Data Science (ML-DL-Ai)

Total Page:16

File Type:pdf, Size:1020Kb

Data Science (ML-DL-Ai) Data science (ML-DL-ai) Statistics Multiple Regression Model Building and Evaluation Introduction to Statistics Model post fitting for Inference Types of Statistics Examining Residuals Analytics Methodology and Problem- Regression Assumptions Solving Framework Identifying Influential Observations Populations and samples Detecting Collinearity Parameter and Statistics Uses of variable: Dependent and Categorical Data Analysis Independent variable Describing categorical Data Types of Variable: Continuous and One-way frequency tables categorical variable Association Cross Tabulation Tables Descriptive Statistics Test of Association Probability Theory and Distributions Logistic Regression Model Building Picturing your Data Multiple Logistic Regression and Histogram Interpretation Normal Distribution Skewness, Kurtosis Model Building and scoring for Outlier detection Prediction Introduction to predictive modelling Inferential Statistics Building predictive model Scoring Predictive Model Hypothesis Testing Introduction to Machine Learning and Analytics Analysis of variance (ANOVA) Two sample t-Test Introduction to Machine Learning F-test What is Machine Learning? One-way ANOVA Fundamental of Machine Learning ANOVA hypothesis Key Concepts and an example of ML ANOVA Model Supervised Learning Two-way ANOVA Unsupervised Learning Regression Linear Regression with one variable Exploratory data analysis Model Representation Hypothesis testing for correlation Cost Function Outliers, Types of Relationship, Parameter Learning Scatter plot Gradient Descent Missing Value Imputation Simple Linear Regression Model NextGen Soft Solutions Regd. Office # 202-B, II floor, Prashanthi Towers, Saradhi Studios Lane, Metro Pillar No 1463 Maithrivanam, Ameerpet, Hyderabad 500 038. Ph # +91 40 42700222, 8074358639. E-Mail Id: [email protected] URL: www.nextgensoftsolutions.com Linear Regression with Multiple Python Variables Basics of Python Computing parameter analytically Machine Learning Libraries Ridge, Lasso, Polynomial Regression Data Pre-processing/Exploration in Python Logistic Regression Handling Missing Values Classification Handling Outliers Hypothesis Testing One Hot Encoder & Feature Scaling Decision Boundary Cost Function and Optimization Regression Assumptions of Linear Regression Multiclass Classification Simple Linear Regression Model Regularization Cost Function & Gradient Descent Overfitting, Under fitting Multiple Regression Model Building and Evaluation Model Evaluation and Selection Ridge, Lasso and Polynomial Confusion Matrix Regression Precision-recall and ROC curve Identifying Influential Features Regression Evaluation Regularization: Overfitting and underfitting Support Vector Machine Cross-Validation Decision Tree, Random Forest Categorical Data Analysis Unsupervised Learning Describing categorical Data Clustering Association K-mean Algorithm Cross Tabulation Tables Test of Association Dimensionality Reduction Logistic Regression Principal Component Analysis and Decision Boundary applications Cost Function and Optimization Model Building Introduction to text analytics Multiple Logistic Regression and Interpretation Introduction to Neural Network Model Building and scoring for Machine Learning with Prediction Introduction to predictive modelling Python Building predictive model Scoring Predictive Model Introduction to Machine Learning What is Machine Learning? Multiclass/Multi-Label Classification Fundamental of Machine Learning Key Concepts and an example of ML Imbalanced Dataset Supervised Learning Unsupervised Learning NextGen Soft Solutions Regd. Office # 202-B, II floor, Prashanthi Towers, Saradhi Studios Lane, Metro Pillar No 1463 Maithrivanam, Ameerpet, Hyderabad 500 038. Ph # +91 40 42700222, 8074358639. E-Mail Id: [email protected] URL: www.nextgensoftsolutions.com Model Evaluation and Selection Markov Decision Processes Accuracy Markov Decision Processes II Confusion Matrix Reinforcement Learning Precision-recall and ROC curve Reinforcement Learning II Regression Evaluation Probability Bayes' Nets: Representation Support Vector Machine Bayes' Nets: Independence Bayes' Nets: Inference K-Nearest Neighbours(K-NN) Bayes' Nets: Sampling Decision Tree, Random Forest Decision Diagrams / VPI Clustering HMMs: Filtering K-means Algorithm HMMs: Wrap-up / Speech ML: Naive Bayes Unsupervised Learning ML: Perceptron ML: Kernels and Clustering Dimensionality Reduction ML: Neural Networks and Decision Principal Component Analysis and Trees applications Robotics / Language / Vision Introduction to text analytics/ Miscellaneous Topics Natural Language Processing Bag of Words Deep Learning and Image TF-IDF Recognition LDA (Latent Discriminant Analysis) Model Selection, Ensemble models Training Neural Networks, part I Activation functions, initialization, XG-Boost dropout, batch normalization Introduction to Neural Network Course Introduction Recommender Systems Computer vision overview Collaborative Filtering Historical context Content-Based Filtering Course logistics SVD (Singular value Decomposition) Image Classification Artificial Intelligence The data-driven approach K-nearest neighbour Introduction to AI Linear classification I Agents and Search Loss Functions and Optimization A* Search and Heuristics Linear classification II Constraint Satisfaction Problems CSPs II Introduction to Neural Networks Game Trees: Minimax Backpropagation Game Trees: Expectimax; Utilities Multi-layer Perceptrons NextGen Soft Solutions Regd. Office # 202-B, II floor, Prashanthi Towers, Saradhi Studios Lane, Metro Pillar No 1463 Maithrivanam, Ameerpet, Hyderabad 500 038. Ph # +91 40 42700222, 8074358639. E-Mail Id: [email protected] URL: www.nextgensoftsolutions.com The neural viewpoint Q-Learning, Actor-Critic Convolutional Neural Networks History Tableau 10 Visualization Convolution and pooling ConvNets outside vision Introduction to Tableau Desktop Overview of Business Intelligence Training Neural Networks, part II Introduction to Tableau Desktop Update rules, ensembles, data Use and benefits of Tableau Desktop augmentation, transfer learning Tableau's Offerings Guide to Install Tableau Desktop Deep Learning Software 10.5 Caffe, Torch, Theano, TensorFlow, Keras, PyTorch, etc Tableau Desktop Interface Start Page CNN Architectures Data Source Page AlexNet, VGG, GoogLeNet, ResNet, Worksheet Interface etc Creating a Basic View Recurrent Neural Networks Show Me Shelves, cards , Marks and pills RNN, LSTM, GRU Language modelling Connecting Data Sources Image captioning, visual question Data Types answering Soft attention Data Roles Higher-level representations, image Visual Cues for Fields features Data Preparation Optimization, stochastic gradient Data Source optimization descent Joins Detection and Segmentation Cross Database Joins Semantic segmentation Data Blending Object detection Joining vs. Blending Instance segmentation Union Creating Data Extracts Visualizing and Understanding Writing Custom SQL Feature visualization and inversion Adversarial examples Organizing Data DeepDream and style transfer Filtering Data Sorting Data Generative Models Creating Combined Fields PixelRNN/CNN Creating Groups and Defining Variational Autoencoders Aliases Generative Adversarial Networks Working with Sets and Combined Sets Deep Reinforcement Learning Drilling and Hierarchy Policy gradients, hard attention Adding Grand Totals and Subtotals NextGen Soft Solutions Regd. Office # 202-B, II floor, Prashanthi Towers, Saradhi Studios Lane, Metro Pillar No 1463 Maithrivanam, Ameerpet, Hyderabad 500 038. Ph # +91 40 42700222, 8074358639. E-Mail Id: [email protected] URL: www.nextgensoftsolutions.com Changing Aggregation Functions Measure Distance Creating Bin WMS server Cross Data Source Filter Use a background image Custom Territories Formatting Data Effectively use Titles, Captions, and Fields in Tableau Tooltips Tableau generated fields Format Results with the Edit Axes Measure values and names Formatting your View When to use measure values and Formatting results with Labels and names Annotations Number of records Enabling Legends per Measure Generated latitude and longitude Special fields Calculations Date hierarchies Use Strings, Date, Logical, and Discrete and continuous date parts Arithmetic Calculations Custom dates Create Table Calculations Define a fiscal year Discover Ad-hoc Analytics Parameters Perform LOD Calculations Create a parameter Visualizations Explore Parameter Controls Creating Basic Charts such as Heat Using Parameters in Calculations Map, Tree Map, Bullet Chart, and so Using Parameters and Reference on Lines Creating Advanced Chart as Using Parameters with Filters Waterfall, Pareto, Gantt, Market Create Dashboards and Stories Basket analysis, and Mekko Chart Dashboard Interface Embed Views Build Interactive Dashboards Analysis using Desktop Explore Dashboard Actions Reference lines Best Practices for Creating Effective Reference bands Dashboards Reference distributions Story Interface Trend lines Creating Stories Statistical summary card Share Your Work Instant Analytics Tableau Online Forecasting Creating Tableau online account Clustering Administering Tableau Online Mapping Publish data source Modify locations within Tableau Publish Reports Import and manage custom Tableau Project geocoding Industry based Project Explore Geographic Search Perform Pan/Zoom, Lasso, and Radial Selection NextGen Soft Solutions Regd. Office # 202-B, II floor, Prashanthi Towers, Saradhi Studios Lane, Metro Pillar No 1463 Maithrivanam, Ameerpet, Hyderabad 500 038. Ph # +91 40 42700222, 8074358639. E-Mail Id: [email protected] URL: www.nextgensoftsolutions.com .
Recommended publications
  • Data Science Initiative 1
    Data Science Initiative 1 3 credits in data and computational science, 1 credit in societal implications and opportunities, Data Science Initiative 1 elective credit to be drawn from a wide range of focused applications or deeper theoretical exploration, and 1 credit capstone experience. Director We also offer an option as a 5-th Year Master's Program if you are an Sohini Ramachandran undergraduate at Brown. This allows you to substitute maximally 2 credits Direfctor of Graduate Studies with courses you have already taken. Samuel S. Watson Master of Science in Data Science Brown University's Data Science Initiative serves as a campus hub Semester I for research and education in data science. Engaging partners across DATA 1010 Probability, Statistics, and Machine 2 campus and beyond, the DSI 's mission is to facilitate and conduct both Learning domain-driven and fundamental research in data science, increase data DATA 1030 Hands-on Data Science 1 fluency and educate the next generation of data scientists, and ultimately DATA 1050 Data Engineering 1 explore the impact of the data revolution on culture, society, and social justice. We envision our role in the university and beyond as something to Semester II build over time, with the flexibility to meet the changing needs of Brown’s DATA 2020 Statistical Learning 1 students and research community. DATA 2040 Deep Learning and Special Topics in Data 1 The Master’s Program in Data Science (Master of Science, Science ScM) prepares students from a wide range of disciplinary backgrounds DATA 2080 Data and Society 1 for distinctive careers in data science.
    [Show full text]
  • Data Science: the Big Picture Data Science with R Exploratory Data Analysis with R Data Visualization with R (3-Part)
    Deep Learning: The Future of AI @MatthewRenze #DevoxxUK Human Cat Dog Car Job Postings for Machine Learning Source: Indeed.com Average Salary by Job Type (USA) $108,000 $101,000 $100,000 Source: Stack Overflow 2017 What is deep learning? What can it do for me? How do I get started? What is deep learning? Deep Learning Deep Learning Artificial intelligence Machine learning Neural network Multiple hidden layers Hierarchical representations Makes predictions with data Deep Learning Artificial intelligence Machine learning Neural network Multiple hidden layers Hierarchical representations Makes predictions with data Artificial Machine Deep Intelligence Learning Learning Artificial Intelligence Explicit programming Explicit programming Encoding domain knowledge Explicit programming Encoding domain knowledge Statistical patterns detection Machine Learning Machine Learning Artificial Machine Statistics Intelligence Learning 푓 푥 푓 푥 Prediction Data Function 푓 푥 Prediction Data Function Cat Dog 푓 푥 Prediction Data Function Cat Dog Is cat? 푓 푥 Prediction Data Function Cat Dog Is cat? Yes Artificial Neuron 푥1 푥2 푦 푥3 inputs neuron outputs Artificial Neuron Σ Artificial Neuron Σ Artificial Neuron 휔1 휔2 휔3 Artificial Neuron 휔0 Artificial Neuron 휔0 휔1 휔2 휔3 Artificial Neuron 푥 1 휔0 휔1 푥2 휑 휔2 Σ 푦 푚 휔3 푥3 푦푘 = 휑 ෍ 푤푘푗푥푗 푗=0 Artificial Neural Network Artificial Neural Network input hidden output Artificial Neural Network Forward propagation Artificial Neural Network Forward propagation Backward propagation Artificial Neural Network Artificial Neural Network
    [Show full text]
  • Machine Learning V1.1
    An Introduction to Machine Learning v1.1 E. J. Sagra Agenda ● Why is Machine Learning in the News again? ● ArtificiaI Intelligence vs Machine Learning vs Deep Learning ● Artificial Intelligence ● Machine Learning & Data Science ● Machine Learning ● Data ● Machine Learning - By The Steps ● Tasks that Machine Learning solves ○ Classification ○ Cluster Analysis ○ Regression ○ Ranking ○ Generation Agenda (cont...) ● Model Training ○ Supervised Learning ○ Unsupervised Learning ○ Reinforcement Learning ● Reinforcement Learning - Going Deeper ○ Simple Example ○ The Bellman Equation ○ Deterministic vs. Non-Deterministic Search ○ Markov Decision Process (MDP) ○ Living Penalty ● Machine Learning - Decision Trees ● Machine Learning - Augmented Random Search (ARS) Why is Machine Learning In The News Again? Processing capabilities General ● GPU’s etc have reached level where Machine ● Tools / Languages / Automation Learning / Deep Learning practical ● Need for Data Science no longer limited to ● Cloud computing allows even individuals the tech giants capability to create / train complex models on ● Education is behind in creating Data vast data sets Scientists ● Organizing data is hard. Organizations Memory (Hard Drive (now SSD) as well RAM) challenged ● Speed / capacity increasing ● High demand due to lack of qualified talent ● Cost decreasing Data ● Volume of Data ● Access to vast public data sets ArtificiaI Intelligence vs Machine Learning vs Deep Learning Artificial Intelligence is the all-encompassing concept that initially erupted Followed by Machine Learning that thrived later Finally Deep Learning is escalating the advances of Artificial Intelligence to another level Artificial Intelligence Artificial intelligence (AI) is perhaps the most vaguely understood field of data science. The main idea behind building AI is to use pattern recognition and machine learning to build an agent able to think and reason as humans do (or approach this ability).
    [Show full text]
  • Explainable Deep Learning Models in Medical Image Analysis
    Journal of Imaging Review Explainable Deep Learning Models in Medical Image Analysis Amitojdeep Singh 1,2,* , Sourya Sengupta 1,2 and Vasudevan Lakshminarayanan 1,2 1 Theoretical and Experimental Epistemology Laboratory, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada; [email protected] (S.S.); [email protected] (V.L.) 2 Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada * Correspondence: [email protected] Received: 28 May 2020; Accepted: 17 June 2020; Published: 20 June 2020 Abstract: Deep learning methods have been very effective for a variety of medical diagnostic tasks and have even outperformed human experts on some of those. However, the black-box nature of the algorithms has restricted their clinical use. Recent explainability studies aim to show the features that influence the decision of a model the most. The majority of literature reviews of this area have focused on taxonomy, ethics, and the need for explanations. A review of the current applications of explainable deep learning for different medical imaging tasks is presented here. The various approaches, challenges for clinical deployment, and the areas requiring further research are discussed here from a practical standpoint of a deep learning researcher designing a system for the clinical end-users. Keywords: explainability; explainable AI; XAI; deep learning; medical imaging; diagnosis 1. Introduction Computer-aided diagnostics (CAD) using artificial intelligence (AI) provides a promising way to make the diagnosis process more efficient and available to the masses. Deep learning is the leading artificial intelligence (AI) method for a wide range of tasks including medical imaging problems.
    [Show full text]
  • Dynamic Feature Scaling for Online Learning of Binary Classifiers
    Dynamic Feature Scaling for Online Learning of Binary Classifiers Danushka Bollegala University of Liverpool, Liverpool, United Kingdom May 30, 2017 Abstract Scaling feature values is an important step in numerous machine learning tasks. Different features can have different value ranges and some form of a feature scal- ing is often required in order to learn an accurate classifier. However, feature scaling is conducted as a preprocessing task prior to learning. This is problematic in an online setting because of two reasons. First, it might not be possible to accu- rately determine the value range of a feature at the initial stages of learning when we have observed only a handful of training instances. Second, the distribution of data can change over time, which render obsolete any feature scaling that we perform in a pre-processing step. We propose a simple but an effective method to dynamically scale features at train time, thereby quickly adapting to any changes in the data stream. We compare the proposed dynamic feature scaling method against more complex methods for estimating scaling parameters using several benchmark datasets for classification. Our proposed feature scaling method consistently out- performs more complex methods on all of the benchmark datasets and improves classification accuracy of a state-of-the-art online classification algorithm. 1 Introduction Machine learning algorithms require train and test instances to be represented using a set of features. For example, in supervised document classification [9], a document is often represented as a vector of its words and the value of a feature is set to the num- ber of times the word corresponding to the feature occurs in that document.
    [Show full text]
  • Capacity and Trainability in Recurrent Neural Networks
    Published as a conference paper at ICLR 2017 CAPACITY AND TRAINABILITY IN RECURRENT NEURAL NETWORKS Jasmine Collins,∗ Jascha Sohl-Dickstein & David Sussillo Google Brain Google Inc. Mountain View, CA 94043, USA {jlcollins, jaschasd, sussillo}@google.com ABSTRACT Two potential bottlenecks on the expressiveness of recurrent neural networks (RNNs) are their ability to store information about the task in their parameters, and to store information about the input history in their units. We show experimentally that all common RNN architectures achieve nearly the same per-task and per-unit capacity bounds with careful training, for a variety of tasks and stacking depths. They can store an amount of task information which is linear in the number of parameters, and is approximately 5 bits per parameter. They can additionally store approximately one real number from their input history per hidden unit. We further find that for several tasks it is the per-task parameter capacity bound that determines performance. These results suggest that many previous results comparing RNN architectures are driven primarily by differences in training effectiveness, rather than differences in capacity. Supporting this observation, we compare training difficulty for several architectures, and show that vanilla RNNs are far more difficult to train, yet have slightly higher capacity. Finally, we propose two novel RNN architectures, one of which is easier to train than the LSTM or GRU for deeply stacked architectures. 1 INTRODUCTION Research and application of recurrent neural networks (RNNs) have seen explosive growth over the last few years, (Martens & Sutskever, 2011; Graves et al., 2009), and RNNs have become the central component for some very successful model classes and application domains in deep learning (speech recognition (Amodei et al., 2015), seq2seq (Sutskever et al., 2014), neural machine translation (Bahdanau et al., 2014), the DRAW model (Gregor et al., 2015), educational applications (Piech et al., 2015), and scientific discovery (Mante et al., 2013)).
    [Show full text]
  • Reinforcement Learning Data Science Africa 2018 Abuja, Nigeria (12 Nov - 16 Nov 2018)
    Reinforcement Learning Data Science Africa 2018 Abuja, Nigeria (12 Nov - 16 Nov 2018) Chika Yinka-Banjo, PhD Ayorkor Korsah, PhD University of Lagos Ashesi University Nigeria Ghana Outline • Introduction to Machine learning • Reinforcement learning definitions • Example reinforcement learning problems • The Markov decision process • The optimal policy • Value function & Q-value function • Bellman Equation • Q-learning • Building a simple Q-learning agent (coding) • Recap • Where to go from here? Introduction to Machine learning • Artificial Intelligence (AI) is the study and design of Intelligent agents. • An Intelligent agent can perceive its environment through sensors and it can act on its environment through actuators. • E.g. Agent: Humanoid robot • Environment: Earth? • Sensors: Camera, tactile sensor etc. • Actuators: Motors, grippers etc. • Machine learning is a subfield of Artificial Intelligence Branches of AI Introduction to Machine learning • Machine learning techniques learn from data without being explicitly programmed to do so. • Machine learning models enable the agent to learn from its own experience by extracting useful information from feedback from its environment. • Three types of learning feedback: • Supervised learning • Unsupervised learning • Reinforcement learning Branches of Machine learning Supervised learning • Supervised learning: the machine learning model is trained on many labelled examples of input-output pairs. • Such that when presented with a novel input, the model can estimate accurately what the correct output should be. • Data(x, y): x is input data, y is label Supervised learning task in the form of classification • Goal: learn a function to map x -> y • Examples include; Classification, regression object detection, image captioning etc. Unsupervised learning • Unsupervised learning: here the model extract useful information from unlabeled and unstructured data.
    [Show full text]
  • Training and Testing of a Single-Layer LSTM Network for Near-Future Solar Forecasting
    applied sciences Conference Report Training and Testing of a Single-Layer LSTM Network for Near-Future Solar Forecasting Naylani Halpern-Wight 1,2,*,†, Maria Konstantinou 1, Alexandros G. Charalambides 1 and Angèle Reinders 2,3 1 Chemical Engineering Department, Cyprus University of Technology, Lemesos 3036, Cyprus; [email protected] (M.K.); [email protected] (A.G.C.) 2 Energy Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands; [email protected] 3 Department of Design, Production and Management, Faculty of Engineering Technology, University of Twente, 7522 NB Enschede, The Netherlands * Correspondence: [email protected] or [email protected] † Current address: Archiepiskopou Kyprianou 30, Limassol 3036, Cyprus. Received: 30 June 2020; Accepted: 31 July 2020; Published: 25 August 2020 Abstract: Increasing integration of renewable energy sources, like solar photovoltaic (PV), necessitates the development of power forecasting tools to predict power fluctuations caused by weather. With trustworthy and accurate solar power forecasting models, grid operators could easily determine when other dispatchable sources of backup power may be needed to account for fluctuations in PV power plants. Additionally, PV customers and designers would feel secure knowing how much energy to expect from their PV systems on an hourly, daily, monthly, or yearly basis. The PROGNOSIS project, based at the Cyprus University of Technology, is developing a tool for intra-hour solar irradiance forecasting. This article presents the design, training, and testing of a single-layer long-short-term-memory (LSTM) artificial neural network for intra-hour power forecasting of a single PV system in Cyprus.
    [Show full text]
  • An Artificial Neural Networks Primer with Financial Applications Examples in Financial Distress Predictions and Foreign Exchange Hybrid Trading System ’
    ‘An Artificial Neural Networks Primer with Financial Applications Examples in Financial Distress Predictions and Foreign Exchange Hybrid Trading System ’ by Dr Clarence N W Tan, PhD Bachelor of Science in Electrical Engineering Computers (1986), University of Southern California, Los Angeles, California, USA Master of Science in Industrial and Systems Engineering (1989), University of Southern California Los Angeles, California, USA Masters of Business Administration (1989) University of Southern California Los Angeles, California, USA Graduate Diploma in Applied Finance and Investment (1996) Securities Institute of Australia Diploma in Technical Analysis (1996) Australian Technical Analysts Association Doctor of Philosophy Bond University (1997) URL: http://w3.to/ctan/ E-mail: [email protected] School of Information Technology, Bond University, Gold Coast, QLD 4229, Australia Table of Contents Table of Contents 1. INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND ARTIFICIAL NEURAL NETWORKS ..........................................................................................................................................2 1.1 INTRODUCTION ...........................................................................................................................2 1.2 ARTIFICIAL INTELLIGENCE ..........................................................................................................2 1.3 ARTIFICIAL INTELLIGENCE IN FINANCE .......................................................................................4 1.3.1 Expert System
    [Show full text]
  • Lecture 23: Recurrent Neural Network [SCS4049-02] Machine Learning and Data Science
    Lecture 23: Recurrent Neural Network [SCS4049-02] Machine Learning and Data Science Seongsik Park ([email protected]) AI Department, Dongguk University Tentative schedule week topic date (수 / 월) 1 Machine Learning Introduction & Basic Mathematics 09.02 / 09.07 2 Python Practice I & Regression 09.09 / 09.14 3 AI Department Seminar I & Clustering I 09.16 / 09.21 4 Clustering II & Classification I 09.23 / 09.28 5 Classification II (추석) / 10.05 6 Python Practice II & Support Vector Machine I 10.07 / 10.12 7 Support Vector Machine II & Decision Tree and Ensemble Learning 10.14 / 10.19 8 Mid-Term Practice & Mid-Term Exam 10.21 / 10.26 9 휴강 & Dimensional Reduction I 10.28 / 11.02 10 Dimensional Reduction II & Neural networks and Back Propagation I 11.04 / 11.09 11 Neural networks and Back Propagation II & III 11.11 / 11.16 12 AI Department Seminar II & Convolutional Neural Network 11.18 / 11.23 13 Python Practice III & Recurrent Neural network 11.25 / 11.30 14 Model Optimization & Autoencoders 12.02 / 12.07 15 Final exam (휴강)/ 12.14 1/22 Introduction of recurrent neural network (RNN) • Rumelhart, et. al., Learning Internal Representations by Error Propagation (1986) • fx(1); :::; x(t−1); x(t); x(t+1); :::; x(N)g와 같은 sequence를 처리하는데 특화 • RNN 은 긴 시퀀스를 처리할 수 있으며, 길이가 변동적인 시퀀스도 처리 가능 • Parameter sharing: 전체 sequence에서 파라미터를 공유함 • CNN은 시퀀스를 다룰 수 없나? • 시간 축으로 1-D convolution ) 시간 지연 신경망도 가능하지만 깊이가 얕음 (shallow) • RNN은 깊은 구조(deep)가 가능함 • Data type • 일반적으로 xt 는 시계열 데이터 (time series, temporal data) • 여기서 t = 1; 2; :::; N은 time step 또는 sequence 내에서의 순서 • 전체 길이 N은 변동적 2/22 Recurrent Neurons Up to now we have mostly looked at feedforward neural networks, where the activa‐ tions flow only in one direction, from the input layer to the output layer (except for a few networks in Appendix E).
    [Show full text]
  • Budgeted Reinforcement Learning in Continuous State Space
    Budgeted Reinforcement Learning in Continuous State Space Nicolas Carrara∗ Edouard Leurent∗ SequeL team, INRIA Lille – Nord Europey SequeL team, INRIA Lille – Nord Europey [email protected] Renault Group, France [email protected] Romain Laroche Tanguy Urvoy Microsoft Research, Montreal, Canada Orange Labs, Lannion, France [email protected] [email protected] Odalric-Ambrym Maillard Olivier Pietquin SequeL team, INRIA Lille – Nord Europe Google Research - Brain Team [email protected] SequeL team, INRIA Lille – Nord Europey [email protected] Abstract A Budgeted Markov Decision Process (BMDP) is an extension of a Markov Decision Process to critical applications requiring safety constraints. It relies on a notion of risk implemented in the shape of a cost signal constrained to lie below an – adjustable – threshold. So far, BMDPs could only be solved in the case of finite state spaces with known dynamics. This work extends the state-of-the-art to continuous spaces environments and unknown dynamics. We show that the solution to a BMDP is a fixed point of a novel Budgeted Bellman Optimality operator. This observation allows us to introduce natural extensions of Deep Reinforcement Learning algorithms to address large-scale BMDPs. We validate our approach on two simulated applications: spoken dialogue and autonomous driving3. 1 Introduction Reinforcement Learning (RL) is a general framework for decision-making under uncertainty. It frames the learning objective as the optimal control of a Markov Decision Process (S; A; P; Rr; γ) S×A with measurable state space S, discrete actions A, unknown rewards Rr 2 R , and unknown dynamics P 2 M(S)S×A , where M(X ) denotes the probability measures over a set X .
    [Show full text]
  • Training Dnns: Tricks
    Training DNNs: Tricks Ju Sun Computer Science & Engineering University of Minnesota, Twin Cities March 5, 2020 1 / 33 Recap: last lecture Training DNNs m 1 X min ` (yi; DNNW (xi)) +Ω( W ) W m i=1 { What methods? Mini-batch stochastic optimization due to large m * SGD (with momentum), Adagrad, RMSprop, Adam * diminishing LR (1/t, exp delay, staircase delay) { Where to start? * Xavier init., Kaiming init., orthogonal init. { When to stop? * early stopping: stop when validation error doesn't improve This lecture: additional tricks/heuristics that improve { convergence speed { task-specific (e.g., classification, regression, generation) performance 2 / 33 Outline Data Normalization Regularization Hyperparameter search, data augmentation Suggested reading 3 / 33 Why scaling matters? : 1 Pm | Consider a ML objective: minw f (w) = m i=1 ` (w xi; yi), e.g., 1 Pm | 2 { Least-squares (LS): minw m i=1 kyi − w xik2 h i 1 Pm | w|xi { Logistic regression: minw − m i=1 yiw xi − log 1 + e 1 Pm | 2 { Shallow NN prediction: minw m i=1 kyi − σ (w xi)k2 1 Pm 0 | Gradient: rwf = m i=1 ` (w xi; yi) xi. { What happens when coordinates (i.e., features) of xi have different orders of magnitude? Partial derivatives have different orders of magnitudes =) slow convergence of vanilla GD (recall why adaptive grad methods) 2 1 Pm 00 | | Hessian: rwf = m i=1 ` (w xi; yi) xixi . | { Suppose the off-diagonal elements of xixi are relatively small (e.g., when features are \independent"). { What happens when coordinates (i.e., features) of xi have different orders 2 of magnitude? Conditioning of rwf is bad, i.e., f is elongated 4 / 33 Fix the scaling: first idea Normalization: make each feature zero-mean and unit variance, i.e., make each row of X = [x1;:::; xm] zero-mean and unit variance, i.e.
    [Show full text]