MATCH MATCH Commun. Math. Comput. Chem. 65 (2011) 541-580 Communications in Mathematical and in Computer Chemistry ISSN 0340 - 6253 Pyramidal Knots and Links and Their Invariants Slavik Jablana, Ljiljana Radovi´cb and Radmila Sazdanovi´ca aThe Mathematical Institute, Knez Mihailova 36, P.O.Box 367, 11001 Belgrade, Serbia e-mail:
[email protected] ;
[email protected] bUniversity of Niˇs, Faculty of Mechanical Engineering, A. Medvedeva 14, 18 000 Niˇs, Serbia e-mail:
[email protected] (Received June 21, 2010) Abstract We give a survey of different methods for obtaining knots and links in the form of different geometrical polyhedra, that have applications in chemistry. After introducing new graphical notation for decorated polyhedral graphs we derive general formulae for Tutte polynomials of 3- and 4-pyramid decorated graphs. Moreover, we compute different invariants of their corre- sponding source and generating links. 1. INTRODUCTION The initial interest in knot theory was stimulated by Kelvin’s theory of atomic struc- ture (1867). By the turn of the century, after scientific confirmation of Mendeleev’s periodic tables, it was clear that Kelvin’s theory was incorrect. Chemists were no longer interested in classifying knots, but topologists continued to study them. In 1960-ties the focus of chemists turned towards attempts to synthesize molecular knots and links (abbr. KLs). The first pair of linked rings in a form of the Hopf link, a catenane, was synthesized by H. Frisch and E. Wasserman in 1961. The first molecular knot, a trefoil made out of 124 atoms was produced by C. Dietrich-Bushecker and J.- P.