistemological problems with the classical account of the continuum. Explanations of classicism which appeal to second-order logic, set theory, and primitive intuition are examined and are found wanting. Chapter 5 aims to dispell the worry that predicativism might collapses into math- 5 6 ematical intuitionism. I assess some of the arguments for intuitionism, especially the Dummettian argument from indenite extensibility. I argue that the natural numbers are not indenitely extensible, and that, although the continuum is, we can nonetheless make some sense of classical quantication over it. We need not reject the Law of Excluded Middle. Chapter 6 begins the positive work by outlining a predicatively acceptable ac- count of mathematical objects which justies the Vicious Circle Principle. Chapter 7 explores the appropriate shape of formalized predicative mathematics, and the question of just how much mathematics is predicatively acceptable. My conclusion is that all of the mathematics which we need can be predicativist- ically justied, and that such mathematics is particularly transparent to reason. ¿is calls into question one currently prevalent view of the nature of mathematics, on which mathematics is justied by quasi-empirical means. Contents 1 Introduction 11 1.1 Overview . 11 1.2 Plan of the rest of the thesis . 14 2 History 17 2.1 ¿e back-story . 18 2.1.1 Beginnings: Irrationals, the innite, and the development ofnaiveanalysis ......................... 18 2.1.2 ¿e rigorization of analysis . 20 2.1.3 ¿e arithmetization of the reals — Dedekind . 23 2.1.4 ¿e arithmetization of the reals — Kronecker’s programme 25 2.2 Cantor’s theory of the innite . 26 2.3 A er the paradoxes . 31 2.3.1 ¿e Axiom of Choice . 31 2.3.2 Poincaré on the paradoxes . 34 2.3.3 Das Kontinuum and Brouwer’s ‘revolution’ . 37 2.4 Conclusions . 40 3 Predicativism 43 3.1 Motivations . 45 3.2 Open-endedness and quantication . 48 3.2.1 ‘Any’ and ‘all’ . 48 3.2.2 Indenite extensibility . 50 3.3 ¿e indenite extensibility of P(N) . 52 3.3.1 Denitionism . 52 3.3.2 Richard’s Paradox . 53 7 8 CONTENTS 3.3.3 König and Cantor on Richard’s paradox . 54 3.3.4 Ramication . 55 3.3.5 Uncountability . 56 3.3.6 ¿e arbitrary innite . 58 3.4 Predicativism . 60 3.4.1 ‘Given the natural numbers’ . 62 3.4.2 Conclusion . 64 4 Classicism about the continuum 65 4.1 Preliminaries . 65 4.1.1 Taxonomy: three routes to classicism . 67 4.1.2 Taxonomy: rst-order and second-order . 69 4.1.3 ¿e Continuum Hypothesis . 70 4.2 Second-orderism . 73 4.2.1 ¿e meaning of the second-order quantiers . 74 4.2.2 Second-order logic as logic . 76 4.2.3 Arbitrary concepts . 78 4.2.4 ¿e plural alternative . 81 4.2.5 Arithmetic and the ancestral . 83 4.2.6 ¿e Full Induction Axiom . 85 4.3 Cantorianism . 86 4.3.1 Coming to grasp P(N) . 87 4.3.2 V=L . 89 4.3.3 Countable models of set theory . 91 4.3.4 Wright’s Skolemism . 93 4.4 Intuitively based classicism . 99 4.4.1 Cantor again . 99 4.4.2 Postulating or intuiting the classical continuum . 100 4.4.3 Arithmetic and geometric continua . 103 5 ¿e stability of the predicativist position 107 5.1 Arguments for intuitionism . 108 5.1.1 Brouwer: Mathematical objects as mental constructions . 108 5.1.2 Dummett: Indenite extensibility . 111 5.2 Are the natural numbers indenitely extensible? . 117 CONTENTS 9 5.2.1 Characterizing the natural numbers . 117 5.2.2 ¿e alleged impredicativity of the natural numbers . 120 5.2.3 ¿e negative translation . 123 5.3 ¿e indenite extensibility of the continuum . 126 5.3.1 Indenitely extensibility again . 126 5.3.2 ¿e continuum . 132 5.3.3 Predicativist analysis . 133 5.3.4 LEM and analysis . 136 5.3.5 Conclusion . 139 6 ¿e metaphysics behind predicativism 141 6.1 Russell and ramication . 143 6.2 Russell and Reducibility . 147 6.3 Weyl’s account of properties . 152 6.4 Sets as dependent objects . 157 6.5 Quantication over open domains . 161 6.6 ¿e dependence of sets on their dening properties . 164 6.7 Conclusion . 167 7 Predicative mathematics and its scope 169 7.1 What predicativists can get . 170 7.1.1 Reverse mathematics . 170 7.1.2 Justifying ACA0 .......................... 171 7.1.3 Believing in ACA0; the metamathematics of ACA0 . 172 7.1.4 Predicative mathematics: ACA0 and Das Kontinuum . 173 7.1.5 ¿e Law of Excluded Middle . 175 7.1.6 Delimiting the scope of predicativism . 178 7.1.7 Going beyond ACA0 . 180 7.1.8 Alternatives? . 181 7.1.9 ¿e predicative continuum . 182 7.2 What we all need — indispensability arguments . 183 7.2.1 Science — Quine–Putnam . 184 7.2.2 Mathematics — Gödel–Friedman . 187 8 Conclusion 189 10 CONTENTS Chapter 1 Introduction 1.1 Overview ¿is thesis presents a case for predicativism as a philosophy of mathematics. By predicativism, I will mean what is sometimes called predicativism given the natural numbers. ¿e position can be briey characterized as the acceptance of the natural numbers as a foundation for mathematics, and the rejection of impredicative meth- ods in building up from that foundation. ¿e view was rst clearly put forward by Hermann Weyl in his short book of 1918, Das Kontinuum. As its title suggests, the main object of Weyl’s book was to develop a satisfactory account of the arithmetical continuum, i.e., the real-number system. ¿ere were two familiar accounts of the real numbers available to Weyl, which are essentially equivalent: the reals can be explained in terms either of Cauchy sequences (certain sequences of rational numbers) or in terms of Dedekind cuts (certain sets of rational numbers). Given that sequences can be implemented as sets, the question of what real numbers there are boils down either way to a question about what innite sets there are. So what theory of innite sets should we adopt? ¿e dominant account when Weyl was writing — and to this day — was a full-blooded Cantorian set theory. Weyl found such such an account unsatisfactory because of its use of a particular concept of set which was, he maintained, ill-dened. In its place, Weyl proposed a foundation based on the natural numbers, and a non-Cantorian ‘logical’ (i.e. predicative) concept of sets of natural numbers. More specically, Weyl’s objection to Cantorian set theory, and to the classical 11 12 CHAPTER 1.
Recommended publications
  • Set Theory, by Thomas Jech, Academic Press, New York, 1978, Xii + 621 Pp., '$53.00
    BOOK REVIEWS 775 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 1, July 1980 © 1980 American Mathematical Society 0002-9904/80/0000-0 319/$01.75 Set theory, by Thomas Jech, Academic Press, New York, 1978, xii + 621 pp., '$53.00. "General set theory is pretty trivial stuff really" (Halmos; see [H, p. vi]). At least, with the hindsight afforded by Cantor, Zermelo, and others, it is pretty trivial to do the following. First, write down a list of axioms about sets and membership, enunciating some "obviously true" set-theoretic principles; the most popular Hst today is called ZFC (the Zermelo-Fraenkel axioms with the axiom of Choice). Next, explain how, from ZFC, one may derive all of conventional mathematics, including the general theory of transfinite cardi­ nals and ordinals. This "trivial" part of set theory is well covered in standard texts, such as [E] or [H]. Jech's book is an introduction to the "nontrivial" part. Now, nontrivial set theory may be roughly divided into two general areas. The first area, classical set theory, is a direct outgrowth of Cantor's work. Cantor set down the basic properties of cardinal numbers. In particular, he showed that if K is a cardinal number, then 2", or exp(/c), is a cardinal strictly larger than K (if A is a set of size K, 2* is the cardinality of the family of all subsets of A). Now starting with a cardinal K, we may form larger cardinals exp(ic), exp2(ic) = exp(exp(fc)), exp3(ic) = exp(exp2(ic)), and in fact this may be continued through the transfinite to form expa(»c) for every ordinal number a.
    [Show full text]
  • Weyl's Predicative Classical Mathematics As a Logic-Enriched
    Weyl’s Predicative Classical Mathematics as a Logic-Enriched Type Theory? Robin Adams and Zhaohui Luo Dept of Computer Science, Royal Holloway, Univ of London {robin,zhaohui}@cs.rhul.ac.uk Abstract. In Das Kontinuum, Weyl showed how a large body of clas- sical mathematics could be developed on a purely predicative founda- tion. We present a logic-enriched type theory that corresponds to Weyl’s foundational system. A large part of the mathematics in Weyl’s book — including Weyl’s definition of the cardinality of a set and several re- sults from real analysis — has been formalised, using the proof assistant Plastic that implements a logical framework. This case study shows how type theory can be used to represent a non-constructive foundation for mathematics. Key words: logic-enriched type theory, predicativism, formalisation 1 Introduction Type theories have proven themselves remarkably successful in the formalisation of mathematical proofs. There are several features of type theory that are of particular benefit in such formalisations, including the fact that each object carries a type which gives information about that object, and the fact that the type theory itself has an inbuilt notion of computation. These applications of type theory have proven particularly successful for the formalisation of intuitionistic, or constructive, proofs. The correspondence between terms of a type theory and intuitionistic proofs has been well studied. The degree to which type theory can be used for the formalisation of other notions of proof has been investigated to a much lesser degree. There have been several formalisations of classical proofs by adapting a proof checker intended for intuitionistic mathematics, say by adding the principle of excluded middle as an axiom (such as [Gon05]).
    [Show full text]
  • The Logic of Brouwer and Heyting
    THE LOGIC OF BROUWER AND HEYTING Joan Rand Moschovakis Intuitionistic logic consists of the principles of reasoning which were used in- formally by L. E. J. Brouwer, formalized by A. Heyting (also partially by V. Glivenko), interpreted by A. Kolmogorov, and studied by G. Gentzen and K. G¨odel during the first third of the twentieth century. Formally, intuitionistic first- order predicate logic is a proper subsystem of classical logic, obtained by replacing the law of excluded middle A ∨¬A by ¬A ⊃ (A ⊃ B); it has infinitely many dis- tinct consistent axiomatic extensions, each necessarily contained in classical logic (which is axiomatically complete). However, intuitionistic second-order logic is inconsistent with classical second-order logic. In terms of expressibility, the intu- itionistic logic and language are richer than the classical; as G¨odel and Gentzen showed, classical first-order arithmetic can be faithfully translated into the nega- tive fragment of intuitionistic arithmetic, establishing proof-theoretical equivalence and clarifying the distinction between the classical and constructive consequences of mathematical axioms. The logic of Brouwer and Heyting is effective. The conclusion of an intuitionistic derivation holds with the same degree of constructivity as the premises. Any proof of a disjunction of two statements can be effectively transformed into a proof of one of the disjuncts, while any proof of an existential statement contains an effec- tive prescription for finding a witness. The negation of a statement is interpreted as asserting that the statement is not merely false but absurd, i.e., leads to a contradiction. Brouwer objected to the general law of excluded middle as claim- ing a priori that every mathematical problem has a solution, and to the general law ¬¬A ⊃ A of double negation as asserting that every consistent mathematical statement holds.
    [Show full text]
  • “Gödel's Modernism: on Set-Theoretic Incompleteness,” Revisited
    “G¨odel'sModernism: on Set-Theoretic Incompleteness," revisited∗ Mark van Atten and Juliette Kennedy As to problems with the answer Yes or No, the con- viction that they are always decidable remains un- touched by these results. —G¨odel Contents 1 Introduction 1.1 Questions of incompleteness On Friday, November 15, 1940, Kurt G¨odelgave a talk on set theory at Brown University.1 The topic was his recent proof of the consistency of Cantor's Con- tinuum Hypothesis, henceforth CH,2 with the axiomatic system for set theory ZFC.3 His friend from their days in Vienna, Rudolf Carnap, was in the audience, and afterward wrote a note to himself in which he raised a number of questions on incompleteness:4 (Remarks I planned to make, but did not) Discussion on G¨odel'slecture on the Continuum Hypothesis, November 14,5 1940 There seems to be a difference: between the undecidable propo- sitions of the kind of his example [i.e., 1931] and propositions such as the Axiom of Choice, and the Axiom of the Continuum [CH ]. We used to ask: \When these two have been decided, is then everything decided?" (The Poles, Tarski I think, suspected that this would be the case.) Now we know that (on the basis of the usual finitary rules) there will always remain undecided propositions. ∗An earlier version of this paper appeared as ‘G¨odel'smodernism: on set-theoretic incom- pleteness', Graduate Faculty Philosophy Journal, 25(2), 2004, pp.289{349. Erratum facing page of contents in 26(1), 2005. 1 1. Can we nevertheless still ask an analogous question? I.e.
    [Show full text]
  • On Families of Mutually Exclusive Sets
    ANNALS OF MATHEMATICS Vol. 44, No . 2, April, 1943 ON FAMILIES OF MUTUALLY EXCLUSIVE SETS BY P . ERDÖS AND A. TARSKI (Received August 11, 1942) In this paper we shall be concerned with a certain particular problem from the general theory of sets, namely with the problem of the existence of families of mutually exclusive sets with a maximal power . It will turn out-in a rather unexpected way that the solution of these problems essentially involves the notion of the so-called "inaccessible numbers ." In this connection we shall make some general remarks regarding inaccessible numbers in the last section of our paper . §1. FORMULATION OF THE PROBLEM . TERMINOLOGY' The problem in which we are interested can be stated as follows : Is it true that every field F of sets contains a family of mutually exclusive sets with a maximal power, i .e . a family O whose cardinal number is not smaller than the cardinal number of any other family of mutually exclusive sets contained in F . By a field of sets we understand here as usual a family F of sets which to- gether with every two sets X and Y contains also their union X U Y and their difference X - Y (i.e. the set of those elements of X which do not belong to Y) among its elements . A family O is called a family of mutually exclusive sets if no set X of X of O is empty and if any two different sets of O have an empty inter- section. A similar problem can be formulated for other families e .g .
    [Show full text]
  • A List of Arithmetical Structures Complete with Respect to the First
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 257 (2001) 115–151 www.elsevier.com/locate/tcs A list of arithmetical structures complete with respect to the ÿrst-order deÿnability Ivan Korec∗;X Slovak Academy of Sciences, Mathematical Institute, Stefanikovaà 49, 814 73 Bratislava, Slovak Republic Abstract A structure with base set N is complete with respect to the ÿrst-order deÿnability in the class of arithmetical structures if and only if the operations +; × are deÿnable in it. A list of such structures is presented. Although structures with Pascal’s triangles modulo n are preferred a little, an e,ort was made to collect as many simply formulated results as possible. c 2001 Elsevier Science B.V. All rights reserved. MSC: primary 03B10; 03C07; secondary 11B65; 11U07 Keywords: Elementary deÿnability; Pascal’s triangle modulo n; Arithmetical structures; Undecid- able theories 1. Introduction A list of (arithmetical) structures complete with respect of the ÿrst-order deÿnability power (shortly: def-complete structures) will be presented. (The term “def-strongest” was used in the previous versions.) Most of them have the base set N but also structures with some other universes are considered. (Formal deÿnitions are given below.) The class of arithmetical structures can be quasi-ordered by ÿrst-order deÿnability power. After the usual factorization we obtain a partially ordered set, and def-complete struc- tures will form its greatest element. Of course, there are stronger structures (with respect to the ÿrst-order deÿnability) outside of the class of arithmetical structures.
    [Show full text]
  • Master of Science in Advanced Mathematics and Mathematical Engineering
    Master of Science in Advanced Mathematics and Mathematical Engineering Title: Logic and proof assistants Author: Tomás Martínez Coronado Advisor: Enric Ventura Capell Department: Matemàtiques Academic year: 2015 - 2016 An introduction to Homotopy Type Theory Tom´asMart´ınezCoronado June 26, 2016 Chapter 1 Introduction We give a short introduction first to the philosophical motivation of Intuitionistic Type Theories such as the one presented in this text, and then we give some considerations about this text and the structure we have followed. Philosophy It is hard to overestimate the impact of the problem of Foundations of Mathematics in 20th century philos- ophy. For instance, arguably the most influential thinker in the last century, Ludwig Wittgenstein, began its philosophical career inspired by the works of Frege and Russell on the subject |although, to be fair, he quickly changed his mind and quit working about it. Mathematics have been seen, through History, as the paradigma of absolute knowledge: Locke, in his Essay concerning Human Understanding, had already stated that Mathematics and Theology (sic!) didn't suffer the epistemological problems of empirical sciences: they were, each one in its very own way, provable knowledge. But neither Mathematics nor Theology had a good time trying to explain its own inconsistencies in the second half of the 19th century, the latter due in particular to the works of Charles Darwin. The problem of the Foundations of Mathematics had been the elephant in the room for quite a long time: the necessity of relying on axioms and so-called \evidences" in order to state the invulnerability of the Mathematical system had already been criticized by William Frend in the late 18th century, and the incredible Mathematical works of the 19th century, the arrival of new geometries which were \as consistent as Euclidean geometry", and a bunch of well-known paradoxes derived of the misuse of the concept of infinity had shown the necessity of constructing a logical structure complete enough to sustain the entire Mathematical building.
    [Show full text]
  • Starting the Dismantling of Classical Mathematics
    Australasian Journal of Logic Starting the Dismantling of Classical Mathematics Ross T. Brady La Trobe University Melbourne, Australia [email protected] Dedicated to Richard Routley/Sylvan, on the occasion of the 20th anniversary of his untimely death. 1 Introduction Richard Sylvan (n´eRoutley) has been the greatest influence on my career in logic. We met at the University of New England in 1966, when I was a Master's student and he was one of my lecturers in the M.A. course in Formal Logic. He was an inspirational leader, who thought his own thoughts and was not afraid to speak his mind. I hold him in the highest regard. He was very critical of the standard Anglo-American way of doing logic, the so-called classical logic, which can be seen in everything he wrote. One of his many critical comments was: “G¨odel's(First) Theorem would not be provable using a decent logic". This contribution, written to honour him and his works, will examine this point among some others. Hilbert referred to non-constructive set theory based on classical logic as \Cantor's paradise". In this historical setting, the constructive logic and mathematics concerned was that of intuitionism. (The Preface of Mendelson [2010] refers to this.) We wish to start the process of dismantling this classi- cal paradise, and more generally classical mathematics. Our starting point will be the various diagonal-style arguments, where we examine whether the Law of Excluded Middle (LEM) is implicitly used in carrying them out. This will include the proof of G¨odel'sFirst Theorem, and also the proof of the undecidability of Turing's Halting Problem.
    [Show full text]
  • The Infinite and Contradiction: a History of Mathematical Physics By
    The infinite and contradiction: A history of mathematical physics by dialectical approach Ichiro Ueki January 18, 2021 Abstract The following hypothesis is proposed: \In mathematics, the contradiction involved in the de- velopment of human knowledge is included in the form of the infinite.” To prove this hypothesis, the author tries to find what sorts of the infinite in mathematics were used to represent the con- tradictions involved in some revolutions in mathematical physics, and concludes \the contradiction involved in mathematical description of motion was represented with the infinite within recursive (computable) set level by early Newtonian mechanics; and then the contradiction to describe discon- tinuous phenomena with continuous functions and contradictions about \ether" were represented with the infinite higher than the recursive set level, namely of arithmetical set level in second or- der arithmetic (ordinary mathematics), by mechanics of continuous bodies and field theory; and subsequently the contradiction appeared in macroscopic physics applied to microscopic phenomena were represented with the further higher infinite in third or higher order arithmetic (set-theoretic mathematics), by quantum mechanics". 1 Introduction Contradictions found in set theory from the end of the 19th century to the beginning of the 20th, gave a shock called \a crisis of mathematics" to the world of mathematicians. One of the contradictions was reported by B. Russel: \Let w be the class [set]1 of all classes which are not members of themselves. Then whatever class x may be, 'x is a w' is equivalent to 'x is not an x'. Hence, giving to x the value w, 'w is a w' is equivalent to 'w is not a w'."[52] Russel described the crisis in 1959: I was led to this contradiction by Cantor's proof that there is no greatest cardinal number.
    [Show full text]
  • THE 1910 PRINCIPIA's THEORY of FUNCTIONS and CLASSES and the THEORY of DESCRIPTIONS*
    EUJAP VOL. 3 No. 2 2007 ORIGinal SCienTifiC papeR UDK: 165 THE 1910 PRINCIPIA’S THEORY OF FUNCTIONS AND CLASSES AND THE THEORY OF DESCRIPTIONS* WILLIAM DEMOPOULOS** The University of Western Ontario ABSTRACT 1. Introduction It is generally acknowledged that the 1910 Prin- The 19101 Principia’s theory of proposi- cipia does not deny the existence of classes, but tional functions and classes is officially claims only that the theory it advances can be developed so that any apparent commitment to a “no-classes theory of classes,” a theory them is eliminable by the method of contextual according to which classes are eliminable. analysis. The application of contextual analysis But it is clear from Principia’s solution to ontological questions is widely viewed as the to the class paradoxes that although the central philosophical innovation of Russell’s theory of descriptions. Principia’s “no-classes theory it advances holds that classes are theory of classes” is a striking example of such eliminable, it does not deny their exis- an application. The present paper develops a re- tence. Whitehead and Russell argue from construction of Principia’s theory of functions the supposition that classes involve or and classes that is based on Russell’s epistemo- logical applications of the method of contextual presuppose propositional functions to the analysis. Such a reconstruction is not eliminativ- conclusion that the paradoxical classes ist—indeed, it explicitly assumes the existence of are excluded by the nature of such func- classes—and possesses certain advantages over tions. This supposition rests on the repre- the no–classes theory advocated by Whitehead and Russell.
    [Show full text]
  • A Quasi-Classical Logic for Classical Mathematics
    Theses Honors College 11-2014 A Quasi-Classical Logic for Classical Mathematics Henry Nikogosyan University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/honors_theses Part of the Logic and Foundations Commons Repository Citation Nikogosyan, Henry, "A Quasi-Classical Logic for Classical Mathematics" (2014). Theses. 21. https://digitalscholarship.unlv.edu/honors_theses/21 This Honors Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Honors Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Honors Thesis has been accepted for inclusion in Theses by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. A QUASI-CLASSICAL LOGIC FOR CLASSICAL MATHEMATICS By Henry Nikogosyan Honors Thesis submitted in partial fulfillment for the designation of Departmental Honors Department of Philosophy Ian Dove James Woodbridge Marta Meana College of Liberal Arts University of Nevada, Las Vegas November, 2014 ABSTRACT Classical mathematics is a form of mathematics that has a large range of application; however, its application has boundaries. In this paper, I show that Sperber and Wilson’s concept of relevance can demarcate classical mathematics’ range of applicability by demarcating classical logic’s range of applicability.
    [Show full text]
  • Types, Sets and Categories
    TYPES, SETS AND CATEGORIES John L. Bell This essay is an attempt to sketch the evolution of type theory from its begin- nings early in the last century to the present day. Central to the development of the type concept has been its close relationship with set theory to begin with and later its even more intimate relationship with category theory. Since it is effectively impossible to describe these relationships (especially in regard to the latter) with any pretensions to completeness within the space of a comparatively short article, I have elected to offer detailed technical presentations of just a few important instances. 1 THE ORIGINS OF TYPE THEORY The roots of type theory lie in set theory, to be precise, in Bertrand Russell’s efforts to resolve the paradoxes besetting set theory at the end of the 19th century. In analyzing these paradoxes Russell had come to find the set, or class, concept itself philosophically perplexing, and the theory of types can be seen as the outcome of his struggle to resolve these perplexities. But at first he seems to have regarded type theory as little more than a faute de mieux. In June 1901 Russell learned of the set-theoretic paradox, known to Cantor by 1899, that issued from applying the latter’s theorem concerning power sets to the class V of all sets. According to that theorem the class of all subclasses of V would, impossibly, have to possess a cardinality exceeding that of V . This stimulated Russell to formulate the paradox that came to bear his name (although it was independently discovered by Zermelo at about the same time) concerning the class of all classes not containing themselves (or predicates not predicable of themselves).
    [Show full text]