S Rule in the 21St Century
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
San Gabriel Chestnut ESA Petition
BEFORE THE SECRETARY OF THE INTERIOR PETITION TO THE U.S. FISH AND WILDLIFE SERVICE TO PROTECT THE SAN GABRIEL CHESTNUT SNAIL UNDER THE ENDANGERED SPECIES ACT © James Bailey CENTER FOR BIOLOGICAL DIVERSITY Notice of Petition Ryan Zinke, Secretary U.S. Department of the Interior 1849 C Street NW Washington, D.C. 20240 [email protected] Greg Sheehan, Acting Director U.S. Fish and Wildlife Service 1849 C Street NW Washington, D.C. 20240 [email protected] Paul Souza, Director Region 8 U.S. Fish and Wildlife Service Pacific Southwest Region 2800 Cottage Way Sacramento, CA 95825 [email protected] Petitioner The Center for Biological Diversity is a national, nonprofit conservation organization with more than 1.3 million members and supporters dedicated to the protection of endangered species and wild places. http://www.biologicaldiversity.org Failure to grant the requested petition will adversely affect the aesthetic, recreational, commercial, research, and scientific interests of the petitioning organization’s members and the people of the United States. Morally, aesthetically, recreationally, and commercially, the public shows increasing concern for wild ecosystems and for biodiversity in general. 1 November 13, 2017 Dear Mr. Zinke: Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. §1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 553(e), and 50 C.F.R. §424.14(a), the Center for Biological Diversity and Tierra Curry hereby formally petition the Secretary of the Interior, through the United States Fish and Wildlife Service (“FWS”, “the Service”) to list the San Gabriel chestnut snail (Glyptostoma gabrielense) as a threatened or endangered species under the Endangered Species Act and to designate critical habitat concurrently with listing. -
Amphibian Sex Determination and Sex Reversal
CMLS, Cell. Mol. Life Sci. 55 (1999) 901–909 1420-682X/99/070901-09 $ 1.50+0.20/0 © Birkha¨user Verlag, Basel, 1999 Amphibian sex determination and sex reversal H. Wallace*, G. M. I. Badawy and B. M. N. Wallace School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (UK), Fax +44 121 414 5925, e-mail: [email protected] Abstract. Amphibians employ a genetic mechanism of published studies on crested newts. These newts re- sex determination, according to all available informa- spond conventionally to temperature and hormone tion on sex chromosomes or breeding tests. Sex reversal treatment but provide anomalous results from breeding allows breeding tests to establish which sex is het- tests. It is suggested that both the evolution from tem- erogametic and provides an indication of the mecha- perature dependency to a genetic switch and from ZZ/ nism of sex determination. Cases of spontaneous and ZW to XX/XY are superimposed on a generally experimental sex reversal (by temperature, hormones or uniform mechanism of sex determination in all verte- surgery) are reviewed and illustrated by previously un- brates. Key words. Sex determination; sex reversal; temperature dependence; sex hormone; amphibia; Triturus cristatus. Genetic sex determination insight into its mechanism, by showing how it can be overridden by environmental or hormonal influences. All amphibians that have been tested possess a genetic Third, using irradiated sperm to activate eggs which are mechanism of sex determination. Examples of male then heat-shocked to arrest the second meiotic division heterogamety (XX/XY) or female heterogamety (ZZ/ and thus restore diploidy, which is equivalent to self-fer- ZW) have been found repeatedly in both anurans and tilization of a female or breeding from a neomale (fig. -
History of the Research on Sex Determination
Review Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2020.25.004194 History of The Research on Sex Determination Jacek Z Kubiak1,2, Malgorzata Kloc3-5 and Rafal P Piprek6* 1UnivRennes, CNRS, UMR 6290, IGDR, Cell Cycle Group, F-35000 Rennes, France 2Military Institute of Hygiene and Epidemiology, ZMRiBK, Warsaw, Poland 3The Houston Methodist Research Institute, USA 4Department of Surgery, The Houston Methodist Hospital, USA 5University of Texas, MD Anderson Cancer Center, USA 6Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Poland *Corresponding author: Rafał P Piprek, Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Poland ARTICLE INFO Abstract Received: Published: January 28, 2020 Since the beginning of the humanity, people were fascinated by sex and intrigued by February 06, 2020 how the differences between sexes are determined. Ancient philosophers and middle Citation: age scholars proposed numerous fantastic explanations for the origin of sex differences in people and animals. However, only the development of the modern scientific methods Jacek Z Kubiak, Malgorzata Kloc, allowed us to find, on the scientific ground, the right answers to these questions. In this Rafal P Piprek. History of The Research on review article, we describe the history of these discoveries, and which major discoveries allowed the understanding of the origin of sex and molecular and cellular basis of the Sex Determination. Biomed J Sci & Tech Res -
EAZA Best Practice Guidelines for Polynesian Tree Snails (Partula Spp)
EAZA Best Practice Guidelines for Polynesian tree snails (Partula spp) Edition 1.0 Publication date June 2019 Partula Snail EEP Species Committee Editor Dave Clarke, ZSL 2019_Partula sp_EAZA Best Practice Guidelines EAZA Best Practice Guidelines for Polynesian tree snails (Partula spp) Terrestrial Invertebrate Taxon Advisory Group TITAG Chair: Mark Bushell, Bristol Zoo Gardens, Clifton, Bristol, BS8 3HA [email protected] TITAG Vice-Chairs: Tamás Papp, Chester Zoo, Moston Rd, Upton, Chester CH2 1EU. [email protected] & Vítek Lukáš, Zoo Praha, U Trojského zámku 3/120, 171 00 Praha 7, Czechia. [email protected] EEP Co-ordinator: Paul Pearce-Kelly, ZSL [email protected] EEP Studbook keeper: Sam Aberdeen, ZSL [email protected] Edition 1.0 Publication date June 2019 (based on global Management Guidelines document Nov 2007 eds Pearce-Kelly, Blake, Goellner & Snider) Editor Dave Clarke, ZSL [email protected] Citation - Clarke, D., EAZA Best Practice Guidelines for Partula snails. EAZA 2019 We acknowledge the invaluable input of all Partula snail EEP Species Committee members, SSP colleagues and global participating Partula collections. EAZA Best Practice Guidelines disclaimer Copyright (June 2019) by EAZA Executive Office, Amsterdam. All rights reserved. No part of this publication may be reproduced in hard copy, machine-readable or other forms without advance written permission from the European Association of Zoos and Aquaria (EAZA). Members of the European Association of Zoos and Aquaria (EAZA) may copy this information for their own use as needed. The information contained in these EAZA Best Practice Guidelines has been obtained from numerous sources believed to be reliable. -
Biogeography of the Land Snail Genus Allognathus (Helicidae): Middle Miocene Colonization of the Balearic Islands
Journal of Biogeography (J. Biogeogr.) (2015) 42, 1845–1857 ORIGINAL Biogeography of the land snail genus ARTICLE Allognathus (Helicidae): middle Miocene colonization of the Balearic Islands Luis J. Chueca1,2*, Marıa Jose Madeira1,2 and Benjamın J. Gomez-Moliner 1,2 1Department of Zoology and Animal Cell ABSTRACT Biology, Faculty of Pharmacy, University of Aim We infer the evolutionary history of the land snail genus Allognathus the Basque Country, 01006 Vitoria-Gasteiz, 2 from a molecular phylogeny. An approximate temporal framework for its colo- Alava, Spain, Biodiversity Research Group CIEA Lucio Lascaray, 01006 Vitoria-Gasteiz, nization of the Balearic Islands and diversification within the archipelago is Alava, Spain provided according to palaeogeographical events in the western Mediterranean Basin. Location The Balearic Islands, Western Mediterranean. Methods A 2461-bp DNA sequence dataset was generated from one nuclear and two mitochondrial gene fragments in 87 specimens, covering all nominal taxa of the genus Allognathus. Through maximum-likelihood and Bayesian phylogenetic methods along with a Bayesian molecular clock, we examined the evolutionary history of the group. Ancestral distribution ranges were estimated for divergence events across the tree using a Bayesian approach. We also used genetic species-delimitation models to determine the taxonomy of Allognathus. Results We provided the first molecular phylogeny of Allognathus, a genus endemic to the Balearic Islands. The origin of the genus in the Balearic Islands was dated to the middle Miocene based on palaeogeographical events in the Western Mediterranean. During the late Miocene and Pliocene, several diversi- fication events occurred within the archipelago. The ancestral range of Allogna- thus was reconstructed as the north-eastern Tramuntana Mountains of Mallorca. -
The Malacological Society of London
ACKNOWLEDGMENTS This meeting was made possible due to generous contributions from the following individuals and organizations: Unitas Malacologica The program committee: The American Malacological Society Lynn Bonomo, Samantha Donohoo, The Western Society of Malacologists Kelly Larkin, Emily Otstott, Lisa Paggeot David and Dixie Lindberg California Academy of Sciences Andrew Jepsen, Nick Colin The Company of Biologists. Robert Sussman, Allan Tina The American Genetics Association. Meg Burke, Katherine Piatek The Malacological Society of London The organizing committee: Pat Krug, David Lindberg, Julia Sigwart and Ellen Strong THE MALACOLOGICAL SOCIETY OF LONDON 1 SCHEDULE SUNDAY 11 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 2:00-6:00 pm Registration - Merrill Hall 10:30 am-12:00 pm Unitas Malacologica Council Meeting - Merrill Hall 1:30-3:30 pm Western Society of Malacologists Council Meeting Merrill Hall 3:30-5:30 American Malacological Society Council Meeting Merrill Hall MONDAY 12 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 7:30-8:30 am Breakfast - Crocker Dining Hall 8:30-11:30 Registration - Merrill Hall 8:30 am Welcome and Opening Session –Terry Gosliner - Merrill Hall Plenary Session: The Future of Molluscan Research - Merrill Hall 9:00 am - Genomics and the Future of Tropical Marine Ecosystems - Mónica Medina, Pennsylvania State University 9:45 am - Our New Understanding of Dead-shell Assemblages: A Powerful Tool for Deciphering Human Impacts - Sue Kidwell, University of Chicago 2 10:30-10:45 -
Malacologica
FOLIA Folia Malacol. 24(3): 111–177 MALACOLOGICA ISSN 1506-7629 The Association of Polish Malacologists Faculty of Biology, Adam Mickiewicz University Bogucki Wydawnictwo Naukowe Poznań, September 2016 http://dx.doi.org/10.12657/folmal.024.008 PATTERNS OF SPATIO-TEMPORAL VARIATION IN LAND SNAILS: A MULTI-SCALE APPROACH SERGEY S. KRAMARENKO Mykolaiv National Agrarian University, Paryzka Komuna St. 9, Mykolaiv, 54020, Ukraine (e-mail: [email protected]) ABSTRACT: Mechanisms which govern patterns of intra-specific vatiation in land snails were traced within areas of different size, using Brephulopsis cylindrica (Menke), Chondrula tridens (O. F. Müller), Xeropicta derbentina (Krynicki), X. krynickii (Krynicki), Cepaea vindobonensis (Férussac) and Helix albescens Rossmässler as examples. Morphometric shell variation, colour and banding pattern polymorphism as well as genetic polymorphism (allozymes and RAPD markers) were studied. The results and literature data were analysed in an attempt to link patterns to processes, with the following conclusions. Formation of patterns of intra- specific variation (initial processes of microevolution) takes different course at three different spatial scales. At micro-geographical scale the dominant role is played by eco-demographic characteristics of the species in the context of fluctuating environmental factors. At meso-geographical scale a special part is played by stochastic population-genetic processes. At macro-geographical scale more or less distinct clinal patterns are associated with basic macroclimatic -
Version of the Manuscript
Accepted Manuscript Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary charac- teristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia, Claudio A. González-Wevar, Elie Poulin, Leyla Cardenas PII: S1055-7903(17)30583-3 DOI: https://doi.org/10.1016/j.ympev.2018.10.036 Reference: YMPEV 6324 To appear in: Molecular Phylogenetics and Evolution Received Date: 15 August 2017 Revised Date: 23 July 2018 Accepted Date: 30 October 2018 Please cite this article as: Gaitán-Espitia, J.D., González-Wevar, C.A., Poulin, E., Cardenas, L., Antarctic and sub- Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda, Molecular Phylogenetics and Evolution (2018), doi: https://doi.org/10.1016/j.ympev.2018.10.036 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Version: 23-07-2018 SHORT COMMUNICATION Running head: mitogenomes Nacella limpets Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia1,2,3*; Claudio A. González-Wevar4,5; Elie Poulin5 & Leyla Cardenas3 1 The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China 2 CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart 7001, TAS, Australia. -
Multiple Congenital Genitourinary Anomalies in a Polled Goat
Multiple Congenital Genitourinary Anomalies in a Polled Goat WILLIAM W. KING, DVM, PHD, DIPLOMATE, ACLAM,1,2* MELVIN E. YOUNG,1 AND M. EUGENE FOX, DVM3 A 1-day-old, Toggenburg/Nubian crossbred goat of polled parentage was referred for necropsy because of a large (diameter, 5 cm) bladder-like mass protruding from the perineal midline and difficult urination. Differential diagnoses included cutaneous cyst, ectopic urinary bladder, and urethral diverticulum/dilatation. Several genitourinary aberrations were noted. A second, smaller (diameter, 1 cm), more distal cystic structure was adjacent to an ambiguous prepuce. Testicles were discovered within a con- stricted, subcutaneous space near the inguinal canals. A rudimentary penis was located dorsal to the penile urethra with no appreciable urethral process. A tiny external urethral orifice was discerned only after liquid was injected into the lumen of the cystic structures, confirming their identity as urethral dilatations. The dilatations were separated by a constricting band of fibrous tissue. No other significant findings were detected. This case illustrates a combination of congenital anomalies including bilateral cryptorchidism with scrotal absence, segmental urethral hypoplasia, and urethral dilatation, most likely associated with the intersex condition seen in polled breeds. The continued production and use of small ruminants as animal models demands the prompt recognition of congenital anomalies. This case also exemplifies the precautions required when breeding goats with polled ancestry. The domestic goat (Capra hircus) has historically served and Nubian/Toggenburg sire. The owner reported that the doe had continues to play an important role in biomedical research (1). completed a normal gestation period on a diet of natural grass/ Many small breeds are available, facilitating common labora- alfalfa hay and water. -
Genome Editing Reveals Dmrt1 As an Essential Male Sex-Determining
www.nature.com/scientificreports OPEN Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole Received: 13 October 2016 Accepted: 06 January 2017 (Cynoglossus semilaevis) Published: 16 February 2017 Zhongkai Cui1,2,3,*, Yun Liu4,5,*, Wenwen Wang1, Qian Wang1, Ning Zhang1, Fan Lin1, Na Wang1,2, Changwei Shao1,2, Zhongdian Dong1, Yangzhen Li1,2, Yingming Yang1, Mengzhu Hu1, Hailong Li1, Fengtao Gao1, Zhanfei Wei1, Liang Meng1, Yang Liu1,2, Min Wei1,2, Ying Zhu1,2, Hua Guo1,2, Christopher H. K. Cheng4,5,†, Manfred Schartl6,7,† & Songlin Chen1,2,† Chinese tongue sole is a marine fish with ZW sex determination. Genome sequencing suggested that the Z-linked dmrt1 is a putative male determination gene, but direct genetic evidence is still lacking. Here we show that TALEN of dmrt1 efficiently induced mutations of this gene. The ZZdmrt1 mutant fish developed ovary-like testis, and the spermatogenesis was disrupted. The female-related genes foxl2 and cyp19a1a were significantly increased in the gonad of the ZZdmrt1 mutant. Conversely, the male-related genes Sox9a and Amh were significantly decreased. Thedmrt1 deficient ZZ fish grew much faster than ZZ male control. Notably, we obtained an intersex ZW fish with a testis on one side and an ovary on the other side. This fish was chimeric for admrt1 mutation in the ovary, and wild-type dmrt1 in the testis. Our data provide the first functional evidence thatdmrt1 is a male determining gene in tongue sole. Sex-determining (SD) genes are located on the sex chromosomes to initiate a series of signaling pathways of sex related events to induce the development of bipotential primordial gonads into testes or ovaries. -
Habitat Use by the Arid-Dwelling Land Snail Iberus G. Gualtieranus
ARTICLE IN PRESS Journal of Arid Environments Journal of Arid Environments 67 (2006) 336–342 www.elsevier.com/locate/jnlabr/yjare Short communication Habitat use by the arid-dwelling land snail Iberus g. gualtieranus G. Moreno-Ruedaà Departamento de Biologı´a Animal y Ecologı´a, Facultad de Ciencias, Universidad de Granada. E-18071, Granada, Spain Received 14 September 2005; received in revised form 25 November 2005; accepted 21 February 2006 Available online 11 April 2006 Abstract Iberus gualtieranus gualtieranus is an arid-dwelling land snail that needs to use karstic fissures as refuge in order to survive in arid environments. Karstic fissures are primarily on vertical rocky walls. Because displacement is costly to terrestrial gastropods, it is predictable that this snail will move on vertical substrates near its refuges. However, this species eats primarily phanerogam plants, which are placed on bare soil in horizontal surfaces. Thus, it is also predictable that this snail will move on horizontal substrates far of its refuges. In the present study, this contradiction is examined. Results show that this snail moves far of its refuges to forage on horizontal substrates, while is sheltered in fissures on vertical and rocky surfaces. This suggests that the need of a refuge for survive imposes on this species a habitat use based in the alternation of two microhabitats: vertical and rocky substratum when inactive, and horizontal and bare soil when active. r 2006 Elsevier Ltd. All rights reserved. Keywords: Foraging; Microhabitat; Refuge selection; Shell morphology 1. Introduction All organisms need a set of resources to live and reproduce (Margalef, 1995; Pianka, 2000), and mobile organisms, such as most of animals, may travel searching for those resources they need. -
Guía De Los Caracoles Terrestres De Andalucía
El presente trabajo se enmarca en el Programa de Actuaciones para la Conservación y Uso sostenible de los caracoles terrestres de Andalucía, en el que colaboran, desde 2002, la Consejería de Medio Ambiente de la Junta de Andalucía y el Departamento de Fisiología y Zoología de la Universidad de Sevilla. La edición de la obra es fruto de la colaboración entre la Fundación Gypaetus y la Consejería de Medio Ambiente. Edición: Fundación Gypaetus. Dirección facultativa: Fernando Ortega Alegre. Autores: Antonio Ruiz Ruiz, Ángel Cárcaba Pozo, Ana I. Porras Crevillen y José R. Arrébola Burgos. Fotografía: Antonio Ruiz Ruiz, Alberto Martínez Ortí (págs. 211, 241). Diseño gráfico y maquetación: Carlos Manzano Arrondo y Juan A. Martínez Camúñez. I.S.B.N.: 84-935194-2-1. Depósito legal: 4 Sumario Presentación . 6 1. Introducción a la Guía de los caracoles terrestres de Andalucía a. La Guía y su estructura . 12 b. Uso de la guía . 22 c. Morfología de la concha en los caracoles terrestres . 26 d. Biología y ecología de los caracoles terrestres . 36 e. Normativa ambiental . 45 f. Localización, observación, estudio, identificación y conservación de caracoles terrestres . 49 2. Ordenación sistemática y catálogo de especies . 58 3. Glosario de términos . 278 4. Abreviaturas . 283 5. Indice de nombres científicos. 284 6. Bibliografía . 290 7. Agradecimientos . 299 8. Claves de símbolos . 300 5 Presentación de la Consejera de Medio Ambiente. Uno de los términos claves en Conservación es el de Biodiversidad o Diversidad Biológica. Alude a la gran variedad de formas y patrones de vida existente sobre el planeta y a los complejos ecológicos en los que se integran.