entropy Article Nonlinear Relaxation Phenomena in Metastable Condensed Matter Systems Bernardo Spagnolo 1,2,3,*, Claudio Guarcello 4,5,3, Luca Magazzù 6, Angelo Carollo 1,3, Dominique Persano Adorno 1 and Davide Valenti 1 1 Dipartimento di Fisica e Chimica, Interdisciplinary Theoretical Physics Group, Università di Palermo and CNISM, Unità di Palermo, Viale delle Scienze, Edificio 18, I-90128 Palermo, Italy;
[email protected] (A.C.);
[email protected] (D.P.A.);
[email protected] (D.V.) 2 Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania, Italy 3 Radiophysics Department, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia 4 SPIN-CNR, Via Dodecaneso 33, I-16146 Genova, Italy;
[email protected] 5 NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy 6 Institute of Physics, University of Augsburg, Universitätsstrasse 1, D-86135 Augsburg, Germany;
[email protected] * Correspondence:
[email protected]; Tel.: +39-091-238-99059 Academic Editor: Kevin H. Knuth Received: 12 November 2016; Accepted: 25 December 2016; Published: 31 December 2016 Abstract: Nonlinear relaxation phenomena in three different systems of condensed matter are investigated. (i) First, the phase dynamics in Josephson junctions is analyzed. Specifically, a superconductor-graphene-superconductor (SGS) system exhibits quantum metastable states, and the average escape time from these metastable states in the presence of Gaussian and correlated fluctuations is calculated, accounting for variations in the the noise source intensity and the bias frequency. Moreover, the transient dynamics of a long-overlap Josephson junction (JJ) subject to thermal fluctuations and non-Gaussian noise sources is investigated.