1953 1960 1965 1970 1975 1980 1985 1990 1995 2000 2003 2006 2009 2011

Total Page:16

File Type:pdf, Size:1020Kb

1953 1960 1965 1970 1975 1980 1985 1990 1995 2000 2003 2006 2009 2011 Die Entwicklung der Programmiersprachen www.oreilly.de 1953 1960 1965 1970 1975 1980 1985 1990 1995 2000 2003 2006 2009 2011 Forth Factor Speedcoding 1968 2003 1953 PostScript, 1982 LOGO ObjectLOGO Tcl Tcl/Tk 8.5.7. 1968 1986 1988 2009 FORTRAN 1954 Auswahl, Überarbeitung und Aktualisie- Newsqueak, 1994 rung von Sven Riedel, basierend auf Éric Lévénez: www.levenez.com/lang/ CSP Rust A, 1988 A+, 1992 2006 1978 Limbo Kein Anspruch auf Vollständigkeit. 1995 Wir freuen uns über Feedback und Ease, 1990 Hinweise an [email protected] occam 1983 Alef, 1994 Fortress 2006 Prolog Prolog III Prolog IV Chapel 1970 1984 1997 2009 Erlang, 1986 Sharp APL J K 1984 1990 1996 JOSS TELCOMP MUMPS MUMPS (FIPS) M Open M 1964 1965 1966 1986 1994 1995 ALP Delphi Delphi 2010 1960 1995 2009 B Python 3 Python 3.2 ABC, 1987 1981 2008 2011 Sequentielle Python Python 2.7.1 Formelübersetzung JOYCE, 1987 1991 2010 1955 Object Pascal Cobra 1985 2006 B-O Flow-Matic COBOL Groovy 1957 1958 1959 2007 Object Rexx, 1988 NetRexx, 1996 REXX Boo Clay 1979 2003 2010 Pascal 1970 Oberon Joy Cat Go 1987 2001 2006 2009 PL/M Modula Modula 2 Modula 3 1972 1975 1978 2003 Ada Ada 95 Vala OOC 1979 1995 2007 2009 PL/I Concurrent C Split-C C# 1964 1984 1990 JScript 2000 1996 CPL BCPL B C 1963 1967 1969 1971 Objective-C D Objective-C 2.1 1983 2001 2009 Cmm LiveScript JavaScript 1992 1995 1995 JOVIAL C with Classes C++ C++98 ANSI/ISO C++1x 1959 1980 1983 1998 2011 ECMA CORAL 64 CLU Script 1964 1974 1997 Oak Java 1 Java 1.3 Java 2 (v5.0) Java 6 Java 7 1991 1995 2000 2004 2006 2011 Simula 1 1964 Reia 2008 IT Mesa Lua Unified 1955 1977 1993 Parallel C Mirah 2005 IAL ALGOL 58 Cedar 2008 1958 1958 1983 Pizza 2001 Smalltalk Ruby Ruby 1971 1993 1.9.2 2010 GOGOL Sail Mainsail 1964 1968 1975 Processing ISWIM awk nawk 2001 Agena 1966 1978 1985 2009 BASIC KRC Self 1964 1981 1987 IPL I IPL II csh Windows Powershell 1954 1956 1978 2006 LISP Eiffel ECMA Eiffel 1958 1986 2006 SASL PHP/FI PHP 5.3 1976 1995 2009 SNOBOL Miranda Slather Fantom 1962 1985 1991 2007 sh JudoScript IO 1969 2001 2008 Frink Nice Slate loke Wie alles begann 2001 2003 2004 2008 Scala Bit C Perl 6 1837 1943 1949 1951 2004 2006 (Rakudo Star) 2010 Perl 1.000 Perl 5.11.0 1987 2009 Klammerausdrücke 1951 sed CLOS Dylan Objective Caml O’Caml 3.11.1 Plankalkül 1973 1989 1992 1996 2009 1942 Visual Basic 1.0 VB.NET (Visual Basic 7.0) Superplan 1991 2001 1949 Analytical Engine F# Alef++ Order Code 2005 2009 1837 CPC Coding Scheme 1948 Sequentielle Böhm Coding Scheme Scheme IEEE System Formelübersetzung ENIAC 1975 1990 1951 1955 Coding ENIAC Shortcode System A-Ø B-O Quark 1946 1943 1952 1957 2004 Clean Clojure 1988 2009 Intermediate Briefcode Shortcode Programming IPL I Haskell 1.0 Haskell 2010 1949 1950 Language 1954 1987 2009 1951 ML SML 1973 1984 SL5 Icon Unicon 1976 1977 2001 Atomo 2010 Caml 1987 Stand: April 2011 19531954 1960 1965 1970 1975 1980 1985 1990 1995 2000 2003 2006 2009 2011 language_poster_2010_841x594_neu.indd 1 13.04.11 14:07.
Recommended publications
  • Functional Thinking
    Functional Thinking director / software architect NEAL FORD meme wrangler ® ThoughtWorks [email protected] 2002 Summit Boulevard, Atlanta, GA 30319 nealford.com thoughtworks.com memeagora.blogspot.com @neal4d 1 a metaphor an essay a history lesson 2 3 4 new language: easy new paradigm: hard 5 “functional” is more a way of thinking than a tool set 6 Execution in the Kingdom of Nouns Steve Yegge http://steve-yegge.blogspot.com/ 2006/03/execution-in-kingdom-of-nouns.html 7 v e r b s ! 8 ! 9 http://oreilly.com/news/languageposter_0504.html 1954 1957 1960 1965 1970 1975 1980 1985 1990 1995 2000 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 PostScript level 3 PostScript level 3 PostScript PostScript level 2 PostScript level 3 v 3016 v 3017 1982 1992 september 11, 1996 OO Forth 2003 september 11, 2005 1987 Forth FIG-Forth Forth-83 ANS Forth ISO Forth 1968 1978 1983 1986 1997 Logo Object Logo Tcl Tcl/Tk Tcl/Tk 8.1 Tcl/Tk 8.2.3 Tcl/Tk 8.3 Tcl/Tk 8.4 Tcl/Tk 8.4.1 Tcl/Tk 8.4.2 Tcl/Tk 8.4.3 Tcl/Tk 8.4.4 Tcl/Tk 8.4.5 Tcl/Tk 8.4.6 Tcl/Tk 8.4.7 Tcl/Tk 8.4.8 Tcl/Tk 8.4.9 Tcl/Tk 8.4.11 Tcl/Tk 8.4.12 Tcl/Tk 8.4.13 Tcl/Tk 8.4.14 Tcl/Tk 8.4.15 Tcl/Tk 8.5 Tcl/Tk 8.5.5 Tcl/Tk 8.5.6 Tcl/Tk 8.5.7 Tcl/Tk 8.5.9 1968 1986 mid 1988 end 1988 april 1999 dec.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Computer Languages, Systems & Structures 37 (2011) 132–150 Contents lists available at ScienceDirect Computer Languages, Systems & Structures journal homepage: www.elsevier.com/locate/cl Reconciling method overloading and dynamically typed scripting languages Alexandre Bergel à Pleiad Group, Computer Science Department (DCC), University of Chile, Santiago, Chile article info abstract Article history: The Java virtual machine (JVM) has been adopted as the executing platform by a large Received 13 July 2010 number of dynamically typed programming languages. For example, Scheme, Ruby, Received in revised form Javascript, Lisp, and Basic have been successfully implemented on the JVM and each is 28 February 2011 supported by a large community. Interoperability with Java is one important require- Accepted 15 March 2011 ment shared by all these languages. We claim that the lack of type annotation in interpreted dynamic languages makes Keywords: this interoperability either flawed or incomplete in the presence of method overloading. Multi-language system We studied 17 popular dynamically typed languages for JVM and .Net, none of them Interoperability were able to properly handle the complexity of method overloading.
    [Show full text]
  • The History of Computer Language Selection
    The History of Computer Language Selection Kevin R. Parker College of Business, Idaho State University, Pocatello, Idaho USA [email protected] Bill Davey School of Business Information Technology, RMIT University, Melbourne, Australia [email protected] Abstract: This examines the history of computer language choice for both industry use and university programming courses. The study considers events in two developed countries and reveals themes that may be common in the language selection history of other developed nations. History shows a set of recurring problems for those involved in choosing languages. This study shows that those involved in the selection process can be informed by history when making those decisions. Keywords: selection of programming languages, pragmatic approach to selection, pedagogical approach to selection. 1. Introduction The history of computing is often expressed in terms of significant hardware developments. Both the United States and Australia made early contributions in computing. Many trace the dawn of the history of programmable computers to Eckert and Mauchly’s departure from the ENIAC project to start the Eckert-Mauchly Computer Corporation. In Australia, the history of programmable computers starts with CSIRAC, the fourth programmable computer in the world that ran its first test program in 1949. This computer, manufactured by the government science organization (CSIRO), was used into the 1960s as a working machine at the University of Melbourne and still exists as a complete unit at the Museum of Victoria in Melbourne. Australia’s early entry into computing makes a comparison with the United States interesting. These early computers needed programmers, that is, people with the expertise to convert a problem into a mathematical representation directly executable by the computer.
    [Show full text]
  • BBN and Computer Technology Timeline 1948 • Establishment Of
    BBN and Computer Technology Timeline 1948 • Establishment of Bolt Beranek and Newman Inc. (BBN) 1958 • Purchase of BBN's first computer, an LPG-30, manufactured by the Royal McBee Company 1959 • Purchase of PDP-1 from the Digital Equipment Corporation (DEC); Serial #0 [??] 1960 • Design of a priority-interrupt system for the PDP-1. • Development of Cyclops, an AI program for pattern recognition. 1962 • Public demonstration of computer time-sharing. 1963 • Demonstration of Data Dial, a modem to enable remote communication with computers by telephone. 1964 • Public demonstration of a computer-based communications system for the Massachusetts General Hospital. • Development of MENTOR and the SOCRATIC SYSTEM, systems for computer- based mixed-initiative tutoring. 1965 • Development of TELCOMP, an interactive computer language. • Development of the Grafacon, a tablet for scanning and digitizing graphic data. • Publication of Libraries of the Future, a consideration of the implications of computer technology for future libraries, based on a project for the Council of Library Resources. 1966 • Creation of LOGO, a computer programming language designed especially for use by children. 1967 • Formation of Time Share Ltd., a subsidiary offering computing services in the UK. 1968 • Development of packet-switching protocols for the ARPANET 1969 • Launching of the ARPANET; demonstration of four-node network. • Automation of odd-lot stock transactions for the Pacific Coast Stock Exchange. • Grammatical analysis of English text by augmented transition networks. 1970 • Development of TENEX, a virtual-memory operating system for DEC computers. • Demonstration of SCHOLAR, a computer-based system that modeled a Socratic tutor. • 1971 Transmission of person-to-person email message using the @ sign.
    [Show full text]
  • Learning to Code
    PART ILEARNING TO CODE How Important is Programming? “To understand computers is to know about programming. The world is divided… into people who have written a program and people who have not.” Ted Nelson, Computer Lib/Dream Machines (1974) How important is it for you to learn to program a computer? Since the introduction of the first digital electronic computers in the 1940s, people have answered this question in surprisingly different ways. During the first wave of commercial computing—in the 1950s and 1960s, when 1large and expensive mainframe computers filled entire rooms—the standard advice was that only a limited number of specialists would be needed to program com- puters using simple input devices like switches, punched cards, and paper tape. Even during the so-called “golden age” of corporate computing in America—the mid- to late 1960s—it was still unclear how many programming technicians would be needed to support the rapid computerization of the nation’s business, military, and commercial operations. For a while, some experts thought that well-designed computer systems might eventually program themselves, requiring only a handful of attentive managers to keep an eye on the machines. By the late 1970s and early 1980s, however, the rapid emergence of personal computers (PCs), and continuing shortages of computer professionals, shifted popular thinking on the issue. When consumers began to adopt low-priced PCs like the Apple II (1977), the IBM PC (1981), and the Commodore 64 (1982) by the millions, it seemed obvious that ground-breaking changes were afoot. The “PC Revolution” opened up new frontiers, employed tens of thousands of people, and (according to some enthusiasts) demanded new approaches to computer literacy.
    [Show full text]
  • Java Programming Language Family Godiva Scala Processing Aspectj Groovy Javafx Script Einstein J Sharp Judoscript Jasmin Beanshell
    JAVA PROGRAMMING LANGUAGE FAMILY GODIVA SCALA PROCESSING ASPECTJ GROOVY JAVAFX SCRIPT EINSTEIN J SHARP JUDOSCRIPT JASMIN BEANSHELL PDF-33JPLFGSPAGJSEJSJJB16 | Page: 133 File Size 5,909 KB | 10 Oct, 2020 PDF File: Java Programming Language Family Godiva Scala Processing Aspectj Groovy Javafx Script 1/3 Einstein J Sharp Judoscript Jasmin Beanshell - PDF-33JPLFGSPAGJSEJSJJB16 TABLE OF CONTENT Introduction Brief Description Main Topic Technical Note Appendix Glossary PDF File: Java Programming Language Family Godiva Scala Processing Aspectj Groovy Javafx Script 2/3 Einstein J Sharp Judoscript Jasmin Beanshell - PDF-33JPLFGSPAGJSEJSJJB16 Java Programming Language Family Godiva Scala Processing Aspectj Groovy Javafx Script Einstein J Sharp Judoscript Jasmin Beanshell e-Book Name : Java Programming Language Family Godiva Scala Processing Aspectj Groovy Javafx Script Einstein J Sharp Judoscript Jasmin Beanshell - Read Java Programming Language Family Godiva Scala Processing Aspectj Groovy Javafx Script Einstein J Sharp Judoscript Jasmin Beanshell PDF on your Android, iPhone, iPad or PC directly, the following PDF file is submitted in 10 Oct, 2020, Ebook ID PDF-33JPLFGSPAGJSEJSJJB16. Download full version PDF for Java Programming Language Family Godiva Scala Processing Aspectj Groovy Javafx Script Einstein J Sharp Judoscript Jasmin Beanshell using the link below: Download: JAVA PROGRAMMING LANGUAGE FAMILY GODIVA SCALA PROCESSING ASPECTJ GROOVY JAVAFX SCRIPT EINSTEIN J SHARP JUDOSCRIPT JASMIN BEANSHELL PDF The writers of Java Programming Language Family Godiva Scala Processing Aspectj Groovy Javafx Script Einstein J Sharp Judoscript Jasmin Beanshell have made all reasonable attempts to offer latest and precise information and facts for the readers of this publication. The creators will not be held accountable for any unintentional flaws or omissions that may be found.
    [Show full text]
  • Design and Implementation of a Behaviorally Typed Programming System for Web Services
    Universidade Nova de Lisboa Faculdade de Cienciasˆ e Tecnologia Departamento de Informatica´ Dissertac¸ao˜ de Mestrado Mestrado em Engenharia Informatica´ Design and Implementation of a Behaviorally Typed Programming System for Web Services Filipe David Oliveira Militao˜ (26948) Lisboa (2008) Universidade Nova de Lisboa Faculdade de Cienciasˆ e Tecnologia Departamento de Informatica´ Dissertac¸ao˜ de Mestrado Design and Implementation of a Behaviorally Typed Programming System for Web Services Filipe David Oliveira Militao˜ (26948) Orientador: Prof. Doutor Lu´ıs Caires J ´uri Presidente: • Doutor Jos´eAlberto Cardoso e Cunha, Professor Catedratico,´ Departamento de Informatica´ da Faculdade de Cienciasˆ e Tecnologia, Universidade Nova de Lisboa. Vogais: • Doutor Francisco Martins, Professor Auxiliar, Departamento de Informatica´ da Faculdade de Ciencias,ˆ Universidade de Lisboa. • Doutor Lu´ısManuel Marques da Costa Caires, Professor Associado, Departa- mento de Informatica´ da Faculdade de Cienciasˆ e Tecnologia, Universidade Nova de Lisboa. Disserta¸c˜aoapresentada na Faculdade de Ciˆenciase Tecnologia da Uni- versidade Nova de Lisboa para a obten¸c˜aodo Grau de Mestre em En- genharia Inform´atica. Lisboa (2008) Acknowledgements This work was partially supported by a CITI/PLM/1001/2007 research grant. v Summary The growing use of the Internet as a global infrastructure for communication between dis- tributed applications is leading to the development of a considerable amount of technologies to ease the deployment, description and data exchange among services and thus improve their in- teroperability. There is also a growing interest in the use of the “software as a service” business model where a software vendor develops and hosts applications to be used by its clients over the Internet.
    [Show full text]
  • CSC 272 - Software II: Principles of Programming Languages
    CSC 272 - Software II: Principles of Programming Languages Lecture 1 - An Introduction What is a Programming Language? • A programming language is a notational system for describing computation in machine-readable and human-readable form. • Most of these forms are high-level languages , which is the subject of the course. • Assembly languages and other languages that are designed to more closely resemble the computer’s instruction set than anything that is human- readable are low-level languages . Why Study Programming Languages? • In 1969, Sammet listed 120 programming languages in common use – now there are many more! • Most programmers never use more than a few. – Some limit their career’s to just one or two. • The gain is in learning about their underlying design concepts and how this affects their implementation. The Six Primary Reasons • Increased ability to express ideas • Improved background for choosing appropriate languages • Increased ability to learn new languages • Better understanding of significance of implementation • Better use of languages that are already known • Overall advancement of computing Reason #1 - Increased ability to express ideas • The depth at which people can think is heavily influenced by the expressive power of their language. • It is difficult for people to conceptualize structures that they cannot describe, verbally or in writing. Expressing Ideas as Algorithms • This includes a programmer’s to develop effective algorithms • Many languages provide features that can waste computer time or lead programmers to logic errors if used improperly – E. g., recursion in Pascal, C, etc. – E. g., GoTos in FORTRAN, etc. Reason #2 - Improved background for choosing appropriate languages • Many professional programmers have a limited formal education in computer science, limited to a small number of programming languages.
    [Show full text]
  • Application Notes for Telcomp Software Applications and Avaya IP Office - Issue 1.0
    Avaya Solution & Interoperability Test Lab Application Notes for Telcomp Software Applications and Avaya IP Office - Issue 1.0 Abstract These Application Notes describe the configuration steps required for Telcomp software applications to successfully interoperate with the Avaya IP Office. The Telcomp PickUpIp application provides Caller ID capabilities to a single computer, or to a network of computers via the Telcomp PickUp application. The Telcomp PickUpEm application provides 911 emergency alert messages to be directed at a central console. All three of these applications work in conjunction with the Telcomp TcIpOff connection server application. Each of the Telcomp applications requires the functionality of run-time telephony event data streams provided by the Avaya IP Office DevLink PRO SDK interface. Information in these Application Notes has been obtained through DevConnect compliance testing and additional technical discussions. Testing was conducted via the DevConnect Program at the Avaya Solution and Interoperability Test Lab. SVS; Reviewed: Solution & Interoperability Test Lab Application Notes 1 of 18 SPOC 10/16/2007 ©2007 Avaya Inc. All Rights Reserved. IPO40-Telcomp 1. Introduction These Application Notes describe the compliance-tested configuration utilizing Telcomp software applications and Avaya IP Office. The Telcomp software application solution for Avaya IP Office consists of the following applications: PickUpIp – CallerID IP Server for IP Office TcIpOff – IP Office / Partner Translator for IP Office PickUp – CallerID client PickUpEm - 911 Alert Indicator Telcomp PickUpIp is a client/server middleware application that provides CallerID number information via a single-line screen pop and/or a multi-line menu capability from Avaya IP Office to a single computer, or a network of computers.
    [Show full text]
  • Evolution of the Major Programming Languages
    COS 301 Programming Languages Evolution of the Major Programming Languages UMaine School of Computing and Information Science COS 301 - 2018 Topics Zuse’s Plankalkül Minimal Hardware Programming: Pseudocodes The IBM 704 and Fortran Functional Programming: LISP ALGOL 60 COBOL BASIC PL/I APL and SNOBOL SIMULA 67 Orthogonal Design: ALGOL 68 UMaine School of Computing and Information Science COS 301 - 2018 Topics (continued) Some Early Descendants of the ALGOLs Prolog Ada Object-Oriented Programming: Smalltalk Combining Imperative and Object-Oriented Features: C++ Imperative-Based Object-Oriented Language: Java Scripting Languages A C-Based Language for the New Millennium: C# Markup/Programming Hybrid Languages UMaine School of Computing and Information Science COS 301 - 2018 Genealogy of Common Languages UMaine School of Computing and Information Science COS 301 - 2018 Alternate View UMaine School of Computing and Information Science COS 301 - 2018 Zuse’s Plankalkül • Designed in 1945 • For computers based on electromechanical relays • Not published until 1972, implemented in 2000 [Rojas et al.] • Advanced data structures: – Two’s complement integers, floating point with hidden bit, arrays, records – Basic data type: arrays, tuples of arrays • Included algorithms for playing chess • Odd: 2D language • Functions, but no recursion • Loops (“while”) and guarded conditionals [Dijkstra, 1975] UMaine School of Computing and Information Science COS 301 - 2018 Plankalkül Syntax • 3 lines for a statement: – Operation – Subscripts – Types • An assignment
    [Show full text]
  • 1. with Examples of Different Programming Languages Show How Programming Languages Are Organized Along the Given Rubrics: I
    AGBOOLA ABIOLA CSC302 17/SCI01/007 COMPUTER SCIENCE ASSIGNMENT ​ 1. With examples of different programming languages show how programming languages are organized along the given rubrics: i. Unstructured, structured, modular, object oriented, aspect oriented, activity oriented and event oriented programming requirement. ii. Based on domain requirements. iii. Based on requirements i and ii above. 2. Give brief preview of the evolution of programming languages in a chronological order. 3. Vividly distinguish between modular programming paradigm and object oriented programming paradigm. Answer 1i). UNSTRUCTURED LANGUAGE DEVELOPER DATE Assembly Language 1949 FORTRAN John Backus 1957 COBOL CODASYL, ANSI, ISO 1959 JOSS Cliff Shaw, RAND 1963 BASIC John G. Kemeny, Thomas E. Kurtz 1964 TELCOMP BBN 1965 MUMPS Neil Pappalardo 1966 FOCAL Richard Merrill, DEC 1968 STRUCTURED LANGUAGE DEVELOPER DATE ALGOL 58 Friedrich L. Bauer, and co. 1958 ALGOL 60 Backus, Bauer and co. 1960 ABC CWI 1980 Ada United States Department of Defence 1980 Accent R NIS 1980 Action! Optimized Systems Software 1983 Alef Phil Winterbottom 1992 DASL Sun Micro-systems Laboratories 1999-2003 MODULAR LANGUAGE DEVELOPER DATE ALGOL W Niklaus Wirth, Tony Hoare 1966 APL Larry Breed, Dick Lathwell and co. 1966 ALGOL 68 A. Van Wijngaarden and co. 1968 AMOS BASIC FranÇois Lionet anConstantin Stiropoulos 1990 Alice ML Saarland University 2000 Agda Ulf Norell;Catarina coquand(1.0) 2007 Arc Paul Graham, Robert Morris and co. 2008 Bosque Mark Marron 2019 OBJECT-ORIENTED LANGUAGE DEVELOPER DATE C* Thinking Machine 1987 Actor Charles Duff 1988 Aldor Thomas J. Watson Research Center 1990 Amiga E Wouter van Oortmerssen 1993 Action Script Macromedia 1998 BeanShell JCP 1999 AngelScript Andreas Jönsson 2003 Boo Rodrigo B.
    [Show full text]
  • Red5 Documentation Daniel Rossi Red5 Documentation Daniel Rossi Copyright © 2007 Daniel Rossi
    Red5 Documentation Daniel Rossi Red5 Documentation Daniel Rossi Copyright © 2007 Daniel Rossi Abstract Table of Contents .................................................................................................................................. 1 .................................................................................................................................. 2 Frequently Asked Questions ................................................................................... 2 Project Management ...................................................................................... 6 Server Side Development ............................................................................... 6 Codecs/Media integration ............................................................................... 7 Client Side/API Testing ................................................................................. 7 Branding/Logo/Website .................................................................................. 7 Documentation ............................................................................................. 7 .................................................................................................................................. 9 How to build with eclipse ...................................................................................... 9 ................................................................................................................................ 10 ...............................................................................................................................
    [Show full text]