Global Ecology and Biogeography Volume 18 Number 4 July 2009 Pages 393–520 ., Pp

Total Page:16

File Type:pdf, Size:1020Kb

Global Ecology and Biogeography Volume 18 Number 4 July 2009 Pages 393–520 ., Pp geb_v18_i4_ofbcover 6/4/09 9:06 AM Page 1 Global Ecology and Biogeography ISSN 1466–822X Global Ecology Volume 18, Number 4, July 2009 Global Ecology and Biogeography Volume 18 Number 4 Contents July 2009 and Biogeography Research Papers A Journal of Macroecology H.Verbruggen, L. Tyberghein, K. Pauly, C.Vlaeminck, K.Van Nieuwenhuyze,W.H. C. F.Kooistra, F.Leliaert and O. De Clerck: Macroecology meets macroevolution: evolutionary niche dynamics in the seaweed Halimeda 393–405 Editor-in-Chief: R.A. Pyron and F.T.Burbrink: Can the tropical conservatism hypothesis explain temperate species richness patterns? David J. Currie An inverse latitudinal biodiversity gradient in the New World snake tribe Lampropeltini 406–415 B. Oberle, J. B. Grace and J. M. Chase: Beneath the veil: plant growth form influences the strength of species richness–productivity relationships in forests 416–425 J. Belmaker: Species richness of resident and transient coral-dwelling fish responds differentially to regional diversity 426–436 18Volume Number 4 July 2009 Pages 393–520 S. Normand, U.A. Treier, C. Randin, P.Vittoz,A. Guisan and J.-C. Svenning: Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients 437–449 S. M. Shirley and S. Kark: The role of species traits and taxonomic patterns in alien bird impacts 450–459 E. Batllori, J. J. Camarero, J. M. Ninot and E. Gutiérrez: Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming 460–472 P.Prieto, J. Peñuelas, Ü. Niinemets, R. Ogaya, I. K. Schmidt, C. Beier,A. Tietema,A. Sowerby, B.A. Emmett, E. K. Láng, G. Kröel-Dulay, B. Lhotsky, C. Cesaraccio, G. Pellizzaro, G. de Dato, C. Sirca and M. Estiarte: Changes in the onset of spring growth in shrubland species in response to experimental warming along a north–south gradient in Europe 473–484 J. C. Linares, J. J. Camarero and J.A. Carreira: Interacting effects of changes in climate and forest cover on mortality and growth of the southernmost European fir forests 485–497 M.A. Beketov: The Rapoport effect is detected in a river system and is based on nested organization 498–506 Research Review D. Corenblit, J. Steiger,A. M. Gurnell and R. J. Naiman: Plants intertwine fluvial landform dynamics with ecological succession and natural selection: a niche construction perspective for riparian systems 507–520 Front cover: Joint analysis of macroecological and phylogenetic data sets permits inference of the evolutionary dynamics of the macroecological niche and assists interpretation of biogeographical patterns. Study of the evolutionary niche dynamics of the calcified green seaweed genus Halimeda (Verbruggen et al., pp. 393–405) shows niche conservatism for nutrient-poor, tropical habitats in most of the genus except one section that has invaded colder, more nutrient-rich waters multiple times during the Cenozoic. Interpretation of global niche models and the species phylogeny provides evidence that species occupy only part of the suitable habitat as a consequence of vicariance events. Niche models also identify understudied areas that can be targeted for the discovery of species of special biogeographical interest. The front cover shows a sea surface temperature map (top), a representative of the genus Halimeda on a coral reef in the Maldives (bottom left), and the inferred evolution of sea surface temperature affinities in a lineage of the genus (bottom right). World list abbreviation: Global Ecol. Biogeogr. www.blackwellpublishing.com/geb www.blackwellpublishing.com This journal is available online at Wiley InterScience. Visit www3.interscience.wiley.com to search the articles and register for table of contents e-mail alerts. Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2009) 18, 393–405 Blackwell Publishing Ltd RESEARCH Macroecology meets macroevolution: PAPER evolutionary niche dynamics in the seaweed Halimeda Heroen Verbruggen1*†, Lennert Tyberghein1†, Klaas Pauly1†, Caroline Vlaeminck1, Katrien Van Nieuwenhuyze1, Wiebe H.C.F. Kooistra2, Frederik Leliaert1 and Olivier De Clerck1 1Phycology Research Group and Center for ABSTRACT Molecular Phylogenetics and Evolution, Ghent Aim Because of their broad distribution in geographical and ecological dimensions, University, Krijgslaan 281 S8 (WE11), B-9000 seaweeds (marine macroalgae) offer great potential as models for marine biogeo- Ghent, Belgium, 2Stazione Zoologica ‘Anton Dohrn’, Villa Comunale, 80121 Naples, Italy graphical inquiry and exploration of the interface between macroecology and macroevolution. This study aims to characterize evolutionary niche dynamics in the common green seaweed genus Halimeda, use the observed insights to gain under- standing of the biogeographical history of the genus and predict habitats that can be targeted for the discovery of species of special biogeographical interest. Location Tropical and subtropical coastal waters. Methods The evolutionary history of the genus is characterized using molecular phylogenetics and relaxed molecular clock analysis. Niche modelling is carried out with maximum entropy techniques and uses macroecological data derived from global satellite imagery. Evolutionary niche dynamics are inferred through applica- tion of ancestral character state estimation. Results A nearly comprehensive molecular phylogeny of the genus was inferred from a six-locus dataset. Macroecological niche models showed that species distribution ranges are considerably smaller than their potential ranges. We show strong phylogenetic signal in various macroecological niche features. Main conclusions The evolution of Halimeda is characterized by conservatism for tropical, nutrient-depleted habitats, yet one section of the genus managed to invade colder habitats multiple times independently. Niche models indicate that the restricted geographical ranges of Halimeda species are not due to habitat unsuitability, strengthening the case for dispersal limitation. Niche models identified hotspots of habitat suitability of Caribbean species in the eastern Pacific Ocean. We propose that these hotspots be targeted for discovery of new species separated from their Caribbean *Correspondence: Heroen Verbruggen, Phycology Research Group, Krijgslaan 281 S8, siblings since the Pliocene rise of the Central American Isthmus. B-9000 Ghent, Belgium. Keywords E-mail: [email protected] †These authors contributed equally to this Geographical information systems, Halimeda, historical biogeography, macroecology, work niche evolution, niche conservatism, niche modelling, phylogenetics. survival, and the realized niche, which is a subset of the funda- INTRODUCTION mental niche that a species actually occupies. Species tolerances Various interacting features influence the distribution of a are determined by their morphological, reproductive and species. The niche of a species is commonly defined as the set of physiological traits, which are in turn susceptible to evolutionary biotic and abiotic conditions in which it is able to persist and forces. Hence, niche characteristics can be interpreted as evolutionary maintain stable population sizes (Hutchinson, 1957). Further phenomena. Understanding niche evolution yields valuable insights distinction is made between a species’ fundamental niche, which into biogeography, biodiversity patterns and conservation biology consists of the set of all conditions that allow for its long-term (Wiens & Graham, 2005; Rissler et al., 2006; Wiens et al., 2007). DOI: 10.1111/j.1466-8238.2009.00463.x © 2009 Blackwell Publishing Ltd www.blackwellpublishing.com/geb 393 H. Verbruggen et al. The niche concept provides a conceptual framework to predict identified, questions about what causes them remain (Kooistra geographical distributions of species. Niche models establish the et al., 2002; Verbruggen et al., 2005b). Are species restricted to macroecological preferences of a given species based on observed one ocean basin because of habitat unsuitability in the other distribution records and a set of macroecological variables, and basin or should the limited distribution ranges be attributed to these preferences can subsequently be used to predict geographical dispersal limitation? It is also not known with certainty which areas with suitable habitat for the species (e.g. Guisan & Thuiller, vicariance event may be responsible for the phylogenetic 2005; Raxworthy et al., 2007; Rissler & Apodaca, 2007). The separation of Indo-Pacific and Atlantic lineages. So far, two availability of macroecological data, either in the form of geological events have been implied: the Miocene closure of the remotely sensed or interpolated measurement data, is increasing Tethys Seaway in the Middle East and the Pliocene shoaling of the and has already provided many biological studies with environ- Central American Isthmus (Kooistra et al., 2002; Verbruggen mental information (Kozak et al., 2008). To date, most ecological et al., 2005b). niche modelling studies have focused on terrestrial organisms. The first goal of the present study is to investigate the A notable exception is the study by Graham et al. (2007), which evolutionary niche dynamics of the seaweed genus Halimeda, used a synthetic oceanographic and ecophysiological model to focusing on niche dimensions relevant to global geographical identify known kelp populations and predict the existence of distributions rather than local distributional issues such as undiscovered
Recommended publications
  • Can More K-Selected Species Be Better Invaders?
    Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France.
    [Show full text]
  • To What Degree Are Philosophy and the Ecological Niche Concept Necessary in the Ecological Theory and Conservation?
    EUROPEAN JOURNAL OF ECOLOGY EJE 2017, 3(1): 42-54, doi: 10.1515/eje-2017-0005 To what degree are philosophy and the ecological niche concept necessary in the ecological theory and conservation? Universidade Federal Rogério Parentoni Martins* do Ceará, Programa de Pós-Graduação em Ecologia e Recursos Naturais, Departamento ABSTRACT de Biologia, Centro de Ecology as a field produces philosophical anxiety, largely because it differs in scientific structure from classical Ciências, Brazil physics. The hypothetical deductive models of classical physics are simple and predictive; general ecological *Corresponding author, models are predictably limited, as they refer to complex, multi-causal processes. Inattention to the conceptual E-mail: rpmartins917@ structure of ecology usually imposes difficulties for the application of ecological models. Imprecise descrip- gmail.com tions of ecological niche have obstructed the development of collective definitions, causing confusion in the literature and complicating communication between theoretical ecologists, conservationists and decision and policy-makers. Intense, unprecedented erosion of biodiversity is typical of the Anthropocene, and knowledge of ecology may provide solutions to lessen the intensification of species losses. Concerned philosophers and ecolo- gists have characterised ecological niche theory as less useful in practice; however, some theorists maintain that is has relevant applications for conservation. Species niche modelling, for instance, has gained traction in the literature; however, there are few examples of its successful application. Philosophical analysis of the structure, precision and constraints upon the definition of a ‘niche’ may minimise the anxiety surrounding ecology, poten- tially facilitating communication between policy-makers and scientists within the various ecological subcultures. The results may enhance the success of conservation applications at both small and large scales.
    [Show full text]
  • COULD R SELECTION ACCOUNT for the AFRICAN PERSONALITY and LIFE CYCLE?
    Person. individ.Diff. Vol. 15, No. 6, pp. 665-675, 1993 0191-8869/93 S6.OOf0.00 Printedin Great Britain.All rightsreserved Copyright0 1993Pergamon Press Ltd COULD r SELECTION ACCOUNT FOR THE AFRICAN PERSONALITY AND LIFE CYCLE? EDWARD M. MILLER Department of Economics and Finance, University of New Orleans, New Orleans, LA 70148, U.S.A. (Received I7 November 1992; received for publication 27 April 1993) Summary-Rushton has shown that Negroids exhibit many characteristics that biologists argue result from r selection. However, the area of their origin, the African Savanna, while a highly variable environment, would not select for r characteristics. Savanna humans have not adopted the dispersal and colonization strategy to which r characteristics are suited. While r characteristics may be selected for when adult mortality is highly variable, biologists argue that where juvenile mortality is variable, K character- istics are selected for. Human variable birth rates are mathematically similar to variable juvenile birth rates. Food shortage caused by African drought induce competition, just as food shortages caused by high population. Both should select for K characteristics, which by definition contribute to success at competition. Occasional long term droughts are likely to select for long lives, late menopause, high paternal investment, high anxiety, and intelligence. These appear to be the opposite to Rushton’s r characteristics, and opposite to the traits he attributes to Negroids. Rushton (1985, 1987, 1988) has argued that Negroids (i.e. Negroes) were r selected. This idea has produced considerable scientific (Flynn, 1989; Leslie, 1990; Lynn, 1989; Roberts & Gabor, 1990; Silverman, 1990) and popular controversy (Gross, 1990; Pearson, 1991, Chapter 5), which Rushton (1989a, 1990, 1991) has responded to.
    [Show full text]
  • Ecological Niche Theory: a Brief Review
    The International Journal of Indian Psychology ISSN 2348-5396 (e) | ISSN: 2349-3429 (p) Volume 3, Issue 2, No.2, DIP: 18.01.022/20160302 ISBN: 978-1-329-81573-5 http://www.ijip.in | January - March, 2016 Ecological Niche Theory: A Brief Review Mina Khatibi1*, Razieh Sheikholeslami2 ABSTRACT In ecology, a niche is a term with a variety of meanings related to the behavior of a species living under specific environmental conditions. The ecological niche describes how an organism or population responds to the distribution of resources and competitors. The ecological niche concept expresses the relationship of an individual or a population to all aspects of its environment. Studies on the relationship between human population and environmental resources have employed niche concept. Ecological niche comprehends all conditions necessary for an organism to exist. Keywords: Niche, Ecology, Environment, Organism What is ecological niche? 1. The position or function of an organism or a population within a biological and physical environment. 2. The area within a habitat occupied by an organism. The ecological niche is an organism position in the habitat (Online Psychology Dictionary, 2014). The ecological niche concept, as proposed by Hutchinson (1957), expresses the relationship of an individual or a population to all aspects of its environment. Studies on the relationship between human population and environmental resources have employed niche concept (Adams, 2002; Hanazaki and Begossi, 2004; Cavallini and Nordi, 2005; Silva and Begossi, 2009). According to Hardesty (1972), ecological niche comprehends all conditions necessary for an organism to exist. Considering the ecological niche, it can analyze each one of all interactions.
    [Show full text]
  • The Role of Nearshore Ecosystems As Fish and Shellfish Nurseries
    l About Issues in Ecology Issues in Ecology is designed to report, in language understandable by non-scientists, the consensus of a panel of scientific experts on issues relevant to the environment. Issues in Ecology is supported by the Pew Scholars in Conservation Biology program and by the Ecological Society of America. It is published at irregular intervals, as reports are com- pleted. All reports undergo peer review and must be approved by the Editorial Board before publication. No responsibility for the views expressed by authors in ESA publica- tions is assumed by the editors or the publisher, the Ecological Society of America. Issues in Ecology is an official publication of the Ecological Society of America, the nation’s leading professional society of ecologists. Founded in 1915, ESA seeks to promote the responsible application of ecological principles to the solution of environmental problems. For more information, contact the Ecological Society of America, 1707 H Street, NW, Suite 400, Washington, DC, 20006. ISSN 1092-8987 PublishedIssues by the Ecological Society of America in Eco Number 11, lSpringogy 2003 The RoleofNearshoreEcosystems as Fish andShellfishNurseries as Fish Issues in Ecology Number 11 Spring 2003 The Role of Nearshore Ecosystems as Fish and Shellfish Nurseries SUMMARY Coastal ecosystems provide many vital ecological and economic services, including shoreline protection, productive commercial and sport fisheries, and nutrient cycling. Key nearshore ecosystems such as seagrass meadows, marshes, and mangrove forests
    [Show full text]
  • A Comparative Study of Four Indexes Based on Zooplankton As Trophic State Indicators in Reservoirs
    Limnetica, 38(1): 291-302 (2019). DOI: 10.23818/limn.38.06 © Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 A comparative study of four indexes based on zooplankton as trophic state indicators in reservoirs Daniel Montagud1,*, Juan M. Soria1, Xavier Soria-Perpiñà2, Teresa Alfonso1 and Eduardo Vicente1 1 Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBIBE). University of Valencia, 46980-Pater- na, Spain. 2 Image Processing Laboratory. University of Valencia, 46980-Paterna, Spain. * Corresponding author: [email protected] Received: 15/02/18 Accepted: 25/06/18 ABSTRACT A comparative study of four indices based on zooplankton as trophic state indicators in reservoirs This study aims to examine four recently conducted trophic state indices that are based on the density of zooplankton and designed for estimating the trophic state of inland waters. These indices include two with formulations based on quotients or ratios, the Rcla and the Rzoo-chla, which were proposed and validated in the European project ECOFRAME (Moss et al., 2003), and two with formulations based on the incorporation of a statistical tool comprising canonical correspondences analysis (CCA), the Wetland Zooplankton Index proposed in 2002 by researchers from McMaster University of Ontario (Lougheed & Chow-Fraser, 2002) and the Zooplankton Reservoir Trophic Index, an index recently designed by the Ebro Basin Authority and on which this manuscript is the first article. These indices were studied and applied in 53 heterogeneous reservoirs of the Ebro Basin. In addition, all were subsequently validated by Carlson’s Trophic State Index based on the amount of chlorophyll a (Carlson, 1977), with significant differences found between them.
    [Show full text]
  • Overview Directions
    R E S O U R C E L I B R A R Y A C T I V I T Y : 1 H R Marine Food Webs Students investigate marine food webs and trophic levels, research one marine organism, and fit their organisms together in a class-created food web showing a balanced marine ecosystem. G R A D E S 9 - 12+ S U B J E C T S Biology, Ecology, Earth Science, Oceanography, Geography, Physical Geography C O N T E N T S 9 Images, 3 PDFs, 6 Links OVERVIEW Students investigate marine food webs and trophic levels, research one marine organism, and fit their organisms together in a class-created food web showing a balanced marine ecosystem. For the complete activity with media resources, visit: http://www.nationalgeographic.org/activity/marine-food-webs/ DIRECTIONS 1. Build background about marine trophic pyramids and food webs. Review with students that food chains show only one path of food and energy through an ecosystem. In most ecosystems, organisms can get food and energy from more than one source, and may have more than one predator. Healthy, well-balanced ecosystems are made up of multiple, interacting food chains, called food webs. Ask volunteers to come to the front of the room and draw a pyramid and a web. Explain that the shapes of a pyramid and a web are two different ways of representing predator-prey relationships and the energy flow in an ecosystem. Food chains are often represented as food pyramids so that the different trophic levels and the amount of energy and biomass they contain can be compared.
    [Show full text]
  • Unit 2: Ecology
    Name: _______________________________ Block: _____ Unit 2: Ecology Big Idea... The natural world is defined by organisms and life processes which conform to principles regarding conservation and transformation of matter and energy. Knowledge about life processes can be applied to improving human health and well being. Questions... ● How is matter transformed in living systems? ● How is energy transferred and transformed in living systems? ● How can change in one part of an ecosystem affect other parts of the ecosystem? ● How do humans impact the diversity and stability of ecosystems? Topics... ● Ecology is the study of interactions among living and nonliving things in an ecosystem. ● There are various types of interactions and scientists study them in many ways. ● The Earth is divided into biomes. ● Humans impact ecosystems within these biomes. Chapters… ● Chapter 13: Principles of Ecology (p.370) ● Chapter 14: Interactions in Ecosystems (p.400) ● Chapter 15: The Biosphere (p.426) ● Chapter 16: Human Impact on Ecosystems (p.452) Standards 5.3/12 A3,B1,B3,B6,C1,C2,C3; RST/9­10 1,4,5,10; CTE9.1/11 A3,F6; CTE9.4/12 1,7,52; 12/N­Q 1; 12/A­REI 10; 12/S­ID 1­7; 12/S­IC 1­6 (Source: BHPS Biology Curriculum Guide) Biology / Mendenhall UNIT 2: Ecology 1 / 62 Date Do Now Biology / Mendenhall UNIT 2: Ecology 2 / 62 Chapter 13: Principles of Ecology Vocabulary Key Points… ● Ecology is the study of relationships among organisms and their environment. ● Every ecosystem contains both living and nonliving factors. ● Life in an ecosystem requires a source of energy.
    [Show full text]
  • Ecology the Study of the Relationships Between Living Organisms and Their Environment Biosphere: Levels of Organization
    Ecology The study of the relationships between living organisms and their environment Biosphere: Levels of Organization The organization of the biosphere from the most specific to the broadest level: Organism Population Community Ecosystem Biome Biosphere Biosphere = any part of the Earth where organisms live, broadest level of ecological study, includes all of Earth’s ecosystems The biosphere includes the lithosphere, hydrosphere, and atmosphere Biosphere Biome Biome = a geographic region that has separate but similar ecosystems characterized by a distinct climate Climate of a location determines which types of organisms are able to live there The major biomes on Earth include: tropical rainforest, temperate rainforest, desert, grassland, deciduous forest, coniferous forest, tundra, estuary, savanna, and taiga. Ecosystem Ecosystem = the biotic, or living, community and its abiotic, or nonliving, environment Ecosystems vary greatly in size and conditions The plants and animals of an ecosystem are determined by the abiotic factors Example of an Ecosystem All the living and nonliving factors inside a pond: The water in the pond The algae and plants that grow in the water The animals and bacteria that live in the water The dirt and rocks on the bottom The sunlight on the water Biotic vs. Abiotic Factors Biotic Factors: Living organisms and factors from formerly living organisms Include interactions between members of the same species and different species Abiotic Factors: Any nonliving geological, geographical and climatological
    [Show full text]
  • R-K Selection and Human Development
    From Quantity to Quality of Life: r-K selection and human development Francis Heylighen Centrum Leo Apostel , Vrije Universiteit Brussel Jan L. Bernheim Dept of Human Ecology,Vrije Universiteit Brussel ABSTRACT: Evolutionary fitness is defined as the number of an organism's offspring likely to survive, apparently privileging quantity, rather than quality, of life. However, models of population growth distinguish between "r-selection", that occurs in unpredictable and risky environments, and "K-selection", characterizing stable environments. If offspring has a high probability to be killed by predators, disease, or other uncontrollable factors, the safest bet is to produce as many of them as quickly as possible (r). If offspring has plenty of chances to mature, but needs all its strength and intelligence to efficiently exploit scarce resources, it is wiser to aim for quality (K). The choice between the two strategies depends on early experience: people raised in a stressful environment exhibit typical r-traits, such as many and early sexual contacts, large families, risk-taking, and short life expectancy; in a safe environment, they will typically have lower fertility and higher life expectancy and invest in long-term benefits such as education. Socio-economic development with its accompanying demographic transition and drive to maximize QOL can be viewed as a shift from an r to a K strategy by humanity. An evolutionary view of QOL Quality of life (QOL) is becoming a very popular concept, being used in an ever growing number of contexts. Yet, while most people have an intuitive sense of what it means, it is difficult to find a good definition.
    [Show full text]
  • Introduction to Ecology: Population Ecology Notes Mrs. Laux AP Biology I
    Introduction to Ecology: Population Ecology Notes Mrs. Laux AP Biology I. Ecology Æthe study of all relationships among organisms and their abiotic environment A. Population 1. all the members of a particular species that live together in the same area at the same time B. Community 1. all the populations of different species living in the same area 2. ecosystem a. a community and its environment C. Biosphere 1. global ecological system that comprises all the communities on Earth 2. includes interactions among all Earth’s communities and the Earth’s atmosphere, lithosphere, and hydrosphere II. Population Ecology Æbranch of biology that deals with the number of individuals of a particular species that are found in an area and how and why those numbers change over time Æpopulations have certain properties, such as birth rates and death rates, that individual organisms lack A. Population density 1. the number of individuals of a species per unit of area or volume at a given time B. Population dispersion (spacing) may be: 1. random a. unpredictably spaced 2. clumped a. clustered in specific parts of the habitat 3. uniform a. evenly spaced C. Population Size-affected by: Æ number of births (b) Ænumber of deaths (d) Æimmigrants (i) Æemigrants (e) 1. growth rate (r) of a population a. its rate of change in size b. r = b – d (on a global scale, when migration is not a factor) 1 Introduction to Ecology: Population Ecology Notes Mrs. Laux AP Biology 2. populations increase in size as long as a. birth rate (natality) is greater than death rate (mortality) 3.
    [Show full text]
  • Unit 2: Ecology and Ecosystems
    UNIT 2: ECOLOGY AND ECOSYSTEMS •Concept of ecology and ecosystem, Structure and function of ecosystem; Energy flow in an ecosystem; food chains, food webs; Basic concept of population and community ecology; ecological succession. •Characteristic features of the following: a) Forest ecosystem b) Grassland ecosystem c) Desert ecosystem d) Aquatic ecosystems (ponds, streams, lakes, wetlands, rivers, oceans, estuaries) ECOLOGY: Ecology (from the Greek “oikos” meaning "house" or "dwelling", and “logos” meaning "to study") is the study of the interactions of organisms with each other and their environment. The hierarchy define each of the following. species ~genus~ population ~ community ~ ecosystem ~ biosphere AUTECOLOGY & SYNECOLOGY: Autecology & Synecology are two main branches of ecology. Autecology is the study of individual organism or individual species. It is also known as population ecology. Synecology is the study of group of organisms of different species which are associated together as a unit in form of a community. Levels of Ecological Study ORGANISMAL ECOLOGY - the study of individual organisms' behavior, physiology, morphology, etc. in response to environmental challenges. POPULATION ECOLOGY - the study of factors that affect and change the size and genetic composition of populations of organisms. COMMUNITY ECOLOGY - the study of how community structure and organization are changed by interactions among living organisms ECOSYSTEM ECOLOGY - the study of entire ecosystems, including the responses and changes in the community in response to the abiotic components of the ecosystem. This field is concerned with such large-scale topics as energy and nutrient cycling. LANDSCAPE ECOLOGY – study of the exchanges of energy, materials, organisms and other products of between ecosystems. GLOBAL ECOLOGY - the study of the effects of regional change in energy and matter exchange on the function and distribution of organisms across the biosphere.
    [Show full text]