Sargramostim

Total Page:16

File Type:pdf, Size:1020Kb

Sargramostim Sargramostim Brand names Leukine; yeast derived (Saccharomyces cerevisiae) recombinant human granulocyte- macrophage colony-stimulating factor (rhGM-CSF) Medication error Look-alike, sound-alike drug names potential USP reports that sargramostim has been confused with filgrastim and Sandostatin.(1) Contraindications Contraindications: Patients with ≥10% leukemic myeloid blasts in bone marrow or and warnings peripheral blood; patients with known hypersensitivity to GM-CSF, products derived from yeast, or any product component; 24 hours before or after chemotherapy or radiotherapy treatment.(2) Warnings: Allergic reactions have been reported. Should this occur, discontinue the infu- sion and institute appropriate therapy.(2) Neonates should not receive liquid or lyophilized sargramostim reconstituted with BW due to the presence of benzyl alcohol.(2) Infusion-related A first-dose response that includes respiratory distress, hypotension, tachycardia, and cautions flushing is common with infusion of the first dose of a cycle and usually resolves with treatment.(2) This does not recur with subsequent doses in the cycle.(2) Dosage The products derived from Escherichia coli and Chinese hamster ovaries are not available in the United States. Some of the studies cited evaluated these products, which may have different potencies, specific activities, and adverse effects. Neutropenia Postchemotherapy neutropenia: 250 mcg/m2/day IV over 2 hours for up to 14 days(2-4) or 5 mcg/kg/day IV (bacteria [Escherichia coli] derived) over 4 hours for up to 21 days.(5) Alternatively, 5 mcg/kg/day sub-Q for up to 21 days following chemo- therapy or irradiation.(6,7) (See the Comments section.) Bone marrow transplantation: 250 mcg/m2/day IV over 2 hours or sub-Q begin- ning 2–4 hours after transplant and not earlier than 24 hours after chemotherapy or after radiation until absolute neutrophil count (ANC) >1500 cells/mm3 for 3 consecu- tive or for 21 days.(2) Alternatively, 250 mcg/m2/day IV over 4 hours beginning after transplant for 21 days.(8) Premature and term neonates (reconstitute lyophilized product in SW to avoid benzyl alcohol) Neutropenia (≤31 weeks gestational age): 10 mcg/kg/day sub-Q × 5 days(9,10) Aplastic anemia: Nine children (0.7–19 years of age), received induction phase continu- ous infusion doses of either 8 mcg/kg/day increased after 14 days to 16 mcg/kg/day for up to 14 more days if the hematologic response was inadequate or doses of 16 mcg/kg/ day increased to 32 mcg/kg/day (Chinese hamster ovary cell derived).(11) After the induc- tion phase, administration was changed to sub-Q dosing.(11) Eighteen children received a standard immunosuppressive regimen for 5 days and then GM-CSF at 250 mcg/m2/day sub-Q was started.(12) Mobilization of peripheral blood progenitor cells (PBPC): 250 mcg/m2/day IV over 24 hours or sub-Q once daily, continued through the period of PBPC cell collection(2) Dosage adjustment None. Patients with existing renal or hepatic impairment should have renal function or in organ dysfunction liver function monitored at least every other week.(2) Maximum dosage Not established. Some older reports have used 32 mcg/kg(12) or 1500 mcg/m2.(3) Adverse effects are more common at doses higher than 250 mg/m2/day. 776 Sargramostim Additives The liquid product contains 1.1% benzyl alcohol, 40 mg/mL mannitol, 10 mg/mL sucrose, and 1.2 mg/mL tromethamine.(2) After reconstitution with BW or SW, each mL of the lyophilized product contains 40 mg mannitol, 10 mg sucrose, and 1.2 mg tromethamine.(2) BW contains benzyl alcohol. See Appendix C for information about potential benzyl alcohol toxicity in neonates. Suitable diluents NS(2) Maximum 250 (reconstituted lyophilized powder) or 500 mcg/mL (liquid)(2) concentration Preparation and An in-line membrane filter should not be used when sargramostim is given IV.(2) delivery Stability: The lyophilized product reconstituted with SW must be used within 6 hours of reconstitution because it contains no preservatives.(2) If the final concentration will be <10 mcg/mL, albumin should be added to the NS diluent to achieve a final albumin concentration of 0.1% prior to the addition of sargramostim to prevent adsorption to the drug delivery system.(2) Add 1 mg albumin per mL of NS.(2) Compatibility: See Appendix D for PN compatibility information. IV push Not indicated(2) Intermittent infusion Usually infused over 2–4 hours(2-4) Continuous infusion Not indicated Other routes of The liquid product (500 mcg/mL) can be given sub-Q undiluted.(2) administration The lyophilized product is reconstituted to 250 mcg/mL and given sub-Q without further dilution.(2) Not for IM administration. Comments The use of colony-stimulating factor decreased febrile neutropenia, length of hospitaliza- tion, and number of infectious episodes but did not shorten the duration of neutropenia nor lessen treatment delays in children with acute lymphocytic leukemia.(13) Monitoring: CBC with differential is recommended twice a week during therapy to evalu- ate for leukocytosis. If the ANC >20,000 cells/mm3, or the platelet count >500,000 cells/ mm3, the dose should be decreased by 50% or held.(2) Adverse effects: Children receiving multiple courses of sub-Q GM-CSF have experienced acute toxicities at various times during their dosing including fever, tachycardia, hypoten- sion, and rash requiring discontinuation.(6) Sargramostim has the potential to activate the coagulation system in pediatric patients receiving bone marrow or stem cell transplant.(14) The severity of adverse reactions appears to be less with the yeast-derived product than those derived in Chinese hamster ovary cells or bacteria.(1) Pericardial and pleural effusions, myalgias, and volume overload are dose-limiting side effects in adults.(2) Although adverse effects have been reported in children, they are usually mild(4,5) and unrelated to dose.(3) However, cardiopulmonary symptoms occurred in a child receiving continuous infusion of 24 mcg/kg/day(10) and a deep vein thrombosis occurred in a child being treated for myelosuppressive chemotherapy, who inadvertently received 1500 mcg/m2/day for 7 days.(3) 777.
Recommended publications
  • Therapeutic Class Overview Colony Stimulating Factors
    Therapeutic Class Overview Colony Stimulating Factors Therapeutic Class Overview/Summary: This review will focus on the granulocyte colony stimulating factors (G-CSFs) and granulocyte- macrophage colony stimulating factors (GM-CSFs).1-5 Colony-stimulating factors (CSFs) fall under the naturally occurring glycoprotein cytokines, one of the main groups of immunomodulators.6 In general, these proteins are vital to the proliferation and differentiation of hematopoietic progenitor cells.6-8 The G- CSFs commercially available in the United States include pegfilgrastim (Neulasta®), filgrastim (Neupogen®), filgrastim-sndz (Zarxio®), and tbo-filgrastim (Granix®). While filgrastim-sndz and tbo- filgrastim are the same recombinant human G-CSF as filgrastim, only filgrastim-sndz is considered a biosimilar drug as it was approved through the biosimilar pathway. At the time tbo-filgrastim was approved, a regulatory pathway for biosimilar drugs had not yet been established in the United States and tbo-filgrastim was filed under its own Biologic License Application.9 Only one GM-CSF is currently available, sargramostim (Leukine). These agents are Food and Drug Administration (FDA)-approved for a variety of conditions relating to neutropenia or for the collection of hematopoietic progenitor cells for collection by leukapheresis.1-5 Due to the pathway taken, tbo-filgrastim does not share all of the same indications as filgrastim and these two products are not interchangeable. It is important to note that although filgrastim-sndz is a biosimilar product, and it was approved with all the same indications as filgrastim at the time, filgrastim has since received FDA-approval for an additional indication that filgrastim-sndz does not have, to increase survival in patients with acute exposure to myelosuppressive doses of radiation.1-3A complete list of indications for each agent can be found in Table 1.
    [Show full text]
  • Sargramostim (Leukine®)
    Policy Medical Policy Manual Approved Revision: Do Not Implement until 8/31/21 Sargramostim (Leukine®) NDC CODE(S) 71837-5843-XX LEUKINE 250MCG Solution Reconstituted (PARTNER THERAPEUTICS) DESCRIPTION Sargramostim is a recombinant human granulocyte-macrophage colony stimulating factor (rGM-CSF) produced by recombinant DNA technology in a yeast (S. cerevisiae) expression system. Like endogenous GM-CSF, rGM-CSF is a hematopoietic growth factor which stimulates proliferation and differentiation of hematopoietic progenitor cells in the granulocyte-macrophage pathways which include neutrophils, monocytes/macrophages and myeloid-derived dendritic cells. It is also capable of activating mature granulocytes and macrophages. Various cellular responses such as division, maturation and activation are induced by GM-CSF binding to specific receptors expressed on the cell surface of target cells. POLICY Sargramostim for the treatment of the following is considered medically necessary: o Acute myelogenous leukemia following induction or consolidation chemotherapy o Bone Marrow Transplantation (BMT) failure or Engraftment Delay o Individuals acutely exposed to myelosuppressive doses of radiation (Hematopoietic Subsyndrome of Acute Radiation Syndrome [H-ARS]) o Myeloid reconstitution after autologous or allogeneic bone marrow transplant (BMT) o Peripheral Blood Progenitor Cell (PBPC) mobilization and transplant Sargramostim for the treatment of chemotherapy-induced febrile neutropenia is considered medically necessary if the medical appropriateness
    [Show full text]
  • Regenerative Mechanisms and Novel Therapeutic Approaches
    brain sciences Review Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches Rashad Hussain 1,*, Hira Zubair 2, Sarah Pursell 1 and Muhammad Shahab 2,* 1 Center for Translational Neuromedicine, University of Rochester, NY 14642, USA; [email protected] 2 Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; [email protected] * Correspondence: [email protected] (R.H.); [email protected] (M.S.); Tel.: +1-585-276-6390 (R.H.); +92-51-9064-3014 (M.S.) Received: 13 July 2018; Accepted: 12 September 2018; Published: 15 September 2018 Abstract: Regeneration refers to regrowth of tissue in the central nervous system. It includes generation of new neurons, glia, myelin, and synapses, as well as the regaining of essential functions: sensory, motor, emotional and cognitive abilities. Unfortunately, regeneration within the nervous system is very slow compared to other body systems. This relative slowness is attributed to increased vulnerability to irreversible cellular insults and the loss of function due to the very long lifespan of neurons, the stretch of cells and cytoplasm over several dozens of inches throughout the body, insufficiency of the tissue-level waste removal system, and minimal neural cell proliferation/self-renewal capacity. In this context, the current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches. Keywords: neuroregeneration; mechanisms; therapeutics; neurogenesis; intra-cellular signaling 1. Introduction Regeneration processes within the nervous system are referred to as neuroregeneration. It includes, but is not limited to, the generation of new neurons, axons, glia, and synapses. It was not considered possible until a couple of decades ago, when the discovery of neural precursor cells in the sub-ventricular zone (SVZ) and other regions shattered the dogma [1–4].
    [Show full text]
  • Sargramostim (Leukine) Reference Number: CP.PHAR.295 Effective Date: 12/16 Coding Implications Last Review Date: 10/16 Revision Log
    Clinical Policy: Sargramostim (Leukine) Reference Number: CP.PHAR.295 Effective Date: 12/16 Coding Implications Last Review Date: 10/16 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description The intent of the criteria is to ensure that patients follow selection elements established by Centene® clinical policy for sargramostim (Leukine® injection, for subcutaneous or intravenous use). Policy/Criteria It is the policy of health plans affiliated with Centene Corporation® that Leukine is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Acute Myeloid Leukemia (must meet all): 1. Leukine is prescribed for use following induction therapy for acute myeloid leukemia (AML); 2. Member has none of the following contraindications: a. Excessive leukemic myeloid blasts in the bone marrow/peripheral blood (≥ 10%); b. Known hypersensitivity to granulocyte-macrophage colony stimulating factor (GM-CSF), yeast-derived products or any component of the product; c. Concomitant use with chemotherapy/radiotherapy. Approval duration: 6 months B. Peripheral Blood Progenitor Cell Collection and Transplantation (must meet all): 1. Leukine is prescribed for either of the following: a. Mobilization of autologous hematopoietic progenitor cells into the peripheral blood for collection by leukapheresis in anticipation of transplantation after myeloablative chemotherapy; b. Following myeloablative chemotherapy and transplantation of autologous hematopoietic progenitor cells; 2. Member has none of the following contraindications: a. Excessive leukemic myeloid blasts in the bone marrow/ peripheral blood (≥ 10%); b. Known hypersensitivity to GM-CSF, yeast-derived products or any component of the product; c. Concomitant use with chemotherapy/radiotherapy. Approval duration: 6 months C.
    [Show full text]
  • Autoimmune Pulmonary Alveolar Proteinosis in an Adolescent Successfully Treated with Inhaled Rhgm-CSF
    Respiratory Medicine Case Reports 23 (2018) 167–169 Contents lists available at ScienceDirect Respiratory Medicine Case Reports journal homepage: www.elsevier.com/locate/rmcr Case report Autoimmune pulmonary alveolar proteinosis in an adolescent successfully T treated with inhaled rhGM-CSF (molgramostim) ∗ Marta E. Gajewskaa, , Sajitha S. Sritharana, Eric Santoni-Rugiub, Elisabeth M. Bendstrupa a Department of Respiratory Diseases and Allergology, Aarhus University Hospital, Denmark b Department of Pathology, Copenhagen University Hospital, Denmark ARTICLE INFO ABSTRACT Keywords: Autoimmune pulmonary alveolar proteinosis (aPAP) is a rare parenchymal lung disease characterized by ac- Pulmonary alveolar proteinosis cumulation of surfactant in the airways with high levels of granulocyte-macrophage colony stimulating factor Granulocyte-macrophage colony-stimulating (GM-CSF) antibodies in blood. Disease leads to hypoxemic respiratory failure. Whole lung lavage (WLL) is factor considered the first line therapy, but procedure can be quite demanding, specifically for children. Recently GM-SCF alternative treatment options with inhaled GM-CSF have been described but no consensus about the standard Molgramostim treatment exists. We here describe a unique case of a 14-year-old patient who was successfully treated with WLL Inhalation therapy and subsequent inhalations with molgramostim – new recombinant human GM-CSF (rhGM-CSF). 1. Introduction eosinophilic on hematoxylin-and eosin staining (HE) and positive with the periodic acid-Schiff stain and diastase-resistant (PAS + D), which is Pulmonary alveolar proteinosis (PAP) is a rare parenchymal lung considered characteristic for PAP (Fig. 2). Blood assays showed ele- disease characterized by accumulation of surfactant in the airways that vated high levels of GM-CSF antibodies. There was no suspicion of leads to hypoxemic respiratory failure [1–3].
    [Show full text]
  • Leukine® (Sargramostim)
    Leukine® (sargramostim) (Subcutaneous/Intravenous) Document Number: MODA-0237 Last Review Date: 04/06/2021 Date of Origin: 10/17/2008 Dates Reviewed: 06/2009, 12/2009, 06/2010, 07/2010, 09/2010, 12/2010, 03/2011, 06/2011, 09/2011, 12/2011, 03/2012, 06/2012, 09/2012, 12/2012, 03/2013, 06/2013, 09/2013, 12/2013, 03/2014, 06/2014, 09/2014, 12/2014, 03/2015, 05/2015, 08/2015, 11/2015, 02/2016, 05/2016, 08/2016, 11/2016, 02/2017, 05/2017, 08/2017, 11/2017, 02/2018, 05/2018, 04/2019, 04/2020, 04/2021 I. Length of Authorization High Risk Neuroblastoma: − When used in combination with dinutuximab, coverage will be provided for five months and may not be renewed. − When used in combination with naxitamab, coverage will be provided for six months and may be renewed. All other indications: Coverage will be provided for four months and may be renewed. II. Dosing Limits A. Quantity Limit (max daily dose) [NDC Unit]: − Leukine 250 mcg vial: 28 vials per 14 days − Leukine 500 mcg vial: 14 vials per 14 days B. Max Units (per dose and over time) [HCPCS Unit]: • 15 billable units per day (acute radiation syndrome) • 10 billable units per day on days 1 through 14 of cycles 1, 3 and 5 (cycle length is 24 days) for a maximum of 5 cycles only (high-risk neuroblastoma in combination with dinutuximab) • 10 billable units per day for 10 days of each 28-day cycle for six cycles followed by subsequent cycles every 8 weeks thereafter (high-risk neuroblastoma in combination with naxitamab) • 10 billable units per day (all other indications) 1-11 III.
    [Show full text]
  • Colony Stimulating Factors Medical Policy
    Medical benefit drug policies are a source for BCBSM and BCN medical policy information only. These documents are not to be used to determine benefits or reimbursement. Please reference the appropriate certificate or contract for benefit information. This policy may be updated and therefore subject to change. Effective Date: 08/12/2021 Colony Stimulating Factors (CSFs) Fulphila™ (pegfilgrastim-jmbd) Granix® (tbo-filgrastim) Leukine® (sargramostim) Neulasta® (pegfilgrastim) Neulasta On-Pro® (pegfilgrastim) Neupogen® (filgrastim) Nivestym™ (filgrastim-aafi) Nyvepria™ (pegfilgrastim-apgf) Udenyca™ (pegfilgrastim-cbqv) Zarxio® (filgrastim-sndz) ZiextenzoTM (pegfilgrastim-bmez) FDA approval: Various HCPCS: Fulphila – J3490, Granix – J1447, Leukine – J2820, Neupogen – J1442, Neulasta – J2505, Nivestym J3490, Nyvepria - Q5122, Udenyca – Q5111, Zarxio – J3490, Zietxenzo – Q5120, C9058 Benefit: Both Policy: Requests must be supported by submission of chart notes and patient specific documentation. A. Coverage of the requested drug is provided for FDA approved indications and when all the following are met: a. Primary prophylaxis of chemotherapy-induced febrile neutropenia is considered clinically appropriate when ALL of the following are met: i. The individual has a non-myeloid malignancy ii. Chemotherapy intent must include one of the following: 1. Curative intent (adjuvant treatment for early stage disease, for example) OR 2. Intent is survival prolongation, and the use of a different regimen or dose reduction would reduce the likelihood of
    [Show full text]
  • Leukine (Sargramostim)
    US License 1752 Leukine (sargramostim) A Recombinant GM-CSF–Yeast-Expressed Rx only DESCRIPTION ® LEUKINE (sargramostim) is a recombinant human granulocyte-macrophage colony stimulating factor (rhu GM-CSF) produced by recombinant DNA technology in a yeast (S. cerevisiae) expression system. GM-CSF is a hematopoietic growth factor which stimulates proliferation and differentiation of hematopoietic progenitor cells. LEUKINE is a glycoprotein of 127 amino acids characterized by three primary molecular species having molecular masses of 19,500, 16,800 and 15,500 daltons. The amino acid sequence of LEUKINE differs from the natural human GM-CSF by a substitution of leucine at position 23, and the carbohydrate moiety may be different from the native protein. Sargramostim has been selected as the proper name for yeast-derived rhu GM-CSF. The liquid LEUKINE presentation is formulated as a sterile, preserved (1.1% benzyl alcohol), injectable solution (500 mcg/mL) in a vial. Lyophilized LEUKINE is a sterile, white, preservative-free powder (250 mcg) that requires reconstitution with 1 mL Sterile Water for Injection, USP or 1 mL Bacteriostatic Water for Injection, USP. Liquid LEUKINE has a pH range of 6.7 - 7.7 and lyophilized LEUKINE has a pH range of 7.1 ­ 7.7. Liquid LEUKINE and reconstituted lyophilized LEUKINE are clear, colorless liquids suitable for subcutaneous injection (SC) or intravenous infusion (IV). Liquid LEUKINE 6 contains 500 mcg (2.8 x 10 IU/mL) sargramostim and 1.1% benzyl alcohol in a 1 mL 6 solution. The vial of lyophilized LEUKINE contains 250 mcg (1.4 x 10 IU/vial) sargramostim.
    [Show full text]
  • New Therapeutic Options in the Medical Management of Advanced Melanoma Jose Lutzky, MD, FACP
    New Therapeutic Options in the Medical Management of Advanced Melanoma Jose Lutzky, MD, FACP During the past 3 decades, the incidence, morbidity, and mortality of malignant melanoma have increased dramatically. Advanced melanoma has remained a disease that is for the most part incurable and has challenged all therapeutic efforts to make a dent in its natural history. Recent advances in the understanding of the molecular alterations in melanoma and in the immunologic mechanisms playing a role in this malignancy have brought hope that significant progress can be achieved, as evidenced by early encouraging clinical data. This review will summarize these recent developments and their impact on current clinical practice. Semin Cutan Med Surg 29:249-257 © 2010 Elsevier Inc. All rights reserved. lthough current epidemiologic data suggest decreasing have demonstrated initial positive results, triggering renewed Aincidence trends for a variety of malignancies, the inci- excitement to pursue clinical investigations in melanoma. dence and mortality of malignant melanoma appear to be This concise review will focus on some of these new para- increasing. For 2009 the American Cancer Society estimated digms and their current application in the treatment of mel- 68,720 new cases in the United States, with 8650 deaths.1 anoma. Although surgery remains the primary treatment of Unless detected at an early stage in patients, melanoma re- early melanoma and an important modality in the manage- mains difficult to treat effectively. Approved treatment for ment of advanced melanoma, the many controversies in sur- patients with locally advanced disease and at high-risk of gical management are out of the scope of this article, which recurrence is toxic and of limited benefit.2,3 The treatment of will concentrate on nonsurgical treatment of advanced dis- distant metastatic disease has been similarly frustrating, with ease.
    [Show full text]
  • Colony Stimulating Factors
    © Copyright 2012 Oregon State University. All Rights Reserved Drug Use Research & Management Program Oregon State University, 500 Summer Street NE, E35 Salem, Oregon 97301-1079 Phone 503-947-5220 | Fax 503-947-2596 Drug Class Literature Scan: Colony Stimulating Factors Date of Review: June 2021 Date of Last Review: January 2019 Literature Search: 09/01/18 – 03/25/21 Current Status of PDL Class: See Appendix 1. Conclusions: There is limited new evidence available for evaluation of this class. No high-quality systematic reviews met inclusion criteria for review, many of which include biosimilar products not approved for use in the United States. One guideline was included in this review. Evidence supports previous recommendations with no compelling new evidence of efficacy or harms between granulocyte-colony stimulating factors (G-CSF), including between reference products and biosimilar formulations. Prophylaxis of febrile neutropenia (FN): evidence supports use with no differentiation between filgrastim, filgrastim biosimilars, tbo-filgrastim, pegfilgrastim, or pegfilgrastim biosimilars.1 Treatment of FN: evidence supports use of filgrastim, filgrastim biosimilars, tbo-filgrastim, and sargramostim for FN due to chemotherapy; all reference and biosimilar G-CSF products and sargramostim (a granulocyte macrophage colony stimulating factor [GM-CSF]) are recommended for hematopoietic acute radiation syndrome (H-ARS).1 (Note: Biosimilar products and tbo-filgrastim do not carry H-ARS as an official Food and Drug Administration (FDA) indication [Appendix 6]). Mobilization of Progenitor Cells: o Autologous Setting: evidence supports filgrastim, filgrastim biosimilars, and tbo-filgrastim; there is a lower rated recommendation for concurrent filgrastim or filgrastim biosimilars in combination with sargramostim. o Allogeneic Donors: evidence supports filgrastim and filgrastim biosimilars as the preferred choice, with tbo-filgrastim as an additional option.
    [Show full text]
  • Mobilization of Peripheral Blood Stem Cells Following Myelosuppressive Chemotherapy: a Randomized Comparison of Filgrastim, Sarg
    Bone Marrow Transplantation (2001) 27, Suppl. 2, S23–S29 2001 Nature Publishing Group All rights reserved 0268–3369/01 $15.00 www.nature.com/bmt Mobilization of peripheral blood stem cells following myelosuppressive chemotherapy: a randomized comparison of filgrastim, sargramostim, or sequential sargramostim and filgrastim CH Weaver, KA Schulman and CD Buckner CancerConsultants.com Inc., Ketchum, ID; and Clinical Economics Research Unit, Duke University Medical Center, Durham, NC, USA Summary: the sequential regimen received higher numbers of CD34 cells and had faster platelet recovery with fewer Myelosuppressive chemotherapy is frequently used for patients requiring platelet transfusions than patients mobilization of autologous CD34+ progenitor cells into receiving peripheral blood stem cells mobilized by GM- the peripheral blood for subsequent collection and sup- CSF. In summary, G-CSF alone is superior to GM-CSF port of high-dose chemotherapy. The administration of alone for the mobilization of CD34+ cells and reduction myelosuppressive chemotherapy is typically followed by of toxicities following myelosuppressive chemotherapy. a myeloid growth factor and is associated with variable An economic analysis evaluating the cost-effectiveness CD34 cell yields and morbidity. The two most com- of these three effective schedules is ongoing at the time monly used myeloid growth factors for facilitation of of this writing. Bone Marrow Transplantation (2001) 27, CD34 cell harvests are granulocyte colony-stimulating Suppl. 2, S23–S29. factor (G-CSF) and granulocyte–macrophage colony- Keywords: filgrastim; sargramostim; stem cell mobiliz- stimulating factor (GM-CSF). We performed a ran- ation domized phase III clinical trial comparing G-CSF, GM- CSF, and sequential administration of GM-CSF and G- CSF following administration of myelosuppressive chemotherapy.
    [Show full text]
  • Pharmacology of Recombinant Or Genetically Engineered Drugs
    Pharmacology Pharmacology of Recombinant or Genetically Engineered Drugs Kamal Kishore, Pawan Krishan1 Departments of Pharmacy, M.J.P. Rohilkhand University, Bareilly-243 006, Uttar Pradesh, 1Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala-147 002, Punjab, India Address for correspondence: Dr. Kamal Kishore; E-mail: [email protected] ABSTRACT Recombinant technology or genetic engineering is a modern method used for the synthesis of therapeutic agents. The central theme of recombinant technology is the process of “gene cloning” which consists of the production of a deÞ ned fragment of DNA and its propagation and ampliÞ cation in a suitable host cell. Drugs developed by recombinant technology or genetic engineering are known as biologics, biopharmaceuticals, recombinant DNA expressed products, bioengineered, or genetically engineered drugs. A current list of various products developed by recombinant technology includes erythropoietin, coagulation modulators, enzymes, hormones, interferons, interleukins, granulocyte colony-stimulating factors, anti-rheumatoid drugs, and various other agents like TNF, becaplermin, hepatitis-B vaccine, antibodies etc. This article provides general as well as recent pharmacological information on different aspects of recombinant drugs that may be useful for their better understanding by users and health care professionals. Key words: Biologics, erythropoietin, interferon, interleukins, insulin, thrombolytic enzymes DOI: 10.4103/0975-1483.55747 INTRODUCTION fragment of DNA and its propagation and ampliÞ cation in a suitable host cell. Recombinant technology was only Drugs developed using living organisms with the help of possible after the discovery of restriction endonucleases, biotechnology or genetic engineering are known as biologics, the enzymes used as cutters for a desired segment[3] of biopharmaceuticals, recombinant DNA expressed genes known as recognition sequences.
    [Show full text]