Inventive Steps: the CRISPR Patent Dispute and Scientific Progress

Total Page:16

File Type:pdf, Size:1020Kb

Inventive Steps: the CRISPR Patent Dispute and Scientific Progress Science & Society Inventive steps: the CRISPR patent dispute and scientific progress The recent patent decisions about CRISPR tell us a lot about how advances in biology are actually made— and how they are not Jacob S Sherkow ecent decisions by patent offices in institutions—has been widely criticized by highlights a long-standing division between the USA and Europe concerning the scientists. One prominent researcher, science and patent law concerning how R revolutionary gene-editing technol- Michael Eisen from the University of Califor- biological research is actually conducted—a ogy, CRISPR/Cas9, have shed light on the nia, Berkeley, has taken particular issue division that is likely to widen as research in importance—and puzzles—of one particular with the PTAB’s articulation of the typical molecular biology advances. This article area of patent law: “nonobviousness”, as it manner in which molecular biologists adapt briefly explains these differences in patent known in the USA, or, in Europe, the discoveries to different cell systems. “[O]ne law, especially with respect to the law’s crit- “inventive step”. In February 2017, the US can believe that it was obvious that CRISPR ical “nonobviousness” or “inventive step” Patent Trial and Appeal Board (PTAB) found would work in eukaryotic cells, and still not requirements, and explains their importance that the work of Feng Zhang, a researcher at expect that it would work the first time to CRISPR researchers and molecular biolo- the Broad Institute in Cambridge, MA, USA, someone tried it or that the process would gists of all sorts. constituted a “nonobvious” advance over be free of frustration”, he wrote on his blog the celebrated work of Jennifer Doudna of several days after the US decision. “Because The importance and history the University of California, Berkeley (USA) that’s how science works!” of obviousness and Emmanuelle Charpentier, then at Umea˚ ...................................................... University, Sweden [1]. As a consequence, Since modern patents were first granted in the Broad Institute will be able to keep its “...both patent offices’ the 17th century, governments were faced US patents covering the technology irrespec- decisions are almost certainly with the conundrum of “drawing a line tive of how Doudna and Charpentier’s correct as a matter of law if not between the things which are worth to the patent application proceeds. By contrast, the public the embarrassment of an exclusive European Patent Office (EPO) announced the realities of scientific patent, and those which are not” [3]. that it had granted Doudna and Charpen- progress” Patents were established as incentives for tier’s European patent application covering ...................................................... inventors to spend time and money devel- broad uses of CRISPR/Cas9 in essentially But both patent offices’ decisions are oping new inventions. Without some rights any cell type, despite the US Patent Office’s almost certainly correct as a matter of law if to prevent others from copying their inven- decision to the contrary [2]. Other parties— not the realities of scientific progress. The tions once they were first sold—so the including the Broad Institute—will be able US opinion concerning nonobviousness— economic theory goes—developers would to challenge Doudna and Charpentier’s the sine qua non of patentability—is fairly not undertake the ardor of research in the European patent. But for now, the EPO’s accurate: Whether prior research “would first instance. But this right to exclude decision is an implicit recognition that have suggested to one of ordinary skill in others from practicing new and useful tech- Doudna and Charpentier’s work was, itself, the art that [the new] process should be nologies was considered to be a powerful a major “inventive step” over the work that carried out and would have a reasonable one, and determining which inventions came before it. likelihood of success” [1]. In Europe, one is merited the law’s security poised no short- Patent law does not always neatly align entitled to a broad patent on a new tech- age of administrative, legal, and philosophi- itself with the realities of biological research. nique, if it demonstrates an “inventive step” cal problems. But these competing decisions have put over prior methods—even if there no guar- In the USA, the courts took up the those differences on parade. The US decision antee that it will work for all of its claimed mantle of assessing the worth of new in particular—and even the nature of the applications. As noted by a number of intel- technology under the patent laws. Like controversy between the two US research lectual property scholars, this standard the technologies they were charged with Innovation Center for Law and Technology, New York Law School, New York, NY, USA. E-mail: [email protected] DOI 10.15252/embr.201744418 ª 2017 The Author EMBO reports 1 EMBO reports CRISPR patents and scientific progress Jacob S Sherkow investigating, their opinions consisted of conducted. They aspired to critically exam- for example, can surprisingly be regulated by various attempts—trials and errors—to ine prior papers to assess whether the developing otherwise similar constructs for make workable what was otherwise an patented invention was truly a significant controlling fucosylation pathways. Further- imperfect machine. In the early part of the advance, much in the same spirit as Isaac more, biology—unlike, say, physics—is not 19th century, courts required patented Newton’s reference to standing on the shoul- practiced in a sterile environment. Work inventions to be “of more ingenuity and ders of giants. It required a concrete compar- conducted in molecular biology often takes skill than that possessed by an ordinary ison between the elements of prior studies place within the medium of living cells or mechanic” [4]. Litigating genius, suffice it and the current one—the patent on examina- complex genetic environments. As a result, to say, proved less than fruitful, so courts tion. And it posed these questions to a hypo- translating a technique from one system to adopted a variety of standards, none of thetical scientist—an ordinary one in the another frequently proves difficult. And even which proved any easier. By the mid-20th same field—to assess what he or she where researchers seem capable of attaining century, things had deteriorated to the point thought. In an age when good government promising results, issues over experiments’ that US Supreme Court Justice Robert H. was widely perceived as being one that reproducibility abound. This has compli- Jackson remarked that “the only patent that ushered scientific research into the fore, cated the task of asking whether an average is valid is one which this Court has not been Federico and Rich’s invention of “nonobvi- molecular biologist—a “person of ordinary able to get its hands on” [5]. ousness” was a both a political and legal skill in the art” in patent law’s parlance— ...................................................... triumph. would think the invention to be “obvious” or Today, obviousness is by far the most lack an “inventive step” over what came “In an age when good crucial doctrine of the patenting process. It before it. government was widely is the primary source of patent offices’ ...................................................... rejection of patent applications. And it perceived as being one that “Unlike other fields, such as ushered scientific research into arises as a defense in virtually every patent case litigated in court. In addition, mechanical engineering, the fore, Federico and Rich’s many other procedures at patent offices in molecular biology is considered invention of “nonobviousness” the USA and throughout the world substantially more was a both a political and consider the potential obviousness of a “unpredictable”...” legal triumph.” patent even after it may have already been ...................................................... ...................................................... issued. For this reason, nonobviousness or an inventive step has become “the heart of This complication has only worsened In 1952, as part of a major overhaul of the patent law” [7]. recently. Prior to 2007, obviousness analy- the patent laws, Congress tasked two ses almost exclusively used documentary prominent patent attorneys, Pasquale The obviousness inquiry in evidence, such as patents and articles in Joseph Federico and Giles Sutherland Rich, molecular biology scientific journals. In 2007, however, the with giving form to this elusive “inventive- US Supreme Court took up the case of KSR ness” requirement. Their invention: what Despite the improvements of the obvious- International Co. v. Teleflex Inc., and deter- we call “nonobviousness” today, the prohi- ness doctrine in aligning patent law with mined whether such a narrow focus on bition on patents covering inventions for scientific research, it has presented unique patents and papers was appropriate. The which the “differences between the problems for molecular biology. Unlike Court concluded that, in addition to the claimed invention and the prior art are other fields, such as mechanical engineer- documents traditionally considered by the such that the claimed invention as a whole ing, molecular biology is considered Patent Office in determining obviousness, would have been obvious ... to a person substantially more “unpredictable”. Given it should now also look to factors such
Recommended publications
  • Optogenetics: Using Light to Control the Brain by Edward S. Boyden, Ph.D
    Optogenetics: Using Light to Control the Brain By Edward S. Boyden, Ph.D. Courtesy of the MIT McGovern Institute, Julie Pryor, Charles Jennings, Sputnik Animation, and Ed Boyden. Editor’s note: The brain is densely packed with interconnected neurons, but until about six years ago, it was difficult for researchers to isolate neurons and neuron types to determine their individual roles in brain processes. In 2004 however, scientists, including author Edward S. Boyden, Ph.D., found that the neural expression of a protein, channelrhodopsin-2 (ChR2), allowed light to activate or silence brain cells. This technology, now known as optogenetics, is helping scientists determine the functions of specific neurons in the brain, and could play a significant role in treating medical issues as diverse as sleep disorders and vision impairment. Article available online at http://dana.org/news/cerebrum/detail.aspx?id=34614 1 The brain is an incredibly densely wired computational circuit, made out of an enormous number of interconnected cells called neurons, which compute using electrical signals. These neurons are heterogeneous, falling into many different classes that vary in their shapes, molecular compositions, wiring patterns, and the ways in which they change in disease states. It is difficult to analyze how these different classes of neurons work together in the intact brain to mediate the complex computations that support sensations, emotions, decisions, and movements—and how flaws in specific neuron classes result in brain disorders. Ideally, one would study the brain using a technology that would enable the control of the electrical activity of just one type of neuron, embedded within a neural circuit, in order to determine the role that that type of neuron plays in the computations and functions of the brain.
    [Show full text]
  • Top 20 Translational Researchers of 2014
    DATA PAGE Top 20 translational researchers of 2014 Brady Huggett & Kathryn Paisner Our ranking of biotech’s top translational researchers (Table 1) is published work; higher = more impact). Table 2 lists the most-cited based on patent analytics firm IP Checkups examination of 2014’s patents overall from the 2010–2014 period, with inventor. Figure 1 most active scientists for patenting. The table also includes each breaks the 50 most-cited patents from 2010–2014 into area of focus, researcher’s most-cited patent from the prior five years and their revealing, in particular, the rising interest in genotyping and sequenc- H index (calculated to measure the impact of a scientist’s body of ing technologies. Table 1 Top 20 researchers in 2014 Patents granted Inventor/first assignee 2014 Most-cited patent for 2010–2014 (no. of citations) H indexa Carlo M. Croce/Ohio State University 29 US7670840B2: Micro-RNA expression abnormalities of pancreatic, endocrine and acinar tumors (34) 187 George Calin/Ohio State University 18 US7670840B2: Micro-RNA expression abnormalities of pancreatic, endocrine and acinar tumors (34) 83 Thomas H. Tuschl/Rockefeller University; University of 17 US7772389B2: Anti-microRNA oligonucleotide molecules (3) 85 Massachusetts; Whitehead Institute; Massachusetts Institute of Technology; Max-Planck-Gesellschaft Richard D. DiMarchi/Indiana University 15 US8454971B2: Glucagon/GLP-1 receptor co-agonists (3) 44 Peter G. Schultz/Scripps Research Institute 15 US7642085B2: Protein arrays (11) 113 Feng Zhang/Broad Institute 13 US8697359B1: CRISPR-Cas systems and methods for altering expression of gene products (14) 42 Said M. Sebti/University of South Florida 11 US8435959B2: Effective treatment of tumors and cancer with triciribine and related compounds (3) 61 Stefano Volinia/Ohio State University 11 US8148069B2: MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment 74 of solid cancers (2) Stephen R.
    [Show full text]
  • CRISPR-Cas9 Editing
    Technology Landscape Study On Targeted Genome CRISPR-Cas9 Editing [email protected] | www.maxval.com Technology Landscape Study on CRISPR-Cas9 .............................................................................................................................................................................. EXECUTIVE SUMMARY Although CRISPR was known to have an important role in bacterial immunity for over a decade, it is only in the last 5 years that it has garnered interest as a gene editing tool Increasing investment in this field is indicative of global market opportunities for CRISPR-Cas9 over existing alternatives Academic and research institutes lead currently in patent filing, indicating that this is an early stage technology The Broad Institute of MIT and Harvard, University of California and their collaborators are among the top filing assignees Intellia Therapeutics, CRISPR Therapeutics, Editas Medicine, ERS Genomics and Caribou Biosciences are among the list of commercialization partners that have broad and exclusive rights to CRISPR technologies Institute of Genetics and Developmental Biology, Institute of Genetics and Developmental Biology takes the lead in research related to gene editing in crops and plants Several industrial players including DowDuPont, Regeneron Pharmaceuticals are carving out their own CRISPR patent estates Around one fourth of the total filings in CRISPR-Cas9 is in the classification codes for ribonucleases and nucleic acids that modulate gene expression Significant number of filings are listed under
    [Show full text]
  • An Interview with Feng Zhang, Phd
    INTERVIEW Jurassic Park, Gene Therapy, and Neuroscience: An Interview with Feng Zhang, PhD Interview by James M. Wilson, MD, PhD* Editor, Human Gene Therapy Clinical Development Feng Zhang, PhD Core Member, Broad Institute of MIT and Harvard Investigator, McGovern Institute for Brain Research, MIT James and Patricia Poitras Professor in Neuroscience, MIT Associate Professor, Departments of Brain and Cognitive Sciences and Biological Engineering, MIT New York Stem Cell Foundation-Robertson Investigator Editor’s note: Feng Zhang is a pioneer in the brave new world of genome editing. This interview captures his passion for science and provides insight into his very young but incredibly ac- complished career. Feng, thank you for agreeing to share your thoughts that was really a phenomenal experience. There about your career and your science with us today. were many teachers there who were really engaged How did you initially become interested in science, in developing students’ various interests—and for and what drove you to become a scientist? me that was science. My first exposure to science and biology was I have always been interested in science. I grew a Saturday enrichment class that I took when I was up in the early 1980s in China, during a period an eighth-grade student in middle school. I had ta- when there was an enormous emphasis on science ken biology classes before that, but I did not find and technology, and both of my parents have an those to be very interesting or exciting, because they engineering background. Together, those factors were mostly about dissecting paraformaldehyde- reinforced my interest in science.
    [Show full text]
  • Chinese Literature in the Second Half of a Modern Century: a Critical Survey
    CHINESE LITERATURE IN THE SECOND HALF OF A MODERN CENTURY A CRITICAL SURVEY Edited by PANG-YUAN CHI and DAVID DER-WEI WANG INDIANA UNIVERSITY PRESS • BLOOMINGTON AND INDIANAPOLIS William Tay’s “Colonialism, the Cold War Era, and Marginal Space: The Existential Condition of Five Decades of Hong Kong Literature,” Li Tuo’s “Resistance to Modernity: Reflections on Mainland Chinese Literary Criticism in the 1980s,” and Michelle Yeh’s “Death of the Poet: Poetry and Society in Contemporary China and Taiwan” first ap- peared in the special issue “Contemporary Chinese Literature: Crossing the Bound- aries” (edited by Yvonne Chang) of Literature East and West (1995). Jeffrey Kinkley’s “A Bibliographic Survey of Publications on Chinese Literature in Translation from 1949 to 1999” first appeared in Choice (April 1994; copyright by the American Library Associ- ation). All of the essays have been revised for this volume. This book is a publication of Indiana University Press 601 North Morton Street Bloomington, IN 47404-3797 USA http://www.indiana.edu/~iupress Telephone orders 800-842-6796 Fax orders 812-855-7931 Orders by e-mail [email protected] © 2000 by David D. W. Wang All rights reserved No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher. The Association of American University Presses’ Resolution on Permissions constitutes the only exception to this prohibition. The paper used in this publication meets the minimum requirements of American National Standard for Information Sciences— Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984.
    [Show full text]
  • Lemelson-MIT Prize U.S. Patent Portfolio of Feng Zhang - 2017 Winner Report For: Lemelson-MIT Program
    Confidential Confidential Lemelson-MIT Prize U.S. Patent Portfolio of Feng Zhang - 2017 Winner Report for: Lemelson-MIT Program www.ipvisioninc.com Prepared by Watermill Center Joe Hadzima 800 South Street +1.617.475.6000 Waltham, MA 02453 [email protected] IPVision Patent Interconnection Map © 2005-2017, IPVision Inc., All Rights Reserved Report Date: August 15, 2017 Lemelson-MIT Prize U.S. Patent Portfolio of Feng Zhang - 2017 Winner Report Prepared For: Lemelson-MIT Program Table of Contents 1. FENG ZHANG ........................................................................................................1 1.1 ZHANG PATENT PORTFOLIO INTERCONNECTION MAP ............................................... 1 1.2 OPTOGENETICS PORTFOLIO.................................................................................... 3 1.2.1 Optogenetics Direct Patent Citation Landscapes ....................................................... 3 1.2.2 Optogenetics Relative Citation Frequency ................................................................. 6 1.3 CRISPR-CAS PORTFOLIO ...................................................................................... 7 1.3.1 CRISPR Direct Patent Citation Landscapes............................................................... 8 1.3.2 CRISPR Relative Citation Frequency ....................................................................... 10 1.3.3 Zhang CRISPR Patent Ownership and Licensing .................................................... 11 1.3.3.1 Ownership of Zhang CRISPR Patents..................................................................
    [Show full text]
  • Bw the Gene Hackers
    ANNALS OF SCIENCE THE GENE HACKERS A powerful new technology enables us to manipulate our DNA more easily than ever before. BY MICHAEL SPECTER t thirty-four, Feng Zhang is the leagues mentioned that he had encoun- could defend themselves in the same youngest member of the core tered a curious region of DNA in some way. The day after Zhang heard about facultyA at the Broad Institute of Har- bacteria he had been studying. He re- CRISPR, he flew to Florida for a ge- vard and M.I.T. He is also among the ferred to it as a CRISPR sequence. netics conference. Rather than attend most accomplished. In 1999, while still “I had never heard that word,” Zhang the meetings, however, he stayed in a high- school student, in Des Moines, told me recently as we sat in his office, his hotel room and kept Googling. “I Zhang found a structural protein capa- which looks out across the Charles River just sat there reading every paper on ble of preventing retroviruses like H.I.V. and Beacon Hill. Zhang has a perfectly CRISPR I could find,” he said. “The from infecting human cells. The project round face, its shape accentuated by more I read, the harder it was to con- earned him third place in the Intel Sci- rectangular wire-rimmed glasses and a tain my excitement.” ence Talent Search, and he applied the bowl cut. “So I went to Google just to It didn’t take Zhang or other scien- fifty thousand dollars in prize money see what was there,” he said.
    [Show full text]
  • Jacob and Louise Gabbay Award in Biotechnology and Medicine in 2016 to Honor Jacob’S Wife, Louise Gabbay, Who Was Instrumental in Founding the Award
    JACOB AND LOUISE JACOB AND LOUISE GABBAY AWARDGABBAY AWARD IN BIOTECHNOLOGY IN BIOTECHNOLOGYAND MEDICINE AND MEDICINE PRESENTATION CEREMONY 19th THURSDAY, SEPTEMBER 29, 2016 Annual WALTHAM, MASS. BRANDEIS UNIVERSITY Early in 1998, the trustees of the Jacob and Louise Gabbay Foundation decided to establish a major new award in basic and applied biomedical sciences. The foundation felt that existing scientific awards tended to honor people who were already well-recognized or to focus on work that had its primary impact in traditional basic research fields. Yet the history of science suggests that most scientific revolu- tions are sparked by advances in practical areas such as instrumentation and techniques or through entrepreneurial endeavors. The foundation therefore created the Jacob Heskel Gabbay Award in Biotechnology and Medicine to recognize, as early as possible in their careers, scientists in academia, medicine or industry whose work had both outstanding scientific content and significant practical consequences in the biomedical sciences. The award was renamed the Jacob and Louise Gabbay Award in Biotechnology and Medicine in 2016 to honor Jacob’s wife, Louise Gabbay, who was instrumental in founding the award. Because of their long association with Brandeis University, the trustees of the foundation asked the Rosenstiel Basic Medical Sciences Research Center at Brandeis to administer the award. The award, given annually, consists of a $15,000 cash prize (to be shared in the case of multiple winners) and a medallion. The honorees travel to Brandeis University each fall to present lectures on their work and attend a dinner at which the formal commendation takes place. This year, a committee of distinguished scientists selected Jeffery Kelly of the Scripps Research Institute for his profound and paradigm-shifting contri- butions to our understanding of protein-folding mechanisms and protein-folding diseases.
    [Show full text]
  • CRISPR Edits MASSADHIUSET[NSTITUTE
    Precise and Expansive Genomic Positioning for CRISPR Edits MASSADHIUSET[NSTITUTE by JUL 2 6 2019 Noah Michael Jakimo L I LIBRARIES 19 B.S., California Institute of Technology (2010) S.M., Massachusetts Institute of Technology (2015) Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Media Arts and Sciences at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2019 ©Massachusetts Institute of Technology 2019. All rights reserved. Signature redacted A uthor ................................ Program in Medd Arts and Sciences, School of Architecture and Planning May 3, 2019 Certified by ... .. ....... Signature redacted Joseph M. Uacobson Associate Professor of Media Arts and Sciences Thesis Supervisor Accepted by ............. Signatureredacted (j)Tod Machover Academic Head, rogram in Media Arts and Sciences 77 Massachusetts Avenue Cambridge, MA 02139 MITLibraries http://Iibraries.mit.edu/ask DISCLAIMER NOTICE Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. Thank you. Some pages in the original document contain text that is illegible. t Precise and Expansive Genomic Positioning for CRISPR Edits by Noah Michael Jakimo Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning on May 3, 2019, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Media Arts and Sciences Abstract The recent harnessing of microbial adaptive immune systems, known as CRISPR, has enabled genome-wide engineering across all domains of life. A new generation of gene-editing tools has been fashioned from the natural DNA/RNA-targeting ability of certain CRISPR-associated (Cas) proteins and their guide RNA, which work together to recognize and defend against infectious genetic threats.
    [Show full text]
  • Institute Faculty Share Prestigious Neuroscience Prize
    massachusetts institute of technology search engineering science management architecture + planning humanities, arts, and social sciences campus video press Institute faculty share prestigious neuroscience prize Ed Boyden and Feng Zhang awarded the Perl/UNC Neuroscience Prize Charles Jennings McGovern Institute for Brain Research today's news April 26, 2012 multimedia Robots that reveal Share the inner workings MIT faculty members Ed Video: Optogenetics: of brain cells Controlling the brain with Boyden and Feng Zhang, light along with Karl Deisseroth of Stanford University, have related been awarded the Perl/UNC Neuroscience Prize for Ed Boyden developing a way to control brain activity using light. The Feng Zhang Perl prize carries a $10,000 award and is given annually Graphic coutresy of the Boyden Lab to recognize a seminal tags achievement in New method offers automated neuroscience. Four of the awards, honors and way to record electrical activity fellowships inside neurons in the living 12 past recipients were later brain. awarded Nobel Prizes. brain and cognitive sciences Woodie Flowers, a Boyden, Zhang and pioneer of hands-on Deisseroth share the 2012 broad institute engineering education May 7, 2012 Perl prize for developing a faculty Target: Drug-resistant technology known as "optogenetics," in which Optogenetics is a technology in which neurons are genetically bacteria engineered to respond to light. mcgovern institute May 4, 2012 neurons are genetically Image: Sputnik Animation, McGovern Institute, Ed Boyden engineered to respond to me dia lab similar stories light. This allows researchers to control the activity of specific cell types with great precision, and to probe the brain’s intricate circuits in ways that would have been neuroscience Innovative IDEAS unimaginable a few years ago.
    [Show full text]
  • Light on Genome Function
    RESEARCH HIGHLIGHTS SENSORS AND PROBES Light on genome function Optogenetic tools enable light-mediated the light-sensitive domain Cryptochrome 2 Inactive epiLITE Histone effector domain control over transcription and epigenetic (CRY-2). The second component includes CRY2PHR states in specific endogenous loci of the CRY-2’s interacting partner, CIB1, fused to mammalian genome. an effector protein. Upon illumination with CIB1 Studying the roles of specific genes or gene blue light, CIB1 binds CRY-2 at the genomic Ac networks in cells is fundamental to biol- locus where CRY2-TALE is bound, allowing TALE ogy research. Gene expression is dynamic the effector protein to then exert positive or and tightly regulated; to understand it, one negative control over the gene. needs approaches that enable fine control of Zhang’s team designed LITEs that acti- Active epiLITE the process. Recently, a variety of microbe- vate gene transcription in several different 466 nm Ac or plant-derived light-sensitive proteins genomic loci. They could augment the lev- have been engineered that allow precise els of certain target genes by tenfold within modulation of biochemical and electrical just a few hours of turning a blue light on. signaling pathways in cells by ‘optogenetics’. Controlling the light intensity and illumi- Optogenetic tools have also been built that nation cycle, they could define the level of LITE-mediated epigenetic modifications. Image allow control of transgene expression with gene expression desired and ensure that courtesy of the Zhang lab members. the ease of a light switch, but up until now, the cells were healthy and happy under the it had not been possible to use light to turn spotlight.
    [Show full text]
  • 2017 ANNUAL REPORT 2017 ANNUAL REPORT Table of Contents 2017 Year in Review 2 Letter from H
    MAKING WAVES 2017 ANNUAL REPORT 2017 ANNUAL REPORT Table of Contents 2017 Year in Review 2 Letter from H. Robert Horvitz, Chair 4 Letter from Maya Ajmera, President & CEO 6 Overview and Top Ten 8 2017 Society Competitions 10 Regeneron Science Talent Search 12 Intel International Science and Engineering Fair 16 Broadcom MASTERS 18 Alumni 20 Science News Media Group 24 Science News 26 Science News for Students 30 Outreach & Equity 32 Science News in High Schools 34 Science News | NOVEMBER 25, 2017 GOING APE Advocate Grant Program 36 Orangutans living in the forested foothills Research Teachers Conference 38 of Sumatra became their own species in 2017: Pongo tapanuliensis, or the Tapanuli STEM Action & Research Grants 40 orangutan. Skeletal and genetic evidence puts these apes on an evolutionary trajectory Society for Science & the Public 42 separate from other orangutans in Sumatra Financials 44 and Borneo. Numbering no more than 800, the Tapanuli orangutan lives on the brink of Giving 46 extinction due in part to habitat degradation Board of Trustees 52 and hunting. TIM LAMAN Executive Team and Staff 52 2017 ANNUAL REPORT | SOCIETY FOR SCIENCE & THE PUBLIC | 1 Science News | JULY 8, 2017 CANCER COMBAT An antibody sold as Keytruda can rev the body’s immune system to combat cancer. By locking onto T cell receptors, the antibody blocks a tumor (top) from shutting down the T cell (bottom). The T cell is thus free to attack. In a study reported in 2017, the therapy was effective against 12 different types of solid tumors and controlled cancer in 77 percent of patients studied.
    [Show full text]