Issue 87 Lowres.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Issue 87 Lowres.Pdf THE LASER USER ISSUE 87ISSUE 87 WINTER 2018 THE WINTER 2018 LASER IN THIS ISSUE: USER Powder Bed Fusion Vertical Laser Cladding Laser Welding Plastics Laser Shock Peening Medical Device Ablation Bill Steen Reflects OPTICAL INNOVATION IN MIRRORS & LENSES: SHAPING BEAMS FOR PRECISION MANUFACTURING 1 ISSUE 87 WINTER 2018 THE LASER USER THE LASER USER Editor: Dave MacLellan Sub-Editor: Catherine Rose ISSN 1755-5140 © 2018 – Association of Industrial Laser Users The Laser User is the house magazine of the Association of Industrial Laser Users. Its primary aim is to disseminate technical information and to present the views of its members. The views and opinions expressed in this magazine belong to the authors and do not necessarily reflect those of AILU. The Editor reserves the right to edit any submissions for space and other considerations. Authors retain the right to extract, in part or in whole, their material for future use. The Laser User is published quarterly in February, May, August and November by AILU for its members and is available in print or online. Editorial Board for this issue: Ric Allott STFC Ravi Aswathanarayanaswamy Renishaw Paul Goodwin TWI Cover image: An axicon lens (with a conical surface) is Lin Li University of Manchester used to generate Bessel beams for femtosecond laser James McDowell Litron Lasers micromachining of glass and other materials. Jonathan Magee Coherent | Rofin Image courtesy of Rémi Meyer , FEMTO-ST Institute, Mark Millar Essex Laser Besançon, France. Andy Toms TLM Laser ADVERTISING AILU STEERING COMMITTEE ENQUIRIES 2017-18 +44 (0) 1235 539595 President: Lin Li (University of Manchester) [email protected] Vice President: Jon Blackburn (TWI) Advertising rates at: Exec. Director: Dave MacLellan (Anode Marketing) http://bit.ly/AILU_MEDIA_GUIDE_2018 Elected until 2020 Shireen Khanum (GF Machining) Anke Lohmann (Anchored In Ltd) Vojtech Olle (OSI Optoelectronics) Mike Poulter (SPI Lasers) Elected until 2019 Duncan Hand (Heriot-Watt University) WELCOME TO NEW Louise Jones (KTN) AILU MEMBERS Jonathan Lawrence (Coventry University) Ian White (Yamazaki Mazak) ES Precision Andrew May Elected until 2018 [email protected] Paul Goodwin (TWI) Roger Hardacre (ALT) Lumentum Tony Jones (Cyan Tec Systems) Adrian Norton (thinklaser) Association of Industrial Laser Users Philippe Leopold Oxford House [email protected] Co-opted 100 Ock Street Adam Clare (University of Nottingham) Abingdon NKT Photonics Mark Millar (Essex Laser) Oxfordshire Paul Fitzsimons Stan Wilford (IPG Photonics) OX14 5DH [email protected] Past presidents and founder members are also able to Tel: +44 (0) 1235 539595 Proform Laser Services attend committee meetings. Anyone wishing to join the E-mail: [email protected] Laura Canner AILU Steering Committee please contact the Executive Web: www.ailu.org.uk [email protected] Director. 2 THE LASER USER ISSUE 87 WINTER 2018 CONTENTS HIGHLIGHTS... Powder Bed Vertical Laser Laser Welding Fusion 16 Cladding 18 Plastics 20 Laser Shock Medical Device Bill Steen Peening 22 Ablation 24 Reflects 26 ASSOCIATION NEWS MAIN FEATURES CONTENT BY SUBJECT First Word 4 Fluid and particle dynamics in Business Laser Ablation President’s Message 4 laser powder bed fusion Members' News 5 Main Feature 24 Ric's Ramblings 4 Ioannis Bitharas et al. 16 AILU Interview 12 Professor Bill Steen Reflects Energy Bill & Non-Commodity MEMBERS’ NEWS Study on powder blown laser Main Feature 26 Costs Member & Business 5 cladding of vertical surfaces Short Feature 31 Events Diary 36 Case Studies 10 Piotr Lubaszka & Bernd Baufeld 18 Laser welding plastics – Product News 32 EARLY CAREER a short guide RESEARCHERS Laser Processing Ian Jones 20 Laser processing of Plastic Automotive Components hard-to-weld materials 8 Laser shock peening of metals Short Feature 7 and advanced ceramics Photo competition 9 Industrial R&D 7 Pratik Shukla 22 SHORT FEATURES Hard-to-Weld Materials Laser ablation: layer removal and Short Feature 8 Industrial R&D 7 surface treatments Plastic automotive component David Van de Wall 24 Job Shop processing 7 News 14 Non-commodity business costs 31 The laser: from burning paper to Chair’s Report 15 mainline manufacture EDITORIAL William Steen 26 Additive Manufacturing Main Feature 16 Interview: Paul Maclennan, ULO Optics 12 Observations 28 Laser Cladding Job Shop Corner 14 Main Feature 18 A Funny Thing... 34 Laser Welding Plastics PRODUCT NEWS Main Feature 20 Systems 32 Laser Shock Peening Processing Heads 32 Main Feature 22 Beam Measurement 32 Ancillaries 33 EVENTS 29, 35 3 ISSUE 87 WINTER 2018 THE LASER USER ASSOCIATION NEWS FIRST WORD PRESIDENT'S MESSAGE The 9 years of studying and working life with Bill laid down a solid foundation on which The last couple of months have seen a ramp In this issue we have the honour of publishing to build my entire career in the area of laser up of activity in the AILU office for our next 3 an article by Professor Bill Steen (p. 26-27) engineering. Bill was a most inspiring teacher, events which I hope that all of our members will outlining the history of laser processing in his supervisor and a friend. He always inspired get involved with. research groups from the 1970s to the 2000s. and encouraged students and researchers Some of the photos in the article are published and gave them the opportunities and freedom Over the last two years (and more) a team of for the first time. The article is extracted from to solve challenging scientific and engineering people and a number of working groups have a longer document which I'm sure Bill would problems. Everyone was happier after talking pulled together a national strategy for laser be happy to share if you interested - please to Bill in technical discussions. material processing and the report “Lasers contact him via the AILU office. for Productivity: A UK Strategy”, outlining the Students and researchers were often invited to recommendations, is to be launched at the Reading this article brought me back to the Bill’s house and annual barn dances were held Houses of Parliament on 6 March at 2.30pm. 1980s and 1990s. I joined Bill’s laser group for the laser group members and friends. He We are hoping to see 100 AILU members there at Imperial College London in 1985 as a PhD regularly sent PhD students and post-docs to and as many MPs as we can get to call in student working on intelligent adaptive control various conferences to learn and interact with during the afternoon to meet their constituents of the laser cladding process. The project wider laser communities. and familiarise themselves with the capabilities involved the closed loop control of laser power, of the laser in manufacturing. If you are powder flow-rate, clad deposition height and Bill received the Arthur Schawlow Award interested to find out more, you can register dilution using a hierarchical, multiple sensor from the Laser Institute of America in 1996 your interest in the events pages on the AILU and multiple loop structure combined with and the prestigious Honorary Fellow of the website (there is a link to Eventbrite on that artificial intelligence (AI). Institution of Mechanical Engineers in 2017. We congratulate Professor page and registration is free). We are also In 1988 I followed Bill to Liverpool University, Steen on his lifetime looking for a good cross-section of samples working as a research assistant and later achievements that to display on the day – showing some typical research fellow in a number of projects, have changed the examples from manufacturing to highlight where including monitoring of high speed laser welding manufacturing world. lasers can be used. for industrial packaging and laser based nuclear MACH 2018 takes place on 9-13 April and decommissioning, until 1994 when I joined Lin Li there will be a Lasers for Manufacturing Zone, UMIST (University of Manchester Institute of lin.li@manchester. in place of the AILU Pavilion we have had in Science and Technology) as a lecturer. ac.uk previous shows. Come along during the week or join us in the Zone as exhibitors. Finally, we are getting closer to LPM 2018 RIC'S RAMBLINGS and we all benefit as a society from it –“oh ok, (that’s Laser Precision Microfabrication in case sounds cool, on you go Sir”. Phew I thought, you hadn’t heard) which gives our members a Dear Readers, for this latest edition of The that was a close one. But on reflection that is unique opportunity to visit this Symposium in Laser User my ramblings have taken me much what Photonics West is all about - and from Edinburgh from 25-28 June. Why not submit further afield than usual. I write to you from what I can see this week there is a whole load an abstract before it is too late? Registration SPIE Photonics West in San Francisco – a big of business being done. is open, so register this week and get your old US style celebration of all things photonic. I One of the most interesting sessions I attended accommodation booked! Those companies have been coming to Photonics West for quite was a panel discussion on taking Quantum looking to sell into this market should a while now (though not every year) and it never Technologies into industry. Lots of opportunities also consider sponsorship and exhibiting fails to impress me; the sheer number and in security, communications, next generation opportunities. This event is more international range of companies exhibiting and the myriad computing and so on, but whenever the panel than ILAS, so we expect a significant number of of applications of “light” almost too numerous experts specified where an application will be attendees from Japan, China, USA, Lithuania… to list. realised they were not able to say when with I am hoping for a significant turnout – even My story starts at the US border, standing in any certainty at all – good old Heisenberg must more than the 220 we had at ILAS 2017.
Recommended publications
  • Call for Access to the LULI Laser Facilities
    Call for Access to the LULI laser facilities Application for beam time on the LULI laser facilities will soon be open for the period May 2013 – April 2014. The closing date will be the 3rd of October, 2012. BRIEF DESCRIPTION OF THE LULI LASER FACILITIES AVAILABLE IN 2013 ELFIE is a highly versatile and manageable facility coupling a fully-equipped experimental room with a Ti:Sa/mixed glass laser system based on the chirped pulse amplification (CPA) technique. Two ultra-intense vacuum-compressed beams (~15J in typically 0.35ps at ω or 1.06 µm - 2 ω available) are optically synchronized with a ~60J / 600ps uncompressed chirped pulse. A 100mJ short (0.3ps) frequency-converted (from ω to 4 ω) probe beam is also available. Shot-to-shot reliability (at a repetition rate of 1 shot every 20 minutes) and good focused beam quality is ensured through an adaptive-optics closed-loop system. Reduced flexibility in terms of angles between the various laser beams is offered (see graph below). LULI2000 is one of the most energetic laser facilities in Europe: it consists of two experimental areas and a laser hall (below) containing 2 high-power single pulse neodymium glass laser chains. Each beam can deliver up to 1kJ at ω in 1.5ns square pulses ( nano2000 configuration). Pulse duration [from 0.5 to 5ns - rise time ~150ps, pulse shaping available], beam delay [±10ns] and angle can be readily adjusted. 2 ω is available (3 ω upon request). The repetition rate is limited to 1 shot every 90 minutes (4-5 full-energy shots per day), but a 10Hz laser beam allows fast diagnostics alignment.
    [Show full text]
  • Petawatt and Exawatt Class Lasers Worldwide
    Petawatt and exawatt class lasers worldwide Colin Danson, Constantin Haefner, Jake Bromage, Thomas Butcher, Jean-Christophe Chanteloup, Enam Chowdhury, Almantas Galvanauskas, Leonida Gizzi, Joachim Hein, David Hillier, et al. To cite this version: Colin Danson, Constantin Haefner, Jake Bromage, Thomas Butcher, Jean-Christophe Chanteloup, et al.. Petawatt and exawatt class lasers worldwide. High Power Laser Science and Engineering, Cambridge University Press, 2019, 7, 10.1017/hpl.2019.36. hal-03037682 HAL Id: hal-03037682 https://hal.archives-ouvertes.fr/hal-03037682 Submitted on 3 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. High Power Laser Science and Engineering, (2019), Vol. 7, e54, 54 pages. © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/hpl.2019.36 Petawatt and exawatt class lasers worldwide Colin N. Danson1;2;3, Constantin Haefner4;5;6, Jake Bromage7, Thomas Butcher8, Jean-Christophe F. Chanteloup9, Enam A. Chowdhury10, Almantas Galvanauskas11, Leonida A.
    [Show full text]
  • Galvanometer Scanning Technology and 9.3Μm CO2 Lasers for On-The-Fly Converting Applications
    Lasers in Manufacturing Conference 2017 Galvanometer Scanning Technology and 9.3µm CO2 Lasers for On-The-Fly Converting Applications M. Hemmericha,*, M. Darvisha, J. Conroyb, L. Knollmeyerb, J. Wayb, X. Luoc, Y. J. Hsuc, J. Lic aNovanta Europe GmbH, Münchner Strasse 2a, 82152 Planegg, Germany bSynrad Inc., 4600 Campus Place, Mukilteo, WA, USA 98275 cCambridge Technology, 125 Middlesex Turnpike, Bedford, MA, USA 01730 Abstract Digital converting processes are used to transform a roll of material into a different form or shape and provide the flexibility to deliver unique designs or changes on-the-fly, unlike traditional mechanical processes. Tremendous progress has been made in the field of digital printing; its increased adoption requires that converting processes also be more flexible and cost-effective while delivering high cut quality. Due to the high cost of storage and maintenance of a plurality of conventional dies and long set up time, using CO2 lasers in combination with fast and precise laser scanning has proven to have great potential in paper and cardboard processing, flexible packaging and label cutting. At the same time, the capability to control the laser beam power density delivered on the material processed is critical to achieve high quality finish goods. In this paper, we are showing the capabilities of an all-digital galvanometer scanner in combination with a highly frequency stable CO2 laser that provides stable laser power density by modulating the laser power in coordination with beam scanning speed. Our system also demonstrates high scanning speed of more than 10 m/s and a focal spot size of less than 150µm.
    [Show full text]
  • Reduced Graphene: Synthesis, Properties, and Applications
    REVIEW Laser Direct-Writing www.advmattechnol.de Laser-Reduced Graphene: Synthesis, Properties, and Applications Zhengfen Wan, Erik W. Streed, Mirko Lobino, Shujun Wang, Robert T. Sang, Ivan S. Cole, David V. Thiel, and Qin Li* produce graphene with relatively high Laser reduction of graphene oxide has attracted significant interest in recent crystalline quality, including mechanical years, because it offers a highly flexible, rapid, and chemical-free graphene exfoliation of graphite,[6,7] epitaxial [8–10] fabrication route that can directly write on almost any solid substrate growth, and chemical vapor deposi- tion (CVD).[11–14] Another class of methods with down to sub-micrometer feature size. Laser-reduced graphene (LRG) adopts graphene oxide (GO) as the pre- is explored for various important applications such as supercapacitors, cursor for the synthesis of graphene with sensors, field effect transistors, holograms, solar cells, flat lenses, varied qualities. GO can be reduced to gra- bolometers, thermal sound sources, cancer treatment, water purification, phene by various reduction routes such as [15,16] [17–19] [20] lithium-ion batteries, and electrothermal heaters. This contribution reviews thermal, chemical, electrical, [21] [22,23] [24] most recent research progress on the aspects of fabrication, properties, microwave, photo, laser, or a combination of these methods.[25] Table 1 and applications of LRG. Particular attention is paid to the mechanism of summarizes several typical reduction LRG formation, which is still debatable. The three main theories, including methods for graphene oxide and the the photochemical process, the photothermal process, and a combination respective conductivity (or sheet resistance) of both processes, are discussed.
    [Show full text]
  • Ixblue Presentation at Advanced Fiber Laser
    Advanced – State of the Art – Fiber solutions and LiNbO3 Modulators and pulse generators for Fiber Lasers Dr Shuo ZHANG iXblue Photonics [email protected] High-Technology Independent Company 750+ employees 80% export 140+ M€ turnover Founded in 2000 iXblue in France Lannion Saint-Germain-en-Laye 8 industrial Specialty Fibers Navigation sites Navigation Headquarters Besançon 100% of R&D Integrated optics Brest Bonneuil- and production Underwater Acoustic sur-Marne Positioning Motion Systems as well as Acoustic Labcom 90% of suppliers located in France St Etienne Bordeaux Hardened optical fibers Labcom Cold Atoms Labcom Joint Research Laboratories La Ciotat Sonars Sea Operations Shipyard 1- AFL Topic 1: Fiber and Fiber based devices - Fiber and Fiber based devices offer for the laser world - Key Electro-optic modulation solutions for the laser world 2- AFL Topic 2: High power fiber laser - The laser seeder for the high Energy Industrial Lasers - Pump seeder source for Petawatt lasers based on OPCPA - The laser seeder for scientific High Energy Density Lasers TABLE OF - The diagnosis fibers for scientific High Energy Density Lasers 3- AFL Topic 3: Ultrafast fiber laser and nonlinear fiber optics CONTENT - Femtoscond Fiber Lasers and fibers solutions 4- AFL Topic 5: Beam combination of fiber lasers - The right electro-optical modulator for Coherent Beam Combining (CBC) lasers - The electro-optical modulators offer for Spectral Beam Combining (SBC) lasers 4- AFL Topic 6: Fiber laser application - 2 µm Fibre lasers for medical and defense
    [Show full text]
  • Spectroscopic Studies of Radicals, Aliphatic Molecules, and Their Clusters
    MASS-SELECTED IR-VUV (118 NM) SPECTROSCOPIC STUDIES OF RADICALS, ALIPHATIC MOLECULES, AND THEIR CLUSTERS Yongjun Hu,* Jiwen Guan,1 and Elliot R. Bernstein2* 1MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China 2Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523-1872 Received 29 January 2013; revised 25 April 2013; accepted 25 April 2013 Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/mas.21387 Mass-selected IR plus UV/VUV spectroscopy and mass spec- molecules and unstable species (Lee et al., 1969; Ashfold et al., trometry have been coupled into a powerful technique to 1993). investigate chemical, physical, structural, and electronic prop- Despite of the wide applications of the method, a double erties of radicals, molecules, and clusters. Advantages of the use resonance IR–UV scheme requires the presence of an UV of vacuum ultraviolet (VUV) radiation to create ions for mass chromophore, which can be provided by an aromatic molecule spectrometry are its application to nearly all compounds with (Lisy, 2006) or by an aromatic “tag” (Brutschy, 2000b). Thus the ionization potentials below the energy of a single VUV photon, IR–UV technique is inapplicable for the unperturbed detection its circumventing the requirement of UV chromophore group, its of species originally without an UV chromophore group. One inability to ionize background gases, and its greatly reduced way of circumventing this limitation is to employ the detection fragmenting capabilities. In this review, mass-selected IR plus with single photon ionization in the VUV region instead, which VUV (118 nm) spectroscopy is introduced first in a general may compromise the advantage of individual conformer selec- manner.
    [Show full text]
  • University of Dundee DOCTOR of PHILOSOPHY High Power Ultra
    University of Dundee DOCTOR OF PHILOSOPHY High power ultra-short pulse Quantum-dot lasers Nikitichev, Daniil I. Award date: 2012 Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 08. Oct. 2021 DOCTOR OF PHILOSOPHY High power ultra-short pulse Quantum-dot lasers Daniil I. Nikitichev 2012 University of Dundee Conditions for Use and Duplication Copyright of this work belongs to the author unless otherwise identified in the body of the thesis. It is permitted to use and duplicate this work only for personal and non-commercial research, study or criticism/review. You must obtain prior written consent from the author for any other use. Any quotation from this thesis must be acknowledged using the normal academic conventions. It is not permitted to supply the whole or part of this thesis to any other person or to post the same on any website or other online location without the prior written consent of the author.
    [Show full text]
  • Standard Features: Applications: LEXEL 85 / LEXEL 95 ION LASERS
    LEXEL™ 85 / LEXEL™ 95 ION LASERS SINCE 1972 LEXEL™ Models: ● LEXEL 85: 1.0 Watts TEMoo Argon ● LEXEL 85-K: 0.225 Watts TEMoo Krypton ● LEXEL 95: 2-5 Watts TEMoo Argon ● LEXEL 95-K: 0.75-1.5 Watts TEMoo Krypton ● LEXEL 95L: 5-7 Watts TEMoo Argon ● LEXEL 95L-UV: 0.15 Watts, UV TEMoo Argon Standard Features: Applications: • Solid Invar® Resonator • Spectroscopy • Linear Low-noise Power Supply • Laser Doppler Velocimetry • High Efficiency Solid Ceramic Plasma Tube • Flow Visualization • Free-flow Gas Supply • Alignment • Temperature Compensated Wavelength Selector • Holography • Current and Light Regulation • Non-destructive Testing • Remote Turn-on Capability • Semiconductor Processing • Automatic Starting • Information Processing • Panel Mounted Power Meter • Disc Mastering • 0-10 Volt External Modulation • OEM Medical Applications • Fine Tuning Capability • Cytofluorescence • Sealed Intracavity Spaces • Full CDHR Compliance • Installation Kit • 2 year / 2000 Hour Warranty • Multiline Mirror Holder for all Lines Operation SINCE 1982 853 Brown Road ● Fremont ● California ● 94539 ● (510) 651-0110 ● CambridgeLasers.com ● LexelLaser.com SINCE 1972 LEXEL™ 85/95 Ion Lasers • Model 502 Multiline Mirror Holder The LEXEL 85 and LEXEL 95 ion lasers have a 38 year This assembly holds the high reflector mirror to allow multiline history of the highest quality and performance. Both models are operation. This feature may be substituted for the wavelength used in a variety of applications including laser Doppler veloci- selector. metry, spectroscopy and non-destructive testing. These appli- cations demand excellent performance in both laboratory and industrial environments. LEXEL™ 85/95 Options: The LEXEL 85/95 series is a basic laser system with superior • Model 503 Etalon Assembly performance characteristics in the 1-7 Watt TEMoo argon power The extremely stable etalon assembly allows single longitudinal range.
    [Show full text]
  • Lasers As Weapons Y 9 Fictional Predictions Y 10 See Also Y 11 Notes and References Y 12 Further Reading Y 13 External Links
    Laser From Wikipedia, the free encyclopedia Jump to: navigation, search For other uses, see Laser (disambiguation). Laser United States Air Force laser experiment Inventor Charles Hard Townes Launch year 1960 Available? Worldwide Laser beams in fog, reflected on a car windshield Light Amplification by Stimulated Emission of Radiation (LASER or laser) is a mechanism for emitting electromagnetic radiation, often visible light, via the process of stimulated emission. The emitted laser light is (usually) a spatially coherent, narrow low-divergence beam, that can be manipulated with lenses. In laser technology, "coherent light" denotes a light source that produces (emits) light of in-step waves of identical frequency, phase,[1] and polarization. The laser's beam of coherent light differentiates it from light sources that emit incoherent light beams, of random phase varying with time and position. Laser light is generally a narrow-wavelengthelectromagnetic spectrum monochromatic light; yet, there are lasers that emit a broad spectrum of light, or emit different wavelengths of light simultaneously. Contents [hide] y 1 Terminology y 2 Design y 3 Laser physics o 3.1 Modes of operation 3.1.1 Continuous wave operation 3.1.2 Pulsed operation 3.1.2.1 Q-switching 3.1.2.2Modelocking 3.1.2.3 Pulsed pumping y 4 History o 4.1 Foundations o 4.2 Maser o 4.3 Laser o 4.4 Recent innovations y 5 Types and operating principles o 5.1 Gas lasers 5.1.1 Chemical lasers 5.1.2Excimer lasers o 5.2 Solid-state lasers 5.2.1Fiber-hosted lasers 5.2.2 Photonic crystal lasers 5.2.3 Semiconductor lasers o 5.3 Dye lasers o 5.4 Free electron lasers o 5.5 Exotic laser media y 6 Uses o 6.1 Examples by power o 6.2 Hobby uses y 7 Laser safety y 8 Lasers as weapons y 9 Fictional predictions y 10 See also y 11 Notes and references y 12 Further reading y 13 External links Terminology From left to right: gamma rays, X-rays, ultraviolet rays, visible spectrum, infrared, microwaves, radio waves.
    [Show full text]
  • Optical Cavity Integrated Surface Ion Trap for Enhanced Light Collection Francisco Martin Benito
    University of New Mexico UNM Digital Repository Nanoscience and Microsystems ETDs Engineering ETDs 2-1-2016 Optical cavity integrated surface ion trap for enhanced light collection Francisco Martin Benito Follow this and additional works at: https://digitalrepository.unm.edu/nsms_etds Recommended Citation Benito, Francisco Martin. "Optical cavity integrated surface ion trap for enhanced light collection." (2016). https://digitalrepository.unm.edu/nsms_etds/20 This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Nanoscience and Microsystems ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Francisco M. Benito Candidate Nanoscience and Microsystems Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Zayd C. Leseman, Chair Dr. Daniel L. Stick, Co-Chair Dr. Mani Hossein-Zadeh, Member Dr. Peter L. Maunz, Member Dr. Grant W. Biedermann, Member Optical cavity integrated surface ion trap for enhanced light collection by Francisco M. Benito B.S.E.E. Universidad Ricardo Palma ,1996 M.S.E.E. The University of New Mexico, 2011 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Nanoscience and Microsystems The University of New Mexico Albuquerque, New Mexico December, 2015 Dedication A Victoria, Joaqu´ıny Ver´onica ii Acknowledgments First and foremost, I offer my sincerest gratitude and appreciation to Dr. Zayd C. Leseman, Dr. Grant W. Biedermann, Dr. Daniel L. Stick and Dr. Peter L. Maunz for accepting me be part of their research group at different stages of this journey.
    [Show full text]
  • Petawatt and Exawatt Class Lasers Worldwide
    High Power Laser Science and Engineering, (2019), Vol. 7, e54, 54 pages. © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/hpl.2019.36 Petawatt and exawatt class lasers worldwide Colin N. Danson1;2;3, Constantin Haefner4;5;6, Jake Bromage7, Thomas Butcher8, Jean-Christophe F. Chanteloup9, Enam A. Chowdhury10, Almantas Galvanauskas11, Leonida A. Gizzi12, Joachim Hein13, David I. Hillier1;3, Nicholas W. Hopps1;3, Yoshiaki Kato14, Efim A. Khazanov15, Ryosuke Kodama16, Georg Korn17, Ruxin Li18, Yutong Li19, Jens Limpert20;21;22, Jingui Ma23, Chang Hee Nam24, David Neely8;25, Dimitrios Papadopoulos9, Rory R. Penman1, Liejia Qian23, Jorge J. Rocca26, Andrey A. Shaykin15, Craig W. Siders4, Christopher Spindloe8,Sandor´ Szatmari´ 27, Raoul M. G. M. Trines8, Jianqiang Zhu28, Ping Zhu28, and Jonathan D. Zuegel7 1AWE, Aldermaston, Reading, UK 2OxCHEDS, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK 3CIFS, Blackett Laboratory, Imperial College, London, UK 4NIF & Photon Science Directorate, Lawrence Livermore National Laboratory, Livermore, USA 5Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany 6Chair for Laser Technology LLT, RWTH Aachen University, Aachen, Germany 7University of Rochester, Laboratory for Laser Energetics, Rochester, USA 8Central
    [Show full text]
  • Lasersharp® Laser Modules
    ® LaserSharp Laser Modules The Laser Experts CUSTOM DIGITAL LASER CONVERTING SOLUTIONS Laser Types CO2 (standard) CO₂ lasers are the most common laser type used to through-cut, kiss-cut, score, etch or perforate substrates. CO₂ laser are best suited for processing non-metallic materials such as plastics, papers, polymers, textiles, foams and adhesives. Lasers are available in 9.4µ, 10.25µ, and 10.6µ wavelengths. Typical power output range is 40W to 1000W. Common applications include: • Commercial print: greeting cards, folding cartons, brochures, business cards, stencils, and labels • Flexible packaging: easy-open and breathable packaging features • Industrial: gaskets and adhesive Ultraviolet (uv) spacers UV laser systems are suitable for the fine ablation of very thin (<1μm) conductive coatings • Medical: adhesive and plastic materials or thin non-conductive coatings which would otherwise be transparent to different laser for medical components wavelengths. Lasers are available in 355nm wavelength. Typical power output range is 10W to 20W. Common applications include ablating and cutting electronic components, Fiber (f) biosensors, and precise electrode patterns. Fiber lasers are ideally suited for ablating thick conductive coatings that would How lasers are used in digital converting typically slow a UV laser. They are also Digital converting is a process in which a focused laser beam is directed to cut, kiss-cut, capable of metal and plastic welding. Lasers perforate, score or etch patterns into materials as specified in a customer’s vector file. are available in 1070nm laser wavelength in This non-contact functionality achieves extremely tight tolerances (approximately pulsed or continuous wave energy outputs. 50µm or 0.002”) while processing materials at high speeds.
    [Show full text]