Introduction to Ecology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Grassland Ecosystems in British Columbia
Grassland Ecosystems in British Columbia © Grasslands Conservation Council of BC 1 The Grasslands Conservation Council of British Columbia’s mission is to: • Foster understanding and appreciation for the ecological, social, economic, and cultural importance of BC grasslands. • Promote stewardship and sustainable management practices to ensure the long-term health of BC grasslands. • Promote the conservation of representative grassland ecosystems, species at risk, and their habitats. &/OR Acknowledgements for original author and illustrator &/OR Another message that it makes sense to include. Maybe the mission in simple language. Grasslands Conservation Council of British Columbia. (Year). Grassland Ecosystems in British Columbia. Kamloops, BC: Author. © Grasslands Conservation Council of BC 2 Grassland Ecosystems Ecological systems (ecosystems) consist of all the living organisms in an area and their physical environment (soil, water, air). Ecosystems are influenced over time by the local climate, the parent material under the plants, variations in the local landscape, disturbances such as fire and floods, and by the organisms that live in them. Grassland ecosystems in British Columbia generally occur in areas where the climate is hot and dry in summer and cool to cold and dry in winter. The parent material is often composed of fine sediments, and grasslands are most often in valley or plateau landscapes. The organisms that live in them include plants and animals that have adapted to the dry climatic conditions in a variety of ways. Differences in elevation, climate, soils, aspect, and their position in relation to mountain ranges have resulted in many variations in the grassland ecosystems of British Columbia. The mosaics of ecosystems found in our grasslands, including wetlands, riparian areas, aspen stands and rocky cliffs, allow for a rich diversity of species. -
Assessing Predicted Isolation Effects from the General Dynamic Model of Island Biogeography with an Eco‐Evolutionary Model for Plants
Received: 4 January 2017 | Revised: 27 March 2019 | Accepted: 6 April 2019 DOI: 10.1111/jbi.13603 RESEARCH PAPER Assessing predicted isolation effects from the general dynamic model of island biogeography with an eco‐evolutionary model for plants Juliano Sarmento Cabral1,2,3 | Robert J. Whittaker4,5 | Kerstin Wiegand6 | Holger Kreft2 1Ecosystem Modeling, Center of Computation and Theoretical Abstract Biology, University of Würzburg, Würzburg, Aims: The general dynamic model (GDM) of oceanic island biogeography predicts Germany how biogeographical rates, species richness and endemism vary with island age, area 2Biodiversity, Macroecology & Biogeography, University of Göttingen, and isolation. Here, we used a simulation model to assess whether the isolation‐re‐ Göttingen, Germany lated predictions of the GDM may arise from low‐level process at the level of indi‐ 3Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv), viduals and populations. Leipzig, Germany Location: Hypothetical volcanic oceanic islands. 4 Conservation Biogeography and Methods: Our model considers (a) an idealized island ontogeny, (b) metabolic con‐ Macroecology Group, School of Geography and the Environment, University of Oxford, straints and (c) stochastic, spatially explicit and niche‐based processes at the level Oxford, UK of individuals and populations (plant demography, dispersal, competition, mutation 5Center for Macroecology, Evolution and speciation). Isolation scenarios involved varying the distance to mainland and the and Climate, Natural History Museum of Denmark, University of Copenhagen, dispersal ability of the species pool. Copenhagen Ø, Denmark Results: For all isolation scenarios, we obtained humped temporal trends for species 6Ecosystem Modelling, Büsgen‐Institute, University of Göttingen, Göttingen, richness, endemic richness, proportion of endemic species derived from within‐is‐ Germany land radiation, number of radiating lineages, number of species per radiating lineage Correspondence and biogeographical rates. -
Can More K-Selected Species Be Better Invaders?
Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France. -
To What Degree Are Philosophy and the Ecological Niche Concept Necessary in the Ecological Theory and Conservation?
EUROPEAN JOURNAL OF ECOLOGY EJE 2017, 3(1): 42-54, doi: 10.1515/eje-2017-0005 To what degree are philosophy and the ecological niche concept necessary in the ecological theory and conservation? Universidade Federal Rogério Parentoni Martins* do Ceará, Programa de Pós-Graduação em Ecologia e Recursos Naturais, Departamento ABSTRACT de Biologia, Centro de Ecology as a field produces philosophical anxiety, largely because it differs in scientific structure from classical Ciências, Brazil physics. The hypothetical deductive models of classical physics are simple and predictive; general ecological *Corresponding author, models are predictably limited, as they refer to complex, multi-causal processes. Inattention to the conceptual E-mail: rpmartins917@ structure of ecology usually imposes difficulties for the application of ecological models. Imprecise descrip- gmail.com tions of ecological niche have obstructed the development of collective definitions, causing confusion in the literature and complicating communication between theoretical ecologists, conservationists and decision and policy-makers. Intense, unprecedented erosion of biodiversity is typical of the Anthropocene, and knowledge of ecology may provide solutions to lessen the intensification of species losses. Concerned philosophers and ecolo- gists have characterised ecological niche theory as less useful in practice; however, some theorists maintain that is has relevant applications for conservation. Species niche modelling, for instance, has gained traction in the literature; however, there are few examples of its successful application. Philosophical analysis of the structure, precision and constraints upon the definition of a ‘niche’ may minimise the anxiety surrounding ecology, poten- tially facilitating communication between policy-makers and scientists within the various ecological subcultures. The results may enhance the success of conservation applications at both small and large scales. -
Ecosystems and Biodiversity
Unit 2: Ecosystem An organism is always in the state of perfect balance with the environment. The environment literally means the surroundings. The environment refers to the things and conditions around the organisms which directly or indirectly influence the life and development of the organisms and their populations. “Ecosystem is a complex in which habitat, plants and animals are considered as one interesting unit, the materials and energy of one passing in and out of the others” – Woodbury. Organisms and environment are two non-separable factors. Organisms interact with each other and also with the physical conditions that are present in their habitats. ―The organisms and the physical features of the habitat form an ecological complex or more briefly an ecosystem.‖ (Clarke, 1954). The concept of ecosystem was first put forth by A.G. Tansley (1935). Ecosystem is the major ecological unit. It has both structure and functions. The structure is related to species diversity. The more complex is the structure the greater is the diversity of the species in the ecosystem. The functions of ecosystem are related to the flow of energy and cycling of materials through structural components of the ecosystem. According to Woodbury (1954), ecosystem is a complex in which habitat, plants and animals are considered as one interesting unit, the materials and energy of one passing in and out of the others. According to E.P. Odum, the ecosystem is the basic functional unit of organisms and their environment interacting with each other and with their own components. An ecosystem may be conceived and studied in the habitats of various sizes, e.g., one square metre of grassland, a pool, a large lake, a large tract of forest, balanced aquarium, a certain area of river and ocean. -
COULD R SELECTION ACCOUNT for the AFRICAN PERSONALITY and LIFE CYCLE?
Person. individ.Diff. Vol. 15, No. 6, pp. 665-675, 1993 0191-8869/93 S6.OOf0.00 Printedin Great Britain.All rightsreserved Copyright0 1993Pergamon Press Ltd COULD r SELECTION ACCOUNT FOR THE AFRICAN PERSONALITY AND LIFE CYCLE? EDWARD M. MILLER Department of Economics and Finance, University of New Orleans, New Orleans, LA 70148, U.S.A. (Received I7 November 1992; received for publication 27 April 1993) Summary-Rushton has shown that Negroids exhibit many characteristics that biologists argue result from r selection. However, the area of their origin, the African Savanna, while a highly variable environment, would not select for r characteristics. Savanna humans have not adopted the dispersal and colonization strategy to which r characteristics are suited. While r characteristics may be selected for when adult mortality is highly variable, biologists argue that where juvenile mortality is variable, K character- istics are selected for. Human variable birth rates are mathematically similar to variable juvenile birth rates. Food shortage caused by African drought induce competition, just as food shortages caused by high population. Both should select for K characteristics, which by definition contribute to success at competition. Occasional long term droughts are likely to select for long lives, late menopause, high paternal investment, high anxiety, and intelligence. These appear to be the opposite to Rushton’s r characteristics, and opposite to the traits he attributes to Negroids. Rushton (1985, 1987, 1988) has argued that Negroids (i.e. Negroes) were r selected. This idea has produced considerable scientific (Flynn, 1989; Leslie, 1990; Lynn, 1989; Roberts & Gabor, 1990; Silverman, 1990) and popular controversy (Gross, 1990; Pearson, 1991, Chapter 5), which Rushton (1989a, 1990, 1991) has responded to. -
Ecology Intro
www.logannature.org 2969 East Highway 89 P.O. Box 4204 Logan, UT 84323 Phone: 435.755.3239 Introduction to Ecology Objectives Students will understand the difference between an individual, a population, a community, and an ecosystem. Method Students will use shapes to depict individuals. They will start the activity as individuals and progress towards becoming an ecosystem. Materials At least 8-10 different shapes (multiple pieces of each shape should be cut out of paper or other material), paper and pencils for each student, a ball of yarn. Background Ecology is the study of ecosystems. But first, we have to understand what an ecosystem is. An ecosystem is a community of living organisms interacting with their abiotic environment. To best explain this to students, it is important that they understand the components you must have to make an ecosystem. The first is the individual. An individual is a single member of a species; a population is many members of the same species living in a specific habitat; a community is a group of interdependent organisms of different species growing or living together in a specified habitat. This brings us to the ecosystem where the community of living organisms interacts with the non-living components of the environment. Procedure 1. Each student will receive a single shape. This shape represents an individual of a species. 2. Each student must find at least 9 more individuals of the same species (They can find these shapes in buckets around the room). This creates a population. 3. Each student should find two more students with different species and combine their shapes to create a community of organisms. -
Ecological Niche Theory: a Brief Review
The International Journal of Indian Psychology ISSN 2348-5396 (e) | ISSN: 2349-3429 (p) Volume 3, Issue 2, No.2, DIP: 18.01.022/20160302 ISBN: 978-1-329-81573-5 http://www.ijip.in | January - March, 2016 Ecological Niche Theory: A Brief Review Mina Khatibi1*, Razieh Sheikholeslami2 ABSTRACT In ecology, a niche is a term with a variety of meanings related to the behavior of a species living under specific environmental conditions. The ecological niche describes how an organism or population responds to the distribution of resources and competitors. The ecological niche concept expresses the relationship of an individual or a population to all aspects of its environment. Studies on the relationship between human population and environmental resources have employed niche concept. Ecological niche comprehends all conditions necessary for an organism to exist. Keywords: Niche, Ecology, Environment, Organism What is ecological niche? 1. The position or function of an organism or a population within a biological and physical environment. 2. The area within a habitat occupied by an organism. The ecological niche is an organism position in the habitat (Online Psychology Dictionary, 2014). The ecological niche concept, as proposed by Hutchinson (1957), expresses the relationship of an individual or a population to all aspects of its environment. Studies on the relationship between human population and environmental resources have employed niche concept (Adams, 2002; Hanazaki and Begossi, 2004; Cavallini and Nordi, 2005; Silva and Begossi, 2009). According to Hardesty (1972), ecological niche comprehends all conditions necessary for an organism to exist. Considering the ecological niche, it can analyze each one of all interactions. -
The Role of Nearshore Ecosystems As Fish and Shellfish Nurseries
l About Issues in Ecology Issues in Ecology is designed to report, in language understandable by non-scientists, the consensus of a panel of scientific experts on issues relevant to the environment. Issues in Ecology is supported by the Pew Scholars in Conservation Biology program and by the Ecological Society of America. It is published at irregular intervals, as reports are com- pleted. All reports undergo peer review and must be approved by the Editorial Board before publication. No responsibility for the views expressed by authors in ESA publica- tions is assumed by the editors or the publisher, the Ecological Society of America. Issues in Ecology is an official publication of the Ecological Society of America, the nation’s leading professional society of ecologists. Founded in 1915, ESA seeks to promote the responsible application of ecological principles to the solution of environmental problems. For more information, contact the Ecological Society of America, 1707 H Street, NW, Suite 400, Washington, DC, 20006. ISSN 1092-8987 PublishedIssues by the Ecological Society of America in Eco Number 11, lSpringogy 2003 The RoleofNearshoreEcosystems as Fish andShellfishNurseries as Fish Issues in Ecology Number 11 Spring 2003 The Role of Nearshore Ecosystems as Fish and Shellfish Nurseries SUMMARY Coastal ecosystems provide many vital ecological and economic services, including shoreline protection, productive commercial and sport fisheries, and nutrient cycling. Key nearshore ecosystems such as seagrass meadows, marshes, and mangrove forests -
Abiotic Components of a Freshwater System
Abiotic Components of a Freshwater System Grade Level: Elementary, Middle School, High School Ecological Concepts: Abiotic, Physical factors Arizona Science Standards: Science as Inquiry; Life Science Materials: 1) Pond, stream, or aquarium 2) Loupe or magnifying lenses * 3) Chemical tests * a) pH b) Dissolved oxygen (DO) c) Phosphate d) Nitrogen 4) Rulers 5) Air and water thermometers in °C * 6) Record keeping materials 7) Sampling cups * 8) Wear boots, aqua shoes or old sneakers * May be borrowed from SCENE. BACKGROUND Water is a necessity for all life on this planet. Aquatic ecosystems can be ponds, streams, lakes or oceans. Freshwater ecosystems are usually divided into still water (ponds) and flowing water (streams). Some systems encompass both still and flowing water, such as a stream with deep pools. A variety of organisms live in freshwater, some throughout their lives, others only for certain stages, usually as immatures, or juveniles. Even in the Sonoran Desert there is naturally occurring freshwater. There are rivers and streams that flow all year long, and others, called "ephemeral," flow only during wet seasons. Ponds and pools exist as well, usually ephemerally. In functioning aquatic systems there is a variety of plant and animal life, the biotic part of the system. The abiotic component of freshwater systems is as important as the biotic. Water temperature, pH, phosphate and nitrogen levels, dissolved oxygen, and substrate composition are some of the abiotic factors to consider and measure. These must be within certain ranges for the system to be habitable for living organisms. GUIDED INQUIRY Observation/Exploration Period: Have students observe the water habitat using their eyes, magnifying lenses, dip nets, etc. -
Ecology Review Questions 2
The 1, Which title would be most appropriate for a textbook on general ecology? (1.) Interactions Between Organisms and Their Environment (2.) The Cell and its Organelles (3.) The Hereditary Mechanism of Drosophila (4.) The Physical and Chemical Properties of Water 2. The following chart lists four groups of factors relating to an ecosystem. Which group contains only abiotic Group A Group D Group C Group D Swthght Sunlbght SwillghI Sun1Qbt Gr€enØants Oflma Goenpants Rainfall Ral Raiafl QonwnQr Minotats Poduuera CxyQer. Gases Carbon lio Water factors? (1.) group A (2.) group B (3.) group C (4.) group D 3. The most likely result of a group of squirrels relying on limited resources would be (1.) competition between the squirrels (2.) an increase in the number of squirrels (3.) increased habitats for the squirrels (4.) a greater diversity of food for the squirrels 4. An ecosystem is represented in the illustration below. This ecosystem will be self-sustaining if (1.) the organisms labeled A outnumber the organisms labeled B (2.) the type of organisms represented by B are eliminated (3.) the organisms labeled A are equal in number to the organisms labeled B (4.) materials cycle between the organisms labeled A and the organisms labeled B in 5. A certain plant requires moisture, oxygen, carbon dioxide, light, and minerals order to survive. This statement shows that a living organism depends on (1.) abiotic factors (2.) biotic factors (3.) carnivore-herbivore relationships (4.) symbiotic relationships 6. Although three different bird species all inhabit the same type of tree in an area, competition between the birds rarely occurs, The most likely explanation for this lack of competition is that these birds (1.) are unable to interbreed (2.) have a limited supply of food (3.) share food with each other (4.) have different ecological niches 7. -
A Comparative Study of Four Indexes Based on Zooplankton As Trophic State Indicators in Reservoirs
Limnetica, 38(1): 291-302 (2019). DOI: 10.23818/limn.38.06 © Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 A comparative study of four indexes based on zooplankton as trophic state indicators in reservoirs Daniel Montagud1,*, Juan M. Soria1, Xavier Soria-Perpiñà2, Teresa Alfonso1 and Eduardo Vicente1 1 Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBIBE). University of Valencia, 46980-Pater- na, Spain. 2 Image Processing Laboratory. University of Valencia, 46980-Paterna, Spain. * Corresponding author: [email protected] Received: 15/02/18 Accepted: 25/06/18 ABSTRACT A comparative study of four indices based on zooplankton as trophic state indicators in reservoirs This study aims to examine four recently conducted trophic state indices that are based on the density of zooplankton and designed for estimating the trophic state of inland waters. These indices include two with formulations based on quotients or ratios, the Rcla and the Rzoo-chla, which were proposed and validated in the European project ECOFRAME (Moss et al., 2003), and two with formulations based on the incorporation of a statistical tool comprising canonical correspondences analysis (CCA), the Wetland Zooplankton Index proposed in 2002 by researchers from McMaster University of Ontario (Lougheed & Chow-Fraser, 2002) and the Zooplankton Reservoir Trophic Index, an index recently designed by the Ebro Basin Authority and on which this manuscript is the first article. These indices were studied and applied in 53 heterogeneous reservoirs of the Ebro Basin. In addition, all were subsequently validated by Carlson’s Trophic State Index based on the amount of chlorophyll a (Carlson, 1977), with significant differences found between them.