A Risk Analysis of Microplastic Consumption in Filter Feeders

Total Page:16

File Type:pdf, Size:1020Kb

A Risk Analysis of Microplastic Consumption in Filter Feeders Nova Southeastern University NSUWorks HCNSO Student Capstones HCNSO Student Work 12-6-2019 A Risk Analysis of Microplastic Consumption in Filter Feeders Sheri Rahman Nova Southeastern University, [email protected] This document is a product of extensive research conducted at the Nova Southeastern University . For more information on research and degree programs at the NSU , please click here. Follow this and additional works at: https://nsuworks.nova.edu/cnso_stucap Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Sheri Rahman. 2019. A Risk Analysis of Microplastic Consumption in Filter Feeders. Capstone. Nova Southeastern University. Retrieved from NSUWorks, . (347) https://nsuworks.nova.edu/cnso_stucap/347. This Capstone is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Capstones by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Capstone of Sheri Rahman Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science M.S. Marine Biology Nova Southeastern University Halmos College of Natural Sciences and Oceanography December 2019 Approved: Capstone Committee Major Professor: Dr. Abigail Renegar Committee Member: Dr. Bernhard Riegl This capstone is available at NSUWorks: https://nsuworks.nova.edu/cnso_stucap/347 HALMOS COLLEGE OF NATURAL SCIENCES AND OCEANOGRAPHY A Risk Analysis of Microplastic Consumption in Filter Feeders By Sheri Rahman Submitted to the faculty of Halmos College of Natural Sciences and Oceanography in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: Marine Science Concentration: Marine Biology Nova Southeastern University 1 December 2019 Submitted in partial fulfillment of the requirements for the degree of Master of Science: Marine Biology Sheri Rahman Nova Southeastern University Halmos College of Natural Sciences and Oceanography December 2019 Capstone Committee Approval ______________________________ Dr. Abigail Renegar, Major Professor ______________________________ Dr. Bernhard Riegl, Committee Member 2 Table of Contents Abstract 3 I. Introduction 5 II. Statement of Purpose & Objectives 7 III. Materials and Methods 3.1 Data Acquisition 9 3.2 Data Analysis 13 IV. Results and Review 4.1 Microplastic Abundance 17 4.2 Filtration Rates 21 4.3 Microplastic Consumption Rates 23 4.4 Filter Feeder Characteristics 28 V. Summary and Conclusions 5.1 Overall Risk Assessment 52 5.2 Future Considerations 56 VI. References 57 3 Abstract Microplastics (plastic particles < 5 mm) pose a serious threat to marine organisms, as researchers have documented such particles in the gut contents of numerous species. In particular, filter feeders are at risk of consuming microplastics because they may accidentally consume the particulates when feeding or they may prey on species that have already consumed them. The goals of this research were to evaluate the risks that different filter feeders face in regards to microplastic consumption through the analysis of the calculated Microplastic Consumption Rates for numerous species of filter feeders. Factors that could potentially affect this risk were also considered, including ocean basin, environment type, salinity, life stage, IUCN status, and filtration technique. Initial analysis showed that body size greatly impacted a species’ risk of microplastic consumption and further tests were completed to evaluate overall microplastic contamination for each species. Microplastic consumption and microplastic contamination values were evaluated and analyzed to determine which filter feeding species were most at risk of experiencing ecological effects from microplastic pollution. From a resource management perspective, this research highlights the filter feeding species most at risk, contributing to the development of more effective plastic waste management policies. Keywords: microplastics, plastics, filtration, microplastic consumption, microplastic contamination, filter feeding species 4 I. Introduction More than nine million tons of plastic fibers are produced every year, and microplastics (plastics < 5 mm) are now found in aquatic environments around the globe (Barrows et al. 2018). Plastics were first produced in the 1950s and became popular very quickly due to their durability and low production costs (Lusher et al. 2017). Although they offer many benefits to the average consumer, including lower prices and convenience, plastic materials have become a danger to the environment. When improperly managed, plastic waste is often allowed to reach freshwater and marine environments. There, the material is exposed to the sun’s ultraviolet rays, causing it to degrade slowly (Lusher et al. 2017). This leads to the breakdown of the material and formation of small, microplastic particles, which have become such a prevalent problem today that they are now considered one of the greatest threats to the health of ecosystems and biodiversity on land and in marine and freshwater regions (Barrows et al. 2018, Lusher et al. 2017). Microplastics can generally be categorized as either primary or secondary. Primary microplastics are fibers and beads manufactured to a small size, which are often used in the cosmetic industry. These particles might be used in soaps, shampoos, toothpastes, shaving cream, makeup, bubble bath, and other cosmetic products around the world (Leslie 2014). When consumers rinse off the product and wash it down the drain, these plastics find their way into wastewater. And while effective management facilities will retain a small portion of these microplastics, the rest flow into freshwater or marine environments (Leslie 2014). Secondary microplastics, on the other hand, are produced from the degradation of larger items (Lusher et al. 2017), such as plastic bottles, bags, and other forms of waste. This degradation occurs as a result of exposure to saltwater and ultraviolet sunlight (Lusher et al. 2017). Plastics are known to include a variety of toxins, as they are often comprised of toxic chemicals and various additives that can have adverse effects on the health of marine organisms (Gallo et al. 2018). A variety of chemicals, such as monomers, plasticizers, and flame-retardants, are added to plastics during production (Lusher et al. 2017). The material can also adsorb contaminants like polychlorinated biphenyls (PCBS), polycyclic aromatic hydrocarbons (PAH), and persistent bioaccumulative toxic substances (PBTs) from the 5 surrounding environment. Contaminants accumulate through predator-prey relationships and trophic transfers, potentially leading to adverse health effects, such as increased immune responses, decreased growth, and decreased fecundity (Gallo et al. 2018, Lusher et al. 2017). Due to their popularity, long lifespan, process of degradation, and potential for toxicity, microplastics have become ubiquitous and a persistent pollutant. As such, it is increasingly important to understand their distribution and concentration around the globe (Barrows et al. 2018). In recent years, new research has expanded knowledge in this area, with much of the work being completed by citizen science initiatives (Barrows et al. 2018). A great example is the Global and Gallatin Microplastics Initiative, which launched a massive project that called for environmentally minded citizens who spend time on the water to take water samples and send it to their facilities for processing. The response was enormous, with samples collected from around the globe, encompassing marine and freshwater environments; this initiative has produced a large microplastic concentration dataset that can be used to bridge knowledge gaps (Global & Gallatin Microplastic Initiatives 2018). It is widely known that many species, including filter feeders, consume microplastics as previous studies have found such particles in the stomachs and guts of various organisms (Cole et al. 2013, Taylor et al. 2016, Wieczorek et al. 2018). Even some of the smallest species, like copepods, bivalve larvae, and decapod larvae, ingest microplastics although the ability to uptake these particles may depend on size (Cole et al. 2013). Species that are larger in size or at higher trophic levels have also been documented interacting with microplastic pollution, whether directly or indirectly (Lusher et al. 2017). Although the direct ingestion of plastic particulates is more commonly studied, trophic transfer might also occur when an organism ingests a prey species that has already consumed the microplastics (Cole et al. 2013, Moore et al. 2001). Evidence even suggests that organisms in the deep sea have been exposed, as they frequently ingest microplastic fibers (Taylor et al. 2016) Like most other marine species, filter feeding organisms ranging in size and complexity from sponges and jellyfish to whale sharks are also known to consume microplastics either directly if mistaken for food or indirectly as a result of prey consumption of plastic particles or fibers (Cole et al. 2013, Moore et al. 2001). Because filter feeders must filter small food items from the water, such as zooplankton and phytoplankton, they cannot 6 always be selective and avoid the consumption of other particulates that may also be present (Cole et al. 2013). Some organisms have developed adaptations prevent the consumption of unwanted materials, such as the mesh size of gill
Recommended publications
  • On Giant Filter Feeders 170 Million Years
    PERSPECTIVES PALEONTOLOGY Massive fi lter-feeding vertebrates have roamed the world’s oceans for the past On Giant Filter Feeders 170 million years. Lionel Cavin he largest living marine verte- years ago), the diversity of mysticete whales these fi shes engulfed water by swimming brates—baleen whales and several was linked to the diversity of diatoms and to with an open mouth and sieved food while T lineages of sharks and rays—feed climatic variations (4 ). water escaped through the gill arches. directly on very small organisms (such as In the Jurassic (200 to 145 million years Giant reptiles roamed the Jurassic and plankton and small fi shes). Planktivorous ago) and the Cretaceous (145 to 65 million Cretaceous oceans, and some huge ray- sharks and rays collect food by fi ltering sea- years ago), ray-fi nned fi shes called pachy- fi nned fi shes—the ichthyodectiforms (bull- water through gill rakers (fi ngerlike pro- cormiforms lived in the oceans. These extinct dog fi sh and relatives)—emerged at the end jections on gill arches), whereas mysticete fishes are regarded as primitive teleosts, of the Cretaceous. But all these beasts were whales sieve small animals from seawater the group to which most living bony fi shes apex predators that fed on large preys, and through whalebone or baleen (comblike belong (5 ). A giant representative from the none had a fi lter-feeding diet. The newly keratin structures in their upper jaws) (1 , Middle Jurassic, Leedsichthys, was up to 9 discovered clade of massive fi lter-feeding 2). On page 990 of this issue, Friedman et m long and has been interpreted as a fi lter fi shes thus fi lls a large ecological niche.
    [Show full text]
  • A Review of Planktivorous Fishes: Their Evolution, Feeding Behaviours, Selectivities, and Impacts
    Hydrobiologia 146: 97-167 (1987) 97 0 Dr W. Junk Publishers, Dordrecht - Printed in the Netherlands A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts I Xavier Lazzaro ORSTOM (Institut Français de Recherche Scientifique pour le Développement eri Coopération), 213, rue Lu Fayette, 75480 Paris Cedex IO, France Present address: Laboratorio de Limrzologia, Centro de Recursos Hidricob e Ecologia Aplicada, Departamento de Hidraulica e Sarzeamento, Universidade de São Paulo, AV,DI: Carlos Botelho, 1465, São Carlos, Sï? 13560, Brazil t’ Mail address: CI? 337, São Carlos, SI? 13560, Brazil Keywords: planktivorous fish, feeding behaviours, feeding selectivities, electivity indices, fish-plankton interactions, predator-prey models Mots clés: poissons planctophages, comportements alimentaires, sélectivités alimentaires, indices d’électivité, interactions poissons-pltpcton, modèles prédateurs-proies I Résumé La vision classique des limnologistes fut de considérer les interactions cntre les composants des écosystè- mes lacustres comme un flux d’influence unidirectionnel des sels nutritifs vers le phytoplancton, le zoo- plancton, et finalement les poissons, par l’intermédiaire de processus de contrôle successivement physiqucs, chimiques, puis biologiques (StraSkraba, 1967). L‘effet exercé par les poissons plaiictophages sur les commu- nautés zoo- et phytoplanctoniques ne fut reconnu qu’à partir des travaux de HrbáEek et al. (1961), HrbAEek (1962), Brooks & Dodson (1965), et StraSkraba (1965). Ces auteurs montrèrent (1) que dans les étangs et lacs en présence de poissons planctophages prédateurs visuels. les conimuiiautés‘zooplanctoniques étaient com- posées d’espèces de plus petites tailles que celles présentes dans les milieux dépourvus de planctophages et, (2) que les communautés zooplanctoniques résultantes, composées d’espèces de petites tailles, influençaient les communautés phytoplanctoniques.
    [Show full text]
  • Filter-Feeding Ecology of Aquatic Insects
    Annual Reviews www.annualreviews.org/aronline AnmRev. F.ntomol. 1980. 25:103-32 Copyright© 1980 by AnnualReviews Inc. All rights reserved FILTER-FEEDING ECOLOGY ~6185 OF AQUATIC INSECTS J. BruceWallace Departmentof Entomology,University of Georgia, Athens, Georgia 30602 Richard W. Merritt Departmentof Entomology,Michigan State University, East Lansing, Michigan48824 INTRODUCTION Filter feeders are organisms that have evolved various sieving mechanisms for removing particulate matter from suspension (100). Several groups aquatic insects, with habitats ranging from high elevation streams to saltwa- ter estuaries, use this feeding methodand consumesignificant quantities of suspended material (seston), including living organisms and both organic and inorganic detritus. Filter-feeding insects constitute important pathways for energy flow and are very important in the productivity of aquatic environments. Yet, someof these animals epitomize the complexrelation- ship between manand insects since biting adults of certain groups are amongman’s oldest adversaries. The major objectives of this article are to review the meansby which filter-feeding insects obtain their food and to assess the role of these animals in aquatic ecosystems.Filter-feeding strate- gies by other invertebrates in both marine and freshwater habitats have been partially reviewed elsewhere (82, 100, 101). SOURCES OF FOOD Lotic ecosystems in forested regions receive large inputs of allochthonous organic matter (4, 36-38, 98, 137). Anderson& Sedell (4) recently reviewed the role of macroinvertebrates in detritus processing. There is ample evi- dence from lotic studies that the concentration of particulate organic seston 103 0066-4170/80/0101-0103501.00 Annual Reviews www.annualreviews.org/aronline 104 WALLACE& MERRITT is skewed toward the smallest size fractions (<50 /zm) (119, 148, 191).
    [Show full text]
  • Conservation and Population Ecology of Manta Rays in the Maldives
    Conservation and Population Ecology of Manta Rays in the Maldives Guy Mark William Stevens Doctor of Philosophy University of York Environment August 2016 2 Abstract This multi-decade study on an isolated and unfished population of manta rays (Manta alfredi and M. birostris) in the Maldives used individual-based photo-ID records and behavioural observations to investigate the world’s largest known population of M. alfredi and a previously unstudied population of M. birostris. This research advances knowledge of key life history traits, reproductive strategies, population demographics and habitat use of M. alfredi, and elucidates the feeding and mating behaviour of both manta species. M. alfredi reproductive activity was found to vary considerably among years and appeared related to variability in abundance of the manta’s planktonic food, which in turn may be linked to large-scale weather patterns such as the Indian Ocean Dipole and El Niño-Southern Oscillation. Key to helping improve conservation efforts of M. alfredi was my finding that age at maturity for both females and males, estimated at 15 and 11 years respectively, appears up to 7 – 8 years higher respectively than previously reported. As the fecundity of this species, estimated at one pup every 7.3 years, also appeared two to more than three times lower than estimates from studies with more limited data, my work now marks M. alfredi as one of the world’s least fecund vertebrates. With such low fecundity and long maturation, M. alfredi are extremely vulnerable to overfishing and therefore needs complete protection from exploitation across its entire global range.
    [Show full text]
  • Prey Density and Distribution Drive the Three-Dimensional Foraging Strategies of the Largest Filter Feeder
    Prey density and distribution drive the three-dimensional foraging strategies of the largest filter feeder Jeremy A. Goldbogen, Elliott L. Hazen, Ari S. Friedlaender, John Calambokidis, Stacy L. DeRuiter, Alison K. Stimpert, and Brandon L. Southall Predators use a suite of foraging strategies to maximize their energetic gain and support their metabolism. Foraging in aquatic vertebrates can be broadly categorized into particulate feeding, where single prey items are seized and ingested, and bulk-filter feeding that involves the capture and processing of large volumes of prey-laden water. Several animal groups have independently evolved a bulk-filter feeding strategy, including cartilaginous fish (e.g. whale sharks and basking sharks) and Photo by Ari Friedlaender under NMFS Permit: #14534-2 baleen whales. Many filter feeders exhibit a ram-feeding mode where animals use their acrobatic lunge feeding events when forward locomotion to drive water into the foraging on small, low-density, more mouth where filtration occurs. patchily distributed krill. In contrast, when foraging on dense, deeper, and larger krill Large bulk filter feeders have long been aggregations, blue whales increased lunge assumed to be indiscriminate "vacuums" of frequency and maneuverer less during each the ocean, slowly filtering water regardless lunge. These data demonstrate a previously of variation in prey distribution, but here we unrecognized range of adaptable foraging reveal tremendous plasticity of foraging strategies in a large bulk-filter feeder. strategies in the world's largest filter feeder, Because manoeuvring and diving require the blue whale (Balaenoptera musculus), significant amounts of energy, the variation which is strongly a function of prey density in foraging behaviour that we revealed has and depth.
    [Show full text]
  • Appendix U — Accounting for the Benefits of Filter Feeder Restoration
    Appendix U – Chesapeake Bay TMDL Appendix U. Accounting for the Benefits of Filter Feeder Restoration Technical Documentation Strategies for Allocating Filter Feeder Nutrient Assimilation into the Chesapeake Bay TMDL Prepared for U.S. Environmental Protection Agency Prepared by Tetra Tech, Inc., 10306 Eaton Place, Suite 340, Fairfax, VA 22030 Introduction Filter feeders play an important role in the uptake of nutrients from the Chesapeake Bay and have the potential to significantly improve water quality if present in large numbers. The current goal for the Chesapeake Bay is to increase the native Eastern oyster, Crassostrea virginica, population tenfold. A population increase of that magnitude could remove 10 million pounds of nitrogen annually (Cerco and Noel 2005). Menhaden fish, Brevoortia tyrannus, are another filter feeding organism in the Chesapeake Bay. This paper explores the options for incorporating the effects of filter feeders into the Chesapeake Bay TMDL and implementation plans. As a way of fostering management and restoration of filter feeders, the U.S. Environmental Protection Agency (EPA) intends to investigate future monitored levels of filter feeder populations and incorporate that into EPA’s model-based tracking of State progress in achieving the 2-year milestones. Current Harvest Situation The Atlantic States Marine Fisheries Commission (ASMFC) reports that the reduction1 fishery harvested 85,000 metric tons of menhaden from the Chesapeake Bay in 2008 and 21,150 metric tons from bait landings (ASMFC 2009b). The vast majority of the catch is in the Virginia portion of the Chesapeake Bay using the purse seining method. Purse seining has been banned in the Maryland portion of the Chesapeake Bay for decades, where menhaden are primarily harvested via pound nets.
    [Show full text]
  • A Review of the Biology, Fisheries and Conservation of the Whale Shark
    Journal of Fish Biology (2012) 80,1019–1056 doi:10.1111/j.1095-8649.2012.03252.x, available online at wileyonlinelibrary.com A review of the biology, fisheries and conservation of the whale shark Rhincodon typus D. Rowat*† and K. S. Brooks*‡ *Marine Conservation Society Seychelles, P. O. Box 1299, Victoria, Mahe, Seychelles and ‡Environment Department, University of York, Heslington, York, YO10 5DD, U.K. Although the whale shark Rhincodon typus is the largest extant fish, it was not described until 1828 and by 1986 there were only 320 records of this species. Since then, growth in tourism and marine recreation globally has lead to a significant increase in the number of sightings and several areas with annual occurrences have been identified, spurring a surge of research on the species. Simultane- ously, there was a great expansion in targeted R. typus fisheries to supply the Asian restaurant trade, as well as a largely un-quantified by-catch of the species in purse-seine tuna fisheries. Currently R. typus is listed by the IUCN as vulnerable, due mainly to the effects of targeted fishing in two areas. Photo-identification has shown that R. typus form seasonal size and sex segregated feeding aggregations and that a large proportion of fish in these aggregations are philopatric in the broadest sense, tending to return to, or remain near, a particular site. Somewhat conversely, satellite tracking studies have shown that fish from these aggregations can migrate at ocean-basin scales and genetic studies have, to date, found little graphic differentiation globally. Conservation approaches are now informed by observational and environmental studies that have provided insight into the feeding habits of the species and its preferred habitats.
    [Show full text]
  • How Do Sponges, Cnidarians, Flatworms, and Roundworms Obtain
    Name: Colwyn Sleep Date: June 23 /16 Biology 11 Unit 9 Assignment 1: How do sponges, cnidarians, flatworms, and roundworms obtain food? Virtual Lab Instructions: Please complete the How do sponges, cnidarians, flatworms, and roundworms obtain food Virtual Lab. External Link: http://www.glencoe.com/sites/common_assets/science/virtual_labs/LS13/LS13.html Read the information and procedures provided in the lab and complete the journal questions (provided below). Please note you should be answering your questions in detail, by providing support in the form of data values (external or from the lab) and/or scientific information/ research to explain your statements. Table/Graph Section: Table 1: How do sponges, cnidarians, flatworms, and roundworms obtain food. Name of organism Types of feeder Image of organism (insert picture/sketch) Tapeworm (in intestine of Parasite fish) ! www.extremetech.com Sea Anemone Filter feeder ! wonderopolis.org Jellyfish Filter feeder ! perryponders.com Sponge Filter feeder ! www.capitalwired.com Portugese man-of-war Predator ! www.svsu.edu Tube Sponge Filter feeder ! oceana.org Rope Sponge Predator ! Leopard Flatworm Parasite Scavenger Filter- feeder ! Journal Questions: Describe each of the four types of feeders identified in this activity. Explain how various invertebrates have adapted to feeding in their environment. In this activity, four types of feeders were identified: Predators, Scavengers, Filter feeders, and Parasites. Predators hunt and kill prey/food, Scavengers feed on the remains of dead organisms, Filter feeders filter out bacteria, algae, and other material from the water they live in, and Predators obtain food from their host organism. Each of the invertebrates have adapted different methods to obtain food within their environment.
    [Show full text]
  • Phylogeny of Lamniform Sharks Based on Whole Mitochondrial Genome Sequences
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2003 Phylogeny of lamniform sharks based on whole mitochondrial genome sequences Toni Laura Ferrara Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Ferrara, Toni Laura, "Phylogeny of lamniform sharks based on whole mitochondrial genome sequences" (2003). Retrospective Theses and Dissertations. 19960. https://lib.dr.iastate.edu/rtd/19960 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Phylogeny of lamniform sharks based on whole mitochondrial genome sequences by Toni Laura Ferrara A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Zoology Program of Study Committee: Gavin Naylor, Major Professor Dean Adams Bonnie Bowen Jonathan Wendel Iowa State University Ames, Iowa 2003 11 Graduate College Iowa State University This is to certify that the master's thesis of Toni Laura Ferrara has met the thesis requirements of Iowa State University Signatures have been redacted for privacy 111 TABLE OF CONTENTS GENERAL INTRODUCTION 1 LITERATL:jRE REVIEW 2 CHAPTER ONE: THE BIOLOGY OF LAMNIFORM
    [Show full text]
  • Hydrodynamics of Suction Feeding in Fish
    HYDRODYNAMICS OF SUCTION FEEDING IN FISH CENTRALE LANDBOUWCATALOGUS 0000 0086 6232 Promotor: dr. J. W. M. Osse, hoogleraar in de algemene dierkunde. Co-promotor: ir. J. H. G. Verhagen, docent m.b.t. de analyse van aquatische systemen. *JfJC'c--'-V p ^S MEES MULLER HYDRODYNAMICS OF SUCTION FEEDING IN FISH Proefschrift ter verkrijging van degraa d van doctor ind e landbouwwetenschappen, op gezagva n de rector magnificus, dr. C. C.Oosterlee , hoogleraar ind eveeteeltwetenschap , in het openbaar teverdedige n opwoensda g 29jun i 1983 desnamiddag st ehal fdri ei nd eaul a van de Landbouwhogeschool te Wageningen. H.VEENMA N & ZONEN B.V.- WAGENINGE N -198 3 1^ /Sb133-0 3 vt JC w STELLINGEN. 1. In unsteady flow it is impossible to deduce the velocity of the water from the pressure. Therefore, Lauder's proposal for a model of suction feeding in fish is not valid. Contra: Lauder (1980a, b) 2. Theexperimenta l approach to determine thefunctio n ofa structure by removing or severing important parts of this system as done by Liem (1970) and Lauder (1979) is comparable to the old story of studying the locomotion of the rat by successively cutting its legs. For example: Fig. 2F, p. 547 in Lauder (1979) is comparable with the case of the rat havingjus t only one leg remained. This crude information does not contribute to any insight in functional mor­ phology of fish. Contra: Liem (1970), Lauder (1979) 3. Theconclusion , based on EMG-results ofrecen t fish, that them . adductor oper- culi in the extinct palaeoniscoids should have a biphasic activity during feeding (Lauder, 1980c) is as unscientific as e.g.
    [Show full text]
  • Filter Feeding Ecology of Erect Branching Sponges on Caribbean Coral Reefs Anna Margaret Strimaitis
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2012 Filter Feeding Ecology of Erect Branching Sponges on Caribbean Coral Reefs Anna Margaret Strimaitis Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCE FILTER FEEDING ECOLOGY OF ERECT BRANCHING SPONGES ON CARIBBEAN CORAL REEFS By ANNA MARGARET STRIMAITIS A Thesis submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Summer Semester, 2012 Anna Strimaitis defended this thesis on April 25, 2012. The members of the supervisory committee were: Janie L. Wulff Professor Directing Thesis Markus Huettel University Representative Don R. Levitan Committee Member Alice A. Winn Committee Member Kay M. Jones Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements. ii For Aunt Judy. (November 21, 1945 – September 8, 2008) Your fondness for the sea and the Seminoles is always in my thoughts. iii ACKNOWLEDGEMENTS I thank Janie Wulff for her collaboration in the design and execution of this project. I thank Markus Huettel, Kay Jones, Don Levitan, and Alice Winn for discussion on project development, data analysis, and writing. Special thanks to Ruth Didier for her guidance and expertise with the flow cytometry analysis at the Florida State University College of Medicine Flow Cytometry Facility. I also thank Cedric Magen for analyzing the DOC and TN samples.
    [Show full text]
  • Suspension Feeders: a Workshop to Assess What We Know, Don't Know, and Need to Know to Determine Their Effects on Water Quality
    Suspension feeders: A Workshop to Assess What We Know, Don't Know, and Need to Know to Determine Their Effects on Water Quality March 18-19, 2002 BWI Ramada Inn Hanover, Maryland Workshop Chair: Dr. Denise Breitburg, The Academy of Natural Sciences Estuarine Research Center Steering Committee: Dr. Eileen Hoffman, Old Dominion University Dr. Roger Newell, University of Maryland Center for Environmental Studies Dr. Arthur Butt, Virginia Department of Environmental Quality Mr. Derek Orner, NOAA Chesapeake Bay Office Dr. Robert Magnien, Maryland Department of Natural Resources Breakout Session Leaders: Oysters and Other Benthic Invertebrates: Dr. Eileen Hoffman, Old Dominion University Dr. Roger Newell, University of Maryland Center for Environmental Science Zooplankton: Dr. Marie Bundy, The Academy of Natural Sciences Estuarine Research Center Dr. Steven Bartell, Cadmus Menhaden: Dr. Robert Wood, University of Maryland Center for Environmental Studies Dr. Thomas Miller, University of Maryland Center for Environmental Studies December 2002 STAC Publication 02-002 Table of Contents Background and Workshop Goals.......................................................................................3 A Recommended Framework for Estimating Suspension Feeder Effects...........................4 Recommendations................................................................................................................7 Oysters and Other Benthic Invertebrates Working Group Recommendations....................9 Zooplankton Working Group Recommendations..............................................................13
    [Show full text]