Dose-Dependent Regulation of Microbial Activity on Sinking Particles by Polyunsaturated Aldehydes: Implications for the Carbon Cycle

Total Page:16

File Type:pdf, Size:1020Kb

Dose-Dependent Regulation of Microbial Activity on Sinking Particles by Polyunsaturated Aldehydes: Implications for the Carbon Cycle Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: Implications for the carbon cycle Bethanie R. Edwardsa,b, Kay D. Bidlec, and Benjamin A. S. Van Mooya,1 aDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; bDepartment of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA 02139; and cDepartment of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved March 24, 2015 (received for review December 1, 2014) Diatoms and other phytoplankton play a crucial role in the global interest. The stage for discovery of these molecules was set in the carbon cycle, fixing CO2 into organic carbon, which may then be 1990s, when a group of researchers advanced the “paradox of exported to depth via sinking particles. The molecular diversity of this diatom-copepod interactions”—the observation that copepods, organic carbon is vast and many highly bioactive molecules have which prey on diatoms, exhibited decreased reproductive success been identified. Polyunsaturated aldehydes (PUAs) are bioactive on when exclusively fed diatoms (6–8). Miralto et al. (9) later purified various levels of the marine food web, and yet the potential for these PUAs from diatom cultures and observed arrested embryogenesis molecules to affect the fate of organic carbon produced by diatoms of copepod eggs that were exposed to these compounds. PUA remains an open question. In this study, the effects of PUAs on the production is now a well-characterized stress surveillance response natural microbial assemblages associated with sinking particles were to wounding during grazing and to nutrient depletion, both of investigated. Sinking particles were collected from 150 m in the water column and exposed to varying concentrations of PUAs in dark in- which are bloom termination mechanisms (10, 11). cubations over 24 h. PUA doses ranging from 1 to 10 μMstimulated It has been proposed that PUAs also mediate phytoplankton respiration, organic matter hydrolysis, and cell growth by bacteria bloom dynamics by impacting other members of the marine μ planktonic community, aside from zooplankton. In culture con- associated with sinking particles. PUA dosages near 100 Mappeared EARTH, ATMOSPHERIC, to be toxic, resulting in decreased bacterial cell abundance and me- ditions, many eukaryotic phytoplankton experience a decrease in AND PLANETARY SCIENCES tabolism, as well as pronounced shifts in bacterial community com- growth rate when exposed to PUAs (12, 13). Isolated bacterial position. Sinking particles were hot spots for PUA production that strains demonstrate a varied response to PUAs, whereby diatom- contained concentrations within the stimulatory micromolar range in associated isolates are generally unaffected, whereas other strains contrast to previously reported picomolar concentrations of these exhibit either dose-dependent decreases or increases in growth compounds in bulk seawater. This suggests PUAs produced in situ rate in response to PUAs (14). Although many culture studies stimulate the remineralization of phytoplankton-derived sinking or- have been conducted on zooplankton, phytoplankton, and bac- ganic matter, decreasing carbon export efficiency, and shoaling the terial isolates—all important players in the microbial loop— average depths of nutrient regeneration. Our results are consistent there have been few attempts to study the impact of PUAs on “ ” with a bioactivity hypothesis for explaining variations in carbon these trophic levels in natural marine ecosystems under in situ export efficiency in the oceans. condition (15, 16). Surveys of water column concentrations of PUAs suggest that concentrations are generally much lower than polyunsaturated aldehydes | sinking particles | particle-associated levels required to elicit responses in phytoplankton, zooplankton, bacteria | marine carbon cycle | bioactivity hypothesis Significance lanktonic microbes in the world’s oceans play a major role in Pthe global carbon cycle. Through photosynthesis, phyto- plankton convert carbon dioxide into particulate organic carbon Phytoplankton live in the sunlit surface waters of the ocean, (POC), which then has the potential to sink to the deep sea. This and through photosynthesis they convert atmospherically de- process is opposed by zooplankton and heterotrophic bacteria, rived carbon dioxide into their biomass. A fraction of this which, as agents of respiration, degrade organic matter and convert biomass sinks into the darker depths where it is colonized by bacteria that turn it back into carbon dioxide through respira- it back into carbon dioxide. In addition to respiring POC, hetero- – trophic bacteria that are associated with sinking POC use mem- tion. Thus, phytoplankton bacteria interactions effectively transport carbon dioxide from the atmosphere deep into the brane-bound ectohydrolytic enzymes that affect the disaggregation ocean. We discovered that the biomass of some phytoplankton of POC into smaller nonsinking particles and dissolved organic contains bioactive molecules that stimulate these associated carbon (DOC) (1). Despite the long-recognized role of particle- bacteria, resulting in respiration of phytoplankton biomass at associated bacteria (2), the relationships between the activities of shallower depths. Given that the ocean mixes gradually over these bacteria, particle properties, and the time and depth scales of time, carbon dioxide released by bacteria at shallower depths sinking POC degradation, disaggregation, and respiration remain returns to the surface more quickly and thereby is “seques- poorly constrained. Although the molecular-level composition of tered” from the atmosphere for a shorter duration. sinking POC has been used to identify its phytoplanktonic sources and to constrain the timescales of its degradation by heterotrophic Author contributions: B.R.E., K.D.B., and B.A.S.V.M. designed research; B.R.E. and B.A.S.V.M. bacteria (3–5), none of these studies has accounted for the potential performed research; B.R.E. and B.A.S.V.M. analyzed data; and B.R.E., K.D.B., and B.A.S.V.M. impacts of bioactive molecules within sinking POC on the activities wrote the paper. of particle-associated bacteria. The authors declare no conflict of interest. Diatoms are key members of the phytoplanktonic communi- This article is a PNAS Direct Submission. ties across the world’s ocean and are known to produce a large 1To whom correspondence should be addressed. Email: [email protected]. diversity of organic molecules, including many that are bioactive. This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. Polyunsaturated aldehydes (PUAs) have received particular 1073/pnas.1422664112/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1422664112 PNAS Early Edition | 1of6 Downloaded by guest on September 29, 2021 or bacteria (17, 18). Consequently, the impact of PUAs on the 14 3.9 4.1 APase marine carbon cycle remains an open question. Lipase 12 Results Peptidase α-glucosidase Exposure to PUAs Affects Changes in the Rates of Sinking POC 10 Remineralization. We tested the linkages between PUAs and the rate of organic matter remineralization by particle-associated bac- 8 teria at six stations across the North Atlantic Ocean (Fig. S1 and Table S1): three stations in the Sargasso Sea (SS), two in the 6 temperate western North Atlantic (TWNA), and one in the Sub- arctic North Atlantic (SANA). Our experimental methods centered 4 1.4 vy Normalized to the Control i on collecting sinking particles, incubating particles in the presence t 1.4 0.6 ci 2 0.7 of exogenous PUAs (mixture of heptadienal, octadienal, and dec- A 0.2 adienal) at a range of concentrations, and assessing changes in or- ganic matter respiration, hydrolytic enzyme activity, bacterial cell 0 abundance, bacterial production rates, and bacterial community Enzyme structure. The absolute values of these parameters varied consid- Control 1 μM 10 μM 100 μM erably between stations (Fig. S2). To remove between-stations variability, we divided the average values of the PUA-amended Fig. 2. Average effects of PUA amendments on APase, lipase, aminopep- tidase, and α-glucosidase activity (n = 18 for all), presented as the normalized treatments by the average of the no-amendment controls from each ratio to the no-amendment control incubations. Statistical analyses con- corresponding station. These control-normalized data showed ducted as described for Fig. 1. The red values above the data report the strikingly similar responses by particle-associated bacteria to PUA average values for each treatment across all experiments and denote sta- treatments across this ocean basin (Figs. 1 and 2). We then asked tistical difference from the control, P < 0.05 (Wilcoxon rank sum). whether there were differences between the controls and the in- cubations amended with different concentrations of PUAs using a series of Wilcoxon ranked-sum statistical tests. times that of the control in the 1 and 10 μM treatments. Lipase In general, the addition of exogenous PUAs at lower con- activity was significantly lower than the control in the 100 μM centrations led to stimulated rates of bacterial organic matter treatments. Peptidase activity was significantly lower than the μ α remineralization. The average respiration rates in the 1 and 10 μM control in the 10 and 100 M treatments.
Recommended publications
  • Accumulation of Polyunsaturated Aldehydes in the Gonads of the Copepod Acartia Tonsa Revealed by Tailored Fluorescent Probes
    Accumulation of Polyunsaturated Aldehydes in the Gonads of the Copepod Acartia tonsa Revealed by Tailored Fluorescent Probes Stefanie Wolfram1, Jens C. Nejstgaard2,3*, Georg Pohnert1* 1 Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany, 2 Skidaway Institute of Oceanography, Savannah, GA, United States of America, 3 Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department 3 Experimental Limnology, Stechlin, Germany Abstract Polyunsaturated aldehydes (PUAs) are released by several diatom species during predation. Besides other attributed activities, these oxylipins can interfere with the reproduction of copepods, important predators of diatoms. While intensive research has been carried out to document the effects of PUAs on copepod reproduction, little is known about the underlying mechanistic aspects of PUA action. Especially PUA uptake and accumulation in copepods has not been addressed to date. To investigate how PUAs are taken up and interfere with the reproduction in copepods we developed a fluorescent probe containing the a,b,c,d-unsaturated aldehyde structure element that is essential for the activity of PUAs as well as a set of control probes. We developed incubation and monitoring procedures for adult females of the calanoid copepod Acartia tonsa and show that the PUA derived fluorescent molecular probe selectively accumulates in the gonads of this copepod. In contrast, a saturated aldehyde derived probe of an inactive parent molecule was enriched in the lipid sac. This leads to a model for PUAs’ teratogenic mode of action involving accumulation and covalent interaction with nucleophilic moieties in the copepod reproductive tissue. The teratogenic effect of PUAs can therefore be explained by a selective targeting of the molecules into the reproductive tissue of the herbivores, while more lipophilic but otherwise strongly related structures end up in lipid bodies.
    [Show full text]
  • Sabharwal-Dissertation-2016
    Copyright by Tanya Sabharwal 2016 The Dissertation Committee for Tanya Sabharwal Certifies that this is the approved version of the following dissertation: Rapid remodeling of lipids and transcriptome in the diatom Phaeodactylum tricornutum in response to defense related decadienal Committee: Mona C. Mehdy, Supervisor K Sathasivan, Co-Supervisor Enamul Huq Stanley J. Roux, Jr Edward C. Theriot Rapid remodeling of lipids and transcriptome in the diatom Phaeodactylum tricornutum in response to defense related decadienal by Tanya Sabharwal, B.Tech; M.S Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2016 Dedication To my Dad and Mom, who have always believed in me and kept me strong Acknowledgements I will always be grateful to my advisor Dr. Mona Mehdy whom I wrote an email back in 2008 when I was pursuing my Masters in Chicago, for giving me a chance to volunteer in her lab (while visiting family in Austin during summers) and from there on it has been a long journey and she had taught me so much. She introduced me to Dr. K Sathasivan (Dr Sata) and I was lucky to get hired initially as a research scientist intern on Dr. Sata’s DARPA project and started learning about the world of algae before formally getting admitted to school as a PhD student. I am thankful to Dr. Mehdy and Dr. Sata for accepting to be my advisors, for all their guidance, support, patience and invaluable advice during my work here as a doctoral student.
    [Show full text]
  • The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters
    Mar. Drugs 2015, 13, 2834-2856; doi:10.3390/md13052834 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article The Effect of Dissolved Polyunsaturated Aldehydes on Microzooplankton Growth Rates in the Chesapeake Bay and Atlantic Coastal Waters Peter J. Lavrentyev 1,*, Gayantonia Franzè 1, James J. Pierson 2 and Diane K. Stoecker 2 1 Department of Biology, University of Akron, Akron, OH 44325, USA; E-Mail: [email protected] 2 Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA; E-Mails: [email protected] (J.J.P.); [email protected] (D.K.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-330-972-7922; Fax: +1-330-972-8445. Academic Editor: Véronique Martin-Jézéquel Received: 25 January 2015 / Accepted: 27 April 2015 / Published: 6 May 2015 Abstract: Allelopathy is wide spread among marine phytoplankton, including diatoms, which can produce cytotoxic secondary metabolites such as polyunsaturated aldehydes (PUA). Most studies on diatom-produced PUA have been dedicated to their inhibitory effects on reproduction and development of marine invertebrates. However, little information exists on their impact on key herbivores in the ocean, microzooplankton. This study examined the effects of dissolved 2E,4E-octadienal and 2E,4E-heptadienal on the growth rates of natural ciliate and dinoflagellate populations in the Chesapeake Bay and the coastal Atlantic waters. The overall effect of PUA on microzooplankton growth was negative, especially at the higher concentrations, but there were pronounced differences in response among common planktonic species. For example, the growth of Codonella sp., Leegaardiella sol, Prorodon sp., and Gyrodinium spirale was impaired at 2 nM, whereas Strombidium conicum, Cyclotrichium gigas, and Gymnodinium sp.
    [Show full text]
  • Dose-Dependent Regulation of Microbial Activity on Sinking Particles by Polyunsaturated Aldehydes: Implications for the Carbon Cycle
    Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: Implications for the carbon cycle Bethanie R. Edwardsa,b, Kay D. Bidlec, and Benjamin A. S. Van Mooya,1 aDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; bDepartment of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA 02139; and cDepartment of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved March 24, 2015 (received for review December 1, 2014) Diatoms and other phytoplankton play a crucial role in the global interest. The stage for discovery of these molecules was set in the carbon cycle, fixing CO2 into organic carbon, which may then be 1990s, when a group of researchers advanced the “paradox of exported to depth via sinking particles. The molecular diversity of this diatom-copepod interactions”—the observation that copepods, organic carbon is vast and many highly bioactive molecules have which prey on diatoms, exhibited decreased reproductive success been identified. Polyunsaturated aldehydes (PUAs) are bioactive on when exclusively fed diatoms (6–8). Miralto et al. (9) later purified various levels of the marine food web, and yet the potential for these PUAs from diatom cultures and observed arrested embryogenesis molecules to affect the fate of organic carbon produced by diatoms of copepod eggs that were exposed to these compounds. PUA remains an open question. In this study, the effects of PUAs on the production is now a well-characterized stress surveillance response natural microbial assemblages associated with sinking particles were to wounding during grazing and to nutrient depletion, both of investigated.
    [Show full text]
  • The Effects of Polyunsaturated Aldehydes on Pelagic Microbial Food Webs in the Chesapeake Bay Area and Atlantic Coastal Waters" (2017)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Akron The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Spring 2017 The ffecE ts of Polyunsaturated Aldehydes on Pelagic Microbial Food Webs in the Chesapeake Bay Area and Atlantic Coastal Waters Chase Alfman The University of Akron, [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Alfman, Chase, "The Effects of Polyunsaturated Aldehydes on Pelagic Microbial Food Webs in the Chesapeake Bay Area and Atlantic Coastal Waters" (2017). Honors Research Projects. 542. http://ideaexchange.uakron.edu/honors_research_projects/542 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. The Effects of Polyunsaturated Aldehydes on Pelagic Microbial Food Webs in the Chesapeake Bay Area and Atlantic Coastal Waters Chase Alfman Honors Research Project Advisor: Dr. Peter J. Lavrentyev February, 2015 – April, 2017 Abstract: Diatoms, one of the most common classes of phytoplankton, are autotrophic plankton, and are the primary food source for many organisms.
    [Show full text]
  • The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: an Emerging Field
    Mar. Drugs 2011, 9, 1625-1648; doi:10.3390/md9091625 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Essay The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field Adrianna Ianora 1,*, Matthew G. Bentley 2, Gary S. Caldwell 2, Raffaella Casotti 1, Allan D. Cembella 3, Jonna Engström-Öst 4, Claudia Halsband 5, Eva Sonnenschein 6, Catherine Legrand 7, Carole A. Llewellyn 5, Aistë Paldavičienë 8, Renata Pilkaityte 8, Georg Pohnert 9, Arturas Razinkovas 8, Giovanna Romano 1, Urban Tillmann 3 and Diana Vaiciute 8 1 Stazione Zoologica Anton Dohrn, Villa Comunale Napoli 80121, Italy; E-Mails: [email protected] (R.C.); [email protected] (G.R.) 2 School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne, Tyne and Wear, England NE1 7RU, UK; E-Mails: [email protected] (M.G.B.); gary.caldwell@ ncl.ac.uk (G.S.C.) 3 Alfred Wegener Institute for Polar Research, Am Handelshafen 12, Bremerhaven 27570, Germany; E-Mails: [email protected] (A.D.C.); [email protected] (U.T.) 4 ARONIA Research and Development Institute, Novia University of Applied Sciences & Åbo Akademi University, Raseborgsvägen 9, Ekenäs FI-10600, Finland; E-Mail: [email protected] 5 Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK; E-Mails: [email protected] (C.H.); [email protected] (C.A.L.) 6 International Max Planck Research School of Marine Microbiology, Celsiusstrasse 1, Bremen 28359, Germany; E-Mail: [email protected] 7
    [Show full text]
  • Effects of Temperature and Phytoplankton Community
    www.nature.com/scientificreports OPEN Efects of temperature and phytoplankton community composition on subitaneous and resting egg production rates of Acartia omorii in Tokyo Bay Ayumi Tsunashima1, Hiroshi Itoh2 & Toshiya Katano 1* To clarify the efects of temperature and phytoplankton community composition on Acartia omorii (Copepoda: Calanoida) egg production, its abundance and egg production rates were investigated from 2016 to 2018 in Tokyo Bay, Japan. Abundance was high from March to May (> 3.0 × ­104 individuals m−3) and low or undetected from late June to December (≤ 0.4 × ­104 individuals m−3). In 2018, most eggs were subitaneous until April; diapause eggs appeared in May when the water temperature −1 −1 exceeded 20 °C. The weight-specifc egg production rate (SEPR, Cegg Cfemale ­day ) had two peaks. In the frst peak in January, > 90% of eggs were subitaneous; in contrast, in the second peak in May, 60% of eggs were unhatched, including diapause eggs. The frst peak of subitaneous eggs may contribute to planktonic population development from March to May. In contrast the second peak of diapause eggs probably enhances their recurrence in the next winter. Multiple regression analysis revealed that subitaneous SEPR showed a negative response, whereas diapause SEPR showed a positive response to temperature. Subitaneous SEPR positively correlated with the proportion of small diatoms in phytoplankton carbon biomass, whereas unhatched SEPR positively correlated with the proportion of inedible preys in large diatoms and dinofagellates. Edible diatoms may induce subitaneous egg production, whereas low-food availability may induce diapause egg production. These results suggest that phytoplankton composition and water temperature have strong impacts on the dynamics of A.
    [Show full text]
  • 57466755004.Pdf
    Acta botánica mexicana ISSN: 0187-7151 ISSN: 2448-7589 Instituto de Ecología A.C., Centro Regional del Bajío Castillo, María Esther Meave del; Zamudio-Resendiz, María Eugenia Planktonic algal blooms from 2000 to 2015 in Acapulco Bay, Guerrero, Mexico Acta botánica mexicana, no. 125, e1316, 2018 Instituto de Ecología A.C., Centro Regional del Bajío DOI: https://doi.org/10.21829/abm125.2018.1316 Available in: https://www.redalyc.org/articulo.oa?id=57466755004 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative 125: 61-93 October 2018 Research article Planktonic algal blooms from 2000 to 2015 in Acapulco Bay, Guerrero, Mexico Florecimientos de microalgas planctónicas de 2000 al 2015 en la Bahía de Acapulco, Guerrero, México María Esther Meave del Castillo1,2 , María Eugenia Zamudio-Resendiz1 ABSTRACT: 1 Universidad Autónoma Metro- Background and Aims: Harmful algal blooms (HABs) affect the marine ecosystem in multiple ways. The politana, Unidad Iztapalapa, De- objective was to document the species that produced blooms in Acapulco Bay over a 15-year period (2000- partamento de Hidrobiología, La- boratorio de Fitoplancton Marino 2015) and analyze the presence of these events with El Niño-Southern Oscillation (ENSO). y Salobre, Av. San Rafael Atlixco Methods: Thirty-five collections, made during the years 2000, 2002-2004, 2006-2011, 2013-2015, were 186, Col. Vicentina, Iztapalapa, undertaken with phytoplankton nets and Van Dorn bottle, yielding 526 samples, of which 423 were quanti- 09340 Cd.
    [Show full text]
  • Phytoplankton Defence Mechanisms: Traits and Trade‐Offs
    Biol. Rev. (2018), 93, pp. 1269–1303. 1269 doi: 10.1111/brv.12395 Phytoplankton defence mechanisms: traits and trade-offs Marina Panciˇ c´∗ and Thomas Kiørboe Centre for Ocean Life, Technical University of Denmark, DTU Aqua, Kemitorvet B201, Kongens Lyngby, DK-2800, Denmark ABSTRACT In aquatic ecosystems, unicellular algae form the basis of the food webs. Theoretical and experimental studies have demonstrated that one of the mechanisms that maintain high diversity of phytoplankton is through predation and the consequent evolution of defence mechanisms. Proposed defence mechanisms in phytoplankton are diverse and include physiological (e.g. toxicity, bioluminescence), morphological (e.g. silica shell, colony formation), and behavioural (e.g. escape response) traits. However, the function of many of the proposed defence mechanisms remains elusive, and the costs and benefits (trade-offs) are often unquantified or undocumented. Here, we provide an overview of suggested phytoplankton defensive traits and review their experimental support. Wherever possible we quantify the trade-offs from experimental evidence and theoretical considerations. In many instances, experimental evidence suggests that defences are costless. However, we argue that (i) some costs materialize only under natural conditions, for example, sinking losses, or dependency on the availability of specific nutrients, and (ii) other costs become evident only under resource-deficient conditions where a rivalry for limiting resources between growth and defence occurs. Based on these findings, we suggest two strategies for quantifying the costs of defence mechanisms in phytoplankton: (i)forthe evaluation of defence costs that are realized under natural conditions, a mechanistic understanding of the hypothesized component processes is required; and (ii) the magnitude of the costs (i.e.
    [Show full text]
  • Sea Urchin Embryos and Human Cells
    International Journal of Molecular Sciences Article Diatom-Derived Polyunsaturated Aldehydes Activate Similar Cell Death Genes in Two Different Systems: Sea Urchin Embryos and Human Cells Christian Galasso 1,* , Susanna Celentano 1, Maria Costantini 1, Salvatore D’Aniello 2 , Adrianna Ianora 1, Clementina Sansone 1,* and Giovanna Romano 1 1 Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; [email protected] (S.C.); [email protected] (M.C.); [email protected] (A.I.); [email protected] (G.R.) 2 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; [email protected] * Correspondence: [email protected] (C.G.); [email protected] (C.S.); Tel.: +(39)-0815833261 (C.G.); +(39)-0815833262 (C.S.) Received: 13 May 2020; Accepted: 20 July 2020; Published: 22 July 2020 Abstract: Programmed cell death, such as apoptosis and autophagy, are key processes that are activated early on during development, leading to remodelling in embryos and homeostasis in adult organisms. Genomic conservation of death factors has been largely investigated in the animal and plant kingdoms. In this study, we analysed, for the first time, the expression profile of 11 genes involved in apoptosis (extrinsic and intrinsic pathways) and autophagy in sea urchin Paracentrotus lividus embryos exposed to antiproliferative polyunsaturated aldehydes (PUAs), and we compared these results with those obtained on the human cell line A549 treated with the same molecules. We found that sea urchins and human cells activated, at the gene level, a similar cell death response to these compounds. Despite the evolutionary distance between sea urchins and humans, we observed that the activation of apoptotic and autophagic genes in response to cytotoxic compounds is a conserved process.
    [Show full text]
  • The Influence of Different Culture Conditions on the Production of Aldehydes by Diatoms
    The influence of different culture conditions on the production of aldehydes by diatoms Diploma thesis In the field of ECOLOGY Submitted for the degree “Dipl. Biol.“ of the faculty of mathematics and natural sciences of the Christian-Albrechts-Universität Kiel by Simon Dittami in April 2006 supervised by: Prof. Dr. Heinz Brendelberger Prof. Dr. Karen H. Wiltshire The influence of different culture conditions on the production of aldehydes by diatoms: TOC 3 Table of contents Table of contents ......................................................................................3 Abstract ...................................................................................................5 1 Introduction...........................................................................................6 1.1 Effects of polyunsaturated aldehydes .................................................7 1.2 Pathway of aldehyde-production in diatoms........................................9 1.3 Open questions ..............................................................................11 1.4 Study aims.....................................................................................12 2 Materials and methods..........................................................................13 2.1 Experimental setup.........................................................................13 2.2 Cultures.........................................................................................15 2.3 Culture conditions ..........................................................................17
    [Show full text]
  • Mass Spectrometry Method to Detect and Quantify Polyunsaturated Aldehydes and Polar Oxylipins in Diatoms
    LIMNOLOGY and Limnol. Oceanogr.: Methods 15, 2017, 70–79 OCEANOGRAPHY: METHODS VC 2016 Association for the Sciences of Limnology and Oceanography doi: 10.1002/lom3.10143 A fast and direct liquid chromatography-mass spectrometry method to detect and quantify polyunsaturated aldehydes and polar oxylipins in diatoms Constanze Kuhlisch, Michael Deicke, Nico Ueberschaar, Thomas Wichard, Georg Pohnert* Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany Abstract Polyunsaturated aldehydes (PUAs) are a group of microalgal metabolites that have attracted a lot of atten- tion due to their biological activity. Determination of PUAs has become an important routine procedure in plankton and biofilm investigations, especially those that deal with chemically mediated interactions. Here we introduce a fast and direct derivatization free method that allows quantifying PUAs in the nanomolar range, sufficient to undertake the analysis from cultures and field samples. The sample preparation requires one simple filtration step and the initiation of PUA formation by cell disruption. After centrifugation the samples are ready for measurement without any further handling. Within one chromatographic run this method additionally allows us to monitor the formation of the polar oxylipins arising from the cleavage of precursor fatty acids. The robust method is based on analyte separation and detection using ultra high perfor- mance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (UHPLC-APCI MS) and enables high throughput investigations by employing an analysis time of only 5 min. Our protocol thus provides an alternative and extension to existing PUA determinations based on gas chromatography- mass spectrometry (GC-MS) with shorter run times and without any chemical derivatization.
    [Show full text]