Computer Network. Lecture Notes, 2011

Total Page:16

File Type:pdf, Size:1020Kb

Computer Network. Lecture Notes, 2011 Computer Network : Lecture Notes Nepal Engineering College Prepared by: Junior Professor: Daya Ram Budhathoki Nepal Engineering college, Changunarayan dayaramb(at)nec.edu.np Available online at http://dayaramb.wordpress.com --------------------------------------------------------------------------------------------------- References: Text book: 1. Computer Networking A Top-Down Approach Featuring the Internet James F. Kurose and Keith W. Ross 2. Data and Computer Communication William Stalling 3. Computer Network A.S Tanenebaum 4. Data communicaton and Networking- Forouzan 5. Microsoft Encyclopedia of Networking 6. IIT Computer Network Video lectures. 7. Wiki-pedia Page: 1 compiled by: JP NEC. Daya Ram Budhathoki Table of Contents Chapter1: Emergence of Network , principle of communication Network and Multiplexing...................7 What is computer Network?..................................................................................................................7 Historical Events:................................................................................................................................8 Modes of communication:.....................................................................................................................9 Protocol:..............................................................................................................................................10 Principle of Communication:..............................................................................................................11 Elements of Network:..........................................................................................................................13 Multiplexing:.......................................................................................................................................14 Simplex:..........................................................................................................................................14 Duplex............................................................................................................................................14 Half-duplex.....................................................................................................................................14 Chapter2: Network Topology and Architecture.......................................................................................15 Local Area Network (LAN)................................................................................................................15 MAN:...................................................................................................................................................15 WAN: ..................................................................................................................................................16 LAN Vs WAN.....................................................................................................................................17 Internet:...............................................................................................................................................17 Intranet:...............................................................................................................................................18 Extranet:..............................................................................................................................................19 Ethernet:..............................................................................................................................................19 Physical Topology and Logical Topology:..........................................................................................20 Bus Topology:.....................................................................................................................................21 Ring Topology.....................................................................................................................................21 Mesh Topology:...................................................................................................................................22 Star Topology:.....................................................................................................................................22 Logical Topology:...............................................................................................................................23 Network Architecture:.........................................................................................................................23 Peer-to-Peer Model:........................................................................................................................23 Client-server Model:.......................................................................................................................24 Wireless LAN:.....................................................................................................................................26 Wireless Standards - 802.11b 802.11a 802.11g and 802.11n.........................................................27 Wireless Topologies:.......................................................................................................................27 Chapter3: OSI Reference Model:.............................................................................................................29 Network Software:..............................................................................................................................29 Protocol Hierarchies............................................................................................................................29 Layer Communication:........................................................................................................................29 OSI Model...........................................................................................................................................30 Peer-to-Peer Communication:.............................................................................................................31 Data Encapsulation:.............................................................................................................................31 Seven Layers of OSI Reference Model:..............................................................................................32 1. Physical Layer:...........................................................................................................................32 2. Data Link Layer:.........................................................................................................................32 3. Network Layer:...........................................................................................................................33 Page: 2 compiled by: JP NEC. Daya Ram Budhathoki 4. Transport Layer:.........................................................................................................................33 5. Session Layer:.............................................................................................................................34 6. Presentation Layer: ....................................................................................................................34 7. Application layer:........................................................................................................................35 Devices and Protocols on each Layer:............................................................................................35 Chapter4: Physical layers and its Design issues:.....................................................................................36 Transmission Medium:........................................................................................................................36 Shielded Twisted-Pair (STP) Cable ....................................................................................................36 Unshielded twisted-pair (UTP) ..........................................................................................................37 UTP Cabling Standards ......................................................................................................................38 Co-axial Cable:....................................................................................................................................38 Coaxial Cable Connectors .......................................................................................................................39 Fiber-optics..........................................................................................................................................39 Fiber Compared to Copper Cabling :..............................................................................................40 Propagation modes:........................................................................................................................40 Advantages and Disadvantages of Optical Fiber ...........................................................................43 Wireless Networking...........................................................................................................................43 Radio Waves ..................................................................................................................................45 Microwaves ....................................................................................................................................45
Recommended publications
  • The Security and Management of Computer Network Database In
    The Security and Management of Computer Network Database in Coal Quality Detection Jianhua SHI1, a, Jinhong SUN2 1Guizhou Agency of Quality Supervision and Inspection of Coal Product,Liupanshui city 553001,China [email protected] Keywords: Computer Network Database; Database Security; Coal Quality Detection Abstract. This paper research the results of quality management information system at home and abroad, through the analysis of the domestic coal enterprises coal quality management links and management information system development present situation and existing problems, combining with related theory and system development method of management information system, and according to the coal mining enterprises of computer network security and management, analysis and design of database, and the implementation steps and the implementation of the coal quality management information system of the problem are given their own countermeasure and the suggestion, try to solve demand for management information system of coal enterprise management level, thus improve the coal quality management level and economic benefit of coal enterprise. Introduction With the improvement of China's coal mining mechanization degree and the increase of mining depth, coal quality is on the decline as a whole. At the same time, the user of coal product utilization way more and more widely, use more and more diversified, more and higher to the requirement of coal quality. In coal quality issue, therefore, countless contradictions increasingly acute, the gap of
    [Show full text]
  • LAB MANUAL for Computer Network
    LAB MANUAL for Computer Network CSE-310 F Computer Network Lab L T P - - 3 Class Work : 25 Marks Exam : 25 MARKS Total : 50 Marks This course provides students with hands on training regarding the design, troubleshooting, modeling and evaluation of computer networks. In this course, students are going to experiment in a real test-bed networking environment, and learn about network design and troubleshooting topics and tools such as: network addressing, Address Resolution Protocol (ARP), basic troubleshooting tools (e.g. ping, ICMP), IP routing (e,g, RIP), route discovery (e.g. traceroute), TCP and UDP, IP fragmentation and many others. Student will also be introduced to the network modeling and simulation, and they will have the opportunity to build some simple networking models using the tool and perform simulations that will help them evaluate their design approaches and expected network performance. S.No Experiment 1 Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. 2 Study of Network Devices in Detail. 3 Study of network IP. 4 Connect the computers in Local Area Network. 5 Study of basic network command and Network configuration commands. 6 Configure a Network topology using packet tracer software. 7 Configure a Network topology using packet tracer software. 8 Configure a Network using Distance Vector Routing protocol. 9 Configure Network using Link State Vector Routing protocol. Hardware and Software Requirement Hardware Requirement RJ-45 connector, Climping Tool, Twisted pair Cable Software Requirement Command Prompt And Packet Tracer. EXPERIMENT-1 Aim: Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool.
    [Show full text]
  • Applied Combinatorics 2017 Edition
    Keller Trotter Applied Combinatorics 2017 Edition 2017 Edition Mitchel T. Keller William T. Trotter Applied Combinatorics Applied Combinatorics Mitchel T. Keller Washington and Lee University Lexington, Virginia William T. Trotter Georgia Institute of Technology Atlanta, Georgia 2017 Edition Edition: 2017 Edition Website: http://rellek.net/appcomb/ © 2006–2017 Mitchel T. Keller, William T. Trotter This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Interna- tional License. To view a copy of this license, visit http://creativecommons.org/licenses/ by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Summary of Contents About the Authors ix Acknowledgements xi Preface xiii Preface to 2017 Edition xv Preface to 2016 Edition xvii Prologue 1 1 An Introduction to Combinatorics 3 2 Strings, Sets, and Binomial Coefficients 17 3 Induction 39 4 Combinatorial Basics 59 5 Graph Theory 69 6 Partially Ordered Sets 113 7 Inclusion-Exclusion 141 8 Generating Functions 157 9 Recurrence Equations 183 10 Probability 213 11 Applying Probability to Combinatorics 229 12 Graph Algorithms 239 vii SUMMARY OF CONTENTS 13 Network Flows 259 14 Combinatorial Applications of Network Flows 279 15 Pólya’s Enumeration Theorem 291 16 The Many Faces of Combinatorics 315 A Epilogue 331 B Background Material for Combinatorics 333 C List of Notation 361 Index 363 viii About the Authors About William T. Trotter William T. Trotter is a Professor in the School of Mathematics at Georgia Tech. He was first exposed to combinatorial mathematics through the 1971 Bowdoin Combi- natorics Conference which featured an array of superstars of that era, including Gian Carlo Rota, Paul Erdős, Marshall Hall, Herb Ryzer, Herb Wilf, William Tutte, Ron Gra- ham, Daniel Kleitman and Ray Fulkerson.
    [Show full text]
  • Steps Toward a National Research Telecommunications Network
    Steps Toward a National Research Telecommunications Network Gordon Bell Introduction Modern science depends on rapid communica- In response to provisions in Public Law tions and information exchange. Today, many major 99-383, which was passed 21 June 1986 by national and international networks exist using the 99th Congress, an inter-agency group some form of packet switching to interconnect under the auspices of the Federal Coordin- host computers. State and regional networks are ating Council for Science, Engineering, and proliferating. NSFNET, an "internet" designed initially Technology (FCCSET) for Computer Research to improve access to supercomputer centers, has and Applications was formed to study the in the space of two years, forged links among 17 following issues: the networking needs of state, regional, and federal agency networks. the nation's academic and federal research In the early 1980s, the lack of access to super- computer programs, including supercomputer computing power by the research community caused programs, over the next 15 years, addressing the formation of the NSF Office of Advanced Sci- requirements in terms of volume of data, entific Computing, which funded five centers for reliability of transmission, software supercomputers. Given the highly distributed loca- compatibility, graphics capabilities, and tion of users, the need for a national wide area transmission security; the benefits and network for computer access and for the inter- opportunities that an improved computer change of associated scientific information (such network would offer for electronic mail, as mail, files, databases) became clear. file transfer, and remote access and com- Further, it immediately became obvious that munications; and the networking options existing agency networks both lacked the inherent available for linking academic and research capacity and were overloaded.
    [Show full text]
  • Components of a Computer Network
    CS 536 Park Introduction What is a computer network? Components of a computer network: • hosts (PCs, laptops, handhelds) • routers & switches (IP router, Ethernet switch) • links (wired, wireless) • protocols (IP, TCP, CSMA/CD, CSMA/CA) • applications (network services) • humans and service agents Hosts, routers & links form the hardware side. Protocols & applications form the software side. Protocols can be viewed as the “glue” that binds every- thing else together. CS 536 Park A physical network: CS 536 Park Protocol example: low to high • NIC (network interface card): hardware → e.g., Ethernet card, WLAN card • device driver: part of OS • ARP, RARP: OS • IP: OS • TCP, UDP: OS • OSPF, BGP, HTTP: application • web browser, ssh: application −→ multi-layered glue What is the role of protocols? −→ facilitate communication or networking CS 536 Park Simplest instance of networking problem: Given two hosts A, B interconnected by some net- work N, facilitate communication of information between A & B. A N B Information abstraction • representation as objects (e.g., files) • bytes & bits → digital form • signals over physical media (e.g., electromagnetic waves) → analog form CS 536 Park Minimal functionality required of A, B • encoding of information • decoding of information −→ data representation & a form of translation Additional functionalities may be required depending on properties of network N • information corruption → 10−9 for fiber optic cable → 10−3 or higher for wireless • information loss: packet drop • information delay: like toll
    [Show full text]
  • Introduction to Bioinformatics (Elective) – SBB1609
    SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF BIOTECHNOLOGY Unit 1 – Introduction to Bioinformatics (Elective) – SBB1609 1 I HISTORY OF BIOINFORMATICS Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biologicaldata. As an interdisciplinary field of science, bioinformatics combines computer science, statistics, mathematics, and engineering to analyze and interpret biological data. Bioinformatics has been used for in silico analyses of biological queries using mathematical and statistical techniques. Bioinformatics derives knowledge from computer analysis of biological data. These can consist of the information stored in the genetic code, but also experimental results from various sources, patient statistics, and scientific literature. Research in bioinformatics includes method development for storage, retrieval, and analysis of the data. Bioinformatics is a rapidly developing branch of biology and is highly interdisciplinary, using techniques and concepts from informatics, statistics, mathematics, chemistry, biochemistry, physics, and linguistics. It has many practical applications in different areas of biology and medicine. Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data. Computational Biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems. "Classical" bioinformatics: "The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information.” The National Center for Biotechnology Information (NCBI 2001) defines bioinformatics as: "Bioinformatics is the field of science in which biology, computer science, and information technology merge into a single discipline.
    [Show full text]
  • Application of Bioinformatics Methods to Recognition of Network Threats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Paper Application of bioinformatics methods to recognition of network threats Adam Kozakiewicz, Anna Felkner, Piotr Kijewski, and Tomasz Jordan Kruk Abstract— Bioinformatics is a large group of methods used in of strings cacdbd and cawxb, character c is mismatched biology, mostly for analysis of gene sequences. The algorithms with w, both d’s and the x are opposite spaces, and all developed for this task have recently found a new application other characters are in matches. in network threat detection. This paper is an introduction to this area of research, presenting a survey of bioinformatics Definition 2 (from [2]) : A global multiple alignment of methods applied to this task, outlining the individual tasks k > 2 strings S = S1,S2,...,Sk is a natural generalization and methods used to solve them. It is argued that the early of alignment for two strings. Chosen spaces are inserted conclusion that such methods are ineffective against polymor- into (or at either end of) each of the k strings so that the re- phic attacks is in fact too pessimistic. sulting strings have the same length, defined to be l. Then Keywords— network threat analysis, sequence alignment, edit the strings are arrayed in k rows of l columns each, so distance, bioinformatics. that each character and space of each string is in a unique column. Alignment is necessary, since evolutionary processes intro- 1. Introduction duce mutations in the DNA and biologists do not know, whether nth symbol in one sequence indeed corresponds to When biologists discover a new gene, its function is not al- the nth symbol of the other sequence – a shift is probable.
    [Show full text]
  • A Nation Goes Online a Nation Goes Online Table of Contents
    A NATION GOES ONLINE A NATION GOES ONLINE TABLE OF CONTENTS Foreword 5 Acknowledgements 6 Introduction 8 Chapter 1 UNCERTAIN BEGINNINGS 12 Chapter 2 NETWORKING TAKES ROOT 24 Chapter 3 A NATIONAL NETWORK (…AT LAST) 45 Chapter 4 CANADA CATCHES UP 60 Chapter 5 THE BIRTH OF CA*NET 90 Chapter 6 FROM CA*NET TO INTERNET 104 Epilogue 128 FOREWORD A NATION GOES ONLINE More Canadians are connected to the Internet than any other country. This should come as no surprise, since we are global leaders in information communications technologies and Internet development. We did not get there by accident – we got there by innovation and establishing world class design expertise. Canada is proud of its advanced networking history. As this publication illustrates, we have built an Internet infrastructure which links Canadians to each other and rein- forces the economic and social underpinnings which define a modern nation. Canada’s networking success is one based on partnership and co-operation between the academic and research community and the public and private sectors. The story told in these pages is a testament to this successful approach. It is not the work of a single group rather that of a series of grass-roots efforts that took shape at universities and other institutions in regions across the country. These pioneers worked to connect a population scattered over immense distances, to create opportunity from potential isolation, and to develop regional collaboration and cohesion. That determination spurred much of the early networking research at Canadian universities and ultimately the national partnerships that led to the creation of CA*net, Canada’s first information highway.
    [Show full text]
  • Understanding Wide Area Networks
    Understanding Wide Area Networks Module 7 Objectives Skills/Concepts Objective Domain Objective Domain Description Number Understanding routing Understanding routers 2.2 Defining common WAN Understanding wide area 1.3 technologies and networks (wan’s) connections Routing • Routing is the process of managing the flow of data between network segments and between hosts or routers • Data is sent along a path according to the IP networks and individual IP addresses of the hosts • A router is a network device that maintains tables of information about other routers on the network or internetwork Static and Dynamic Routing • A static route is a path that is manually configured and remains constant throughout the router’s operation • A dynamic route is a path that is generated dynamically by using special routing protocols Static Dynamic Dynamic Routing • Dynamic routing method has two conceptual parts: • Routing protocol used to convey information about the network environment • Routing Algorithm that determines paths through the network • Common Dynamic routing protocols: • Distance vector routing protocols: Advertise the number of hops to a network destination (distance) and the direction a packet can reach a network destination (vector). Sends updates at regularly scheduled intervals, and can take time for route changes to be updated • Link state routing protocols: Provide updates only when a network link changes state • Distance Vector Routing • Routing Information Protocol (RIP) • Link State Routing • Open Shortest Path First (OSPF) Interior
    [Show full text]
  • Future of Asynchronous Transfer Mode Networking
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2004 Future of asynchronous transfer mode networking Fakhreddine Mohamed Hachfi Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Digital Communications and Networking Commons Recommended Citation Hachfi, akhrF eddine Mohamed, "Future of asynchronous transfer mode networking" (2004). Theses Digitization Project. 2639. https://scholarworks.lib.csusb.edu/etd-project/2639 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. FUTURE OF ASYNCHRONOUS TRANSFER MODE NETWORKING A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Business Administration by ' Fakhreddine Mohamed Hachfi June 2004 FUTURE OF ASYNCHRONOUS TRANSFER MODE NETWORKING A Thesis Presented to the Faculty of California State University, San Bernardino by Fakhreddine Mohamed Hachfi June 2004 Approved by: Da^e Frank Lin, Ph.D., Inf ormatTdn—&^-DSsision Sciences „ / Walt Stewart, Jr., Ph.D., Department Chair Information & Decision Sciences © 2004 Fakhreddine Mohamed Hachfi ABSTRACT The growth of Asynchronous Transfer Mode ATM was considered to be the ideal carrier of the high bandwidth applications like video on demand and multimedia e-learning. ATM emerged commercially in the beginning of the 1990's. It was designed to provide a different quality of service at a speed up to 10 Gbps for both real time and non real time application.
    [Show full text]
  • Telecommunications Abbreviations and Acronyms
    Telecommunications Abbreviations and acronyms: 2G Second Generation 3G Third Generation 3GIP 3rd: Generation partnership for Internet Protocol 3GPP 3rd: Generation Partnership Project WCDMA 3GPP2 3rd: Generation Partnership Project 2 CDMA 2000 a.f audio frequency AAL ATM Adaption Layer AAL: ATM Adaptation Layer AAS Automatic Announcement Subsystem ABR Automatic Bit Rate ACELP: Algebraic Code Excited Linear Prediction ACR Attenuation-to-Crosstalk Ratio ADM Add and Drop Multiplexer ADSL Asymmetric Digital Subscribers Line ALCAP: Access Link Control Application Part AM Amplitude Modulation AMPS: Advanced Mobile Phone System AMR: Adaptive Multi Rate AN (C,XU): Antenna Network AND: Abbreviated Dialling Number ANSI American National Standards Institute ANSI: American National Standard Institute USA APD Avanlanche Photo Diode ARIB: Association of Radio Industries and Business Japan ARQ Automatic Repeat Request AS Autonomous System ASBR Autonomous System Boundary Routing ASCII American Symbolic Code for Information Interchange ASLA Application Service Level Agreement ASP Application Service Part ATC: ATM Traffic Contract ATM Asynchronous Transfer Mode OR Automatic ATM: Asynchronous Transfer Mode AUC Authentication Centre BB :Base Band BCCH: Broadcast Control Channel BCD Binary Coded Decimal BD Building Distributor BER Bit Error Rate BER: Bit Error Rate BHCA: Busy Hour Call Attempts BISUP Broadband ISDN User Part BJT Bipolar Junction Transistors BLER: Block Error Rate BMC Broadcast / Multicast Control BMC: Broadcast Multicast Control BM-IWF: Broadcast
    [Show full text]
  • Copyrighted Material
    Chapter Introduction to Internetworking 1 CCDA EXAM TOPICS COVERED IN THIS CHAPTER: Identify possible opportunities for network improvement. COPYRIGHTED MATERIAL As your mom probably told you, there’s really no better place to start than at the beginning. But what she likely didn’t warn you is that any process—internetworking being a classic example—takes its share of rabbit trails that dead-end. Other paths flourish into full-scale systems. One thing is certain: the changes in this industry have been mercurial. One day someone has a germ of a thought, and a few days later a new field emerges from that embryonic idea. Following these trails, however, can be a bit of a challenge. So this is your primer—a course in the ABCs of internetworks. This opening chapter will examine the history of internetworking and then establish how it evolved into the technology of today. We’ll also describe the LAN and WAN equipment that’s typically found in a modern internetworking environment. A necessary prerequisite to this is to fully understand the OSI reference model. I’ll show you how the layered approach to application development has created the present internetworking standards that shape how modern internetworking takes place. So relax; I’ll take you step-by-step through the fundamentals you need to learn. The main topics addressed in this chapter are Identify and describe the functions of each of the seven layers of the OSI reference model. Describe the basic process of communication between the layers of the OSI reference model. Describe connection-oriented network service and connectionless network service and identify the key differences between them.
    [Show full text]